中考数学反比例函数综合题附答案
备战中考数学—反比例函数的综合压轴题专题复习含详细答案

一、反比例函数真题与模拟题分类汇编(难题易错题)1.如图.一次函数y=x+b的图象经过点B(﹣1,0),且与反比例函数(k为不等于0的常数)的图象在第一象限交于点A(1,n).求:(1)一次函数和反比例函数的解析式;(2)当1≤x≤6时,反比例函数y的取值范围.【答案】(1)解:把点B(﹣1,0)代入一次函数y=x+b得: 0=﹣1+b,∴b=1,∴一次函数解析式为:y=x+1,∵点A(1,n)在一次函数y=x+b的图象上,∴n=1+1,∴n=2,∴点A的坐标是(1,2).∵反比例函数的图象过点A(1,2).∴k=1×2=2,∴反比例函数关系式是:y=(2)解:反比例函数y= ,当x>0时,y随x的增大而减少,而当x=1时,y=2,当x=6时,y= ,∴当1≤x≤6时,反比例函数y的值:≤y≤2【解析】【分析】(1)根据题意首先把点B(﹣1,0)代入一次函数y=x+b求出一次函数解析式,又点A(1,n)在一次函数y=x+b的图象上,再利用一次函数解析式求出点A的坐标,然后利用代入系数法求出反比例函数解析式,(2)根据反比例函数的性质分别求出当x=1,x=6时的y值,即可得到答案.2.如图,反比例函数y= 的图象与一次函数y= x的图象交于点A、B,点B的横坐标是4.点P是第一象限内反比例函数图象上的动点,且在直线AB的上方.(1)若点P的坐标是(1,4),直接写出k的值和△PAB的面积;(2)设直线PA、PB与x轴分别交于点M、N,求证:△PMN是等腰三角形;(3)设点Q是反比例函数图象上位于P、B之间的动点(与点P、B不重合),连接AQ、BQ,比较∠PAQ与∠PBQ的大小,并说明理由.【答案】(1)解:k=4,S△PAB=15.提示:过点A作AR⊥y轴于R,过点P作PS⊥y轴于S,连接PO,设AP与y轴交于点C,如图1,把x=4代入y= x,得到点B的坐标为(4,1),把点B(4,1)代入y= ,得k=4.解方程组,得到点A的坐标为(﹣4,﹣1),则点A与点B关于原点对称,∴OA=OB,∴S△AOP=S△BOP,∴S△PAB=2S△AOP.设直线AP的解析式为y=mx+n,把点A(﹣4,﹣1)、P(1,4)代入y=mx+n,求得直线AP的解析式为y=x+3,则点C的坐标(0,3),OC=3,∴S△AOP=S△AOC+S△POC= OC•AR+ OC•PS= ×3×4+ ×3×1= ,∴S△PAB=2S△AOP=15;(2)解:过点P作PH⊥x轴于H,如图2.B(4,1),则反比例函数解析式为y= ,设P(m,),直线PA的方程为y=ax+b,直线PB的方程为y=px+q,联立,解得直线PA的方程为y= x+ ﹣1,联立,解得直线PB的方程为y=﹣ x+ +1,∴M(m﹣4,0),N(m+4,0),∴H(m,0),∴MH=m﹣(m﹣4)=4,NH=m+4﹣m=4,∴MH=NH,∴PH垂直平分MN,∴PM=PN,∴△PMN是等腰三角形;(3)解:∠PAQ=∠PBQ.理由如下:过点Q作QT⊥x轴于T,设AQ交x轴于D,QB的延长线交x轴于E,如图3.可设点Q为(c,),直线AQ的解析式为y=px+q,则有,解得:,∴直线AQ的解析式为y= x+ ﹣1.当y=0时, x+ ﹣1=0,解得:x=c﹣4,∴D(c﹣4,0).同理可得E(c+4,0),∴DT=c﹣(c﹣4)=4,ET=c+4﹣c=4,∴DT=ET,∴QT垂直平分DE,∴QD=QE,∴∠QDE=∠QED.∵∠MDA=∠QDE,∴∠MDA=∠QED.∵PM=PN,∴∠PMN=∠PNM.∵∠PAQ=∠PMN﹣∠MDA,∠PBQ=∠NBE=∠PNM﹣∠QED,∴∠PAQ=∠PBQ.【解析】【分析】(1)过点A作AR⊥y轴于R,过点P作PS⊥y轴于S,连接PO,设AP 与y轴交于点C,如图1,可根据条件先求出点B的坐标,然后把点B的坐标代入反比例函数的解析式,即可求出k,然后求出直线AB与反比例函数的交点A的坐标,从而得到OA=OB,由此可得S△PAB=2S△AOP,要求△PAB的面积,只需求△PAO的面积,只需用割补法就可解决问题;(2)过点P作PH⊥x轴于H,如图2.可用待定系数法求出直线PB的解析式,从而得到点N的坐标,同理可得到点M的坐标,进而得到MH=NH,根据垂直平分线的性质可得PM=PN,即△PMN是等腰三角形;(3)过点Q作QT⊥x轴于T,设AQ交x轴于D,QB的延长线交x轴于E,如图3.可设点Q为(c,),运用待定系数法求出直线AQ的解析式,即可得到点D的坐标为(c﹣4,0),同理可得E(c+4,0),从而得到DT=ET,根据垂直平分线的性质可得QD=QE,则有∠QDE=∠QED.然后根据对顶角相等及三角形外角的性质,就可得到∠PAQ=∠PBQ.3.如图,一次函数y=kx+b的图象分别与反比例函数y= 的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.(1)求函数y=kx+b和y= 的表达式;(2)已知点C(0,5),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M 的坐标.【答案】(1)解:把点A(4,3)代入函数y= 得:a=3×4=12,∴y= .OA= =5,∵OA=OB,∴OB=5,∴点B的坐标为(0,﹣5),把B(0,﹣5),A(4,3)代入y=kx+b得:解得:∴y=2x﹣5.(2)解:∵点M在一次函数y=2x﹣5上,∴设点M的坐标为(x,2x﹣5),∵MB=MC,∴解得:x=2.5,∴点M的坐标为(2.5,0).【解析】【分析】(1)先求反比例函数关系式,由OA=OB,可求出B坐标,再代入一次函数解析式中求出解析式;(2)M点的纵坐标可用x 的式子表示出来,可套两点间距离公式,表示出MB、MC,令二者相等,可求出x .4.函数学习中,自变量取值范围及相应的函数值范围问题是大家关注的重点之一,请解决下面的问题.(1)分别求出当2≤x≤4时,三个函数:y=2x+1,y= ,y=2(x﹣1)2+1的最大值和最小值;(2)若y= 的值不大于2,求符合条件的x的范围;(3)若y= ,当a≤x≤2时既无最大值,又无最小值,求a的取值范围;(4)y=2(x﹣m)2+m﹣2,当2≤x≤4时有最小值为1,求m的值.【答案】(1)解:y=2x+1中k=2>0,∴y随x的增大而增大,∴当x=2时,y最小=5;当x=4时,y最大=9.∵y= 中k=2>0,∴在2≤x≤4中,y随x的增大而减小,∴当x=2时,y最大=1;当x=4时,y最小= .∵y=2(x﹣1)2+1中a=2>0,且抛物线的对称轴为x=1,∴当x=1时,y最小=1;当x=4时,y最大=19(2)解:令y= ≤2,解得:x<0或x≥1.∴符合条件的x的范围为x<0或x≥1(3)解:①当k>0时,如图得当0<x≤2时,y= 无最大值,有最小值,同理当a<0时,且a≤x<0时,y≤ 有最大值,无最小值,②当k<0时,如图得当0<x≤2时,y=无最小值,有最大值,同理当a<0时,且a≤x<0时,y≤ 有最小值,无最大值,∴当k<0,a<0时,此时,y= 既无最大值,又无最小值,综上所述,a的取值范围是a<0(4)解:①当m<2时,有2(2﹣m)2+m﹣2=1,解得:m1=1,m2= (舍去);②当2≤m≤4时,有m﹣2=1,解得:m3=3;③当m>4时,有2(4﹣m)2+m﹣2=1,整理得:2m2﹣15m+29=0.∵△=(﹣15)2﹣4×2×29=﹣7,无解.∴m的值为1或3.①当k>0时,如图得当0<x≤2时,y= 无最大值,有最小值,同理当a<0时,且a≤x<0时,y≤ 有最大值,无最小值,②当k<0时,如图得当0<x≤2时,y= 无最小值,有最大值,同理当a<0时,且a≤x<0时,y≤ 有最小值,无最大值,∴当k<0,a<0时,此时,y= 既无最大值,又无最小值,综上所述,a的取值范围是a<0;【解析】【分析】(1)根据k=2>0结合一次函数的性质即可得出:当2≤x≤4时,y=2x+1的最大值和最小值;根据二次函数的解析式结合二次函数的性质即可得出:当2≤x≤4时,y=2(x﹣1)2+1的最大值和最小值;(2)令y= ≤2,解之即可得出x的取值范围;(3)①当k>0时,如图得当0<x≤2时,得到y= 无最大值,有最小值,同理当a<0时,且a≤x<0时,得到y≤ 有最大值,无最小值,②当k<0时,如图得当0<x≤2时,y=无最小值,有最大值,同理当a<0时,且a≤x<0时,y≤ 有最小值,无最大值,于是得到结论;(4)分m<2、2≤m≤4和m>4三种情况考虑,根据二次函数的性质结合当2≤x≤4时有最小值为1即可得出关于m的一元二次方程(一元一次方程),解之即可得出结论.5.如图,已知直线y= x与双曲线y=交于A、B两点,且点A的横坐标为 .(1)求k的值;(2)若双曲线y=上点C的纵坐标为3,求△AOC的面积;(3)在坐标轴上有一点M,在直线AB上有一点P,在双曲线y=上有一点N,若以O、M、P、N为顶点的四边形是有一组对角为60°的菱形,请写出所有满足条件的点P的坐标.【答案】(1)解:把x= 代入,得y= ,∴A(,1),把点代入,解得:;(2)解:∵把y=3代入函数,得x= ,∴C ,设过,两点的直线方程为:,把点,,代入得:,解得:,∴,设与轴交点为,则点坐标为,∴;(3)解:设点坐标,由直线解析式可知,直线与轴正半轴夹角为,∵以、、、为顶点的四边形是有一组对角为的菱形,在直线上,∴点只能在轴上,∴点的横坐标为,代入,解得纵坐标为:,根据,即得:,解得: .故点坐标为:或 .【解析】【分析】(1)先求的A点纵坐标,然后用待定系数法求解即可;(2)先求出C 点坐标,再用待定系数法求的直线AC的解析式,然后求得直线AC与x的交点坐标,再根据求解即可;(3)设点坐标,根据题意用关于a的式子表示出N的坐标,再根据菱形的性质得,求出a的值即可.6.如图,四边形ABCD的四个顶点分别在反比例函数与(x>0,0<m<n)的图象上,对角线BD∥y轴,且BD⊥AC于点P.已知点B的横坐标为4.(1)当m=4,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.【答案】(1)①当x=4时,∴点B的坐标是(4,1)当y=2时,由得得x=2∴点A的坐标是(2,2)设直线AB的函数表达式为∴解得∴直线AB的函数表达式为②四边形ABCD为菱形,理由如下:如图,由①得点B(4,1),点D(4,5)∵点P为线段BD的中点∴点P的坐标为(4,3)当y=3时,由得,由得,∴PA= ,PC=∴PA=PC而PB=PD∴四边形ABCD为平行四边形又∵BD⊥AC∴四边形ABCD是菱形(2)四边形ABCD能成为正方形当四边形ABCD时正方形时,PA=PB=PC=PD(设为t,t≠0),当x=4时,∴点B的坐标是(4,)则点A的坐标是(4-t,)∴,化简得t=∴点D的纵坐标为则点D的坐标为(4,)所以,整理得m+n=32【解析】【分析】(1)①分别求出点A,B的坐标,运用待定系数法即可求出直线AB的表达示;②由特殊的四边形可知,对角线互相垂直的是菱形和正方形,则可猜测这个四边形是菱形或是正方形,先证明其为菱形先,则需要证明四边形ABCD是平行四边形,运用“对角线互相平分的四边形是平行四边形”的判定定理证明会更好些;再判断对角线是否相等,若不相等则不是正方形;(2)要使m,n有具体联系,根据A,B,C,D分别在两个函数图象,且由正方形的性质,可用只含m的代数式表示出点D或点C的坐标代入y= ,即可得到只关于m和n的等式.7.如图,直线 y=kx与双曲线 =-交于A、B两点,点C为第三象限内一点.(1)若点A的坐标为(a,3),求a的值;(2)当k=-,且CA=CB,∠ACB=90°时,求C点的坐标;(3)当△ABC为等边三角形时,点C的坐标为(m,n),试求m、n之间的关系式.【答案】(1)解:把(a,3)代入 =-,得,解得a=-2;(2)解:连接CO,作AD⊥y轴于D点,作CE垂直y轴于E点,则∠ADO=∠CEO=90°,∴∠DAO+∠AOD=90°,∵直线 y=kx与双曲线 =-交于A、B两点,∴OA=OB,当CA=CB,∠ACB=90°时,∴CO=AO,∠BOC=90°,即∠COE+∠BOE=90°,∵∠AOD=∠BOE,∴∠DAO=∠EOC,∴△ADO≌△OEC,又k=-,由y=- x和y=-解得,,所以A点坐标为(-2,3),由△ADO≌△OEC得,CE=OD=3,EO=DA=2,所以C(-3,-2);(3)解:连接CO,作AD⊥y轴于D点,作CE⊥y轴于E点,则∠ADO=∠CEO=90°,∴∠DAO+∠AOD=90°,∵直线 y=kx与双曲线 =-交于A、B两点,∴OA=OB,∵△ABC为等边三角形,∴CA=CB,∠ACB=60°,∠BOC=90°,即∠COE+∠BOE=90°,∵∠AOD=∠BOE,∴∠DAO=∠EOC,∴△ADO∽△OEC,∴,∵∠ACO= ∠ACB=30°,∠AOC=90°,∴,∵C的坐标为(m,n),∴CE=-m,OE=-n,∴AD=- n,OD=- m,∴A( n,- m),代入y=-中,得mn=18.【解析】【分析】(1)将点A的坐标代入反比例函数的解析式即可求出a的值;(2)连接CO,作AD⊥y轴于D点,作CE垂直y轴于E点,根据垂直的定义得出∠ADO=∠CEO=90°,故∠DAO+∠AOD=90°,根据双曲线的对称性得出OA=OB,当CA=CB,∠ACB=90°时,根据直角三角形斜边上的中线等于斜边的一半及等腰三角形的三线合一得出CO=AO,∠BOC=90°,即∠COE+∠BOE=90°,根据等角的余角相等得出∠DAO=∠EOC,从而利用AAS判断出△ADO≌△OEC,,解联立直线与双曲线的解析式组成的方程组,得出A 点的坐标,由△ADO≌△OEC得,CE=OD=3,EO=DA=2,进而得出C点坐标;(3)连接CO,作AD⊥y轴于D点,作CE⊥y轴于E点,根据垂直的定义得出∠ADO=∠CEO=90°,故∠DAO+∠AOD=90°,根据双曲线的对称性得出OA=OB,△ABC为等边三角形,故CA=CB,∠ACB=60°,∠BOC=90°,即∠COE+∠BOE=90°,根据等角的余角相等得出∠DAO=∠EOC,从而判断出△ADO∽△OEC,根据相似三角形的旋转得出,根据锐角三角函数的定义,及特殊锐角三角函数值得出,C的坐标为(m,n),故CE=-m,OE=-n,AD=- n,OD=-m,从而得出A点的坐标,再代入反比例函数的解析式即可求出mn=18.8.如图,已知直线与x、y轴交于M、N,若将N向右平移个单位后的N,,恰好落在反比例函数的图像上.(1)求k的值;(2)点P为双曲线上的一个动点,过点P作直线PA⊥x轴于A点,交NM延长线于F 点,过P点作PB⊥y轴于B交MN于点E.设点P的横坐标为m.①用含有m的代数式表示点E、F的坐标②找出图中与△EOM 相似的三角形,并说明理由.【答案】(1)解:当时,,,.把代入得,(2)解:①由(1)知 ..当时, ,.当时,,,∴E(2 -, ).② , , , ,,,,由一次函数解析式得∠OME=∠ONF=45°【解析】【分析】(1)当x=0时,求出y=2,得出N(0,2) ,由平移的性质得出N'(3,2) .把 (3,2) 代入 y=得k=6.(2)①由(1)可设P(m,) .当x=m时,求出y=−m+2 ,即F(m,2-m) ;当y=时,求出x=2−,即E(2 -,).②∵ON=2 , EM=, OM=2 , NF=,从而得出OMNF=EMON.由一次函数解析式得∠OME=∠ONF=45°;推出ΔEOM∼ΔOFN.9.已知一次函数y1=x+m的图象与反比例函数y2= 的图象交于A、B两点,已知当x>1时,y1>y2;当0<x<1时,y1<y2.(1)求一次函数的函数表达式;(2)已知反比例函数在第一象限的图象上有一点C到x轴的距离为2,求△ABC的面积.【答案】(1)解:∵当x>1时,y1>y2;当0<x<1时,y1<y2,∴点A的横坐标为1,代入反比例函数解析式,=y,解得y=6,∴点A的坐标为(1,6),又∵点A在一次函数图象上,∴1+m=6,解得m=5,∴一次函数的解析式为y1=x+5(2)解:∵第一象限内点C到x轴的距离为2,∴点C的纵坐标为2,∴2= ,解得x=3,∴点C的坐标为(3,2),过点C作CD∥x轴交直线AB于D,则点D的纵坐标为2,∴x+5=2,解得x=﹣3,∴点D的坐标为(﹣3,2),∴CD=3﹣(﹣3)=3+3=6,点A到CD的距离为6﹣2=4,联立,解得(舍去),,∴点B的坐标为(﹣6,﹣1),∴点B到CD的距离为2﹣(﹣1)=2+1=3,S△ABC=S△ACD+S△BCD= ×6×4+ ×6×3=12+9=21.【解析】【分析】(1)首先根据x>1时,y1>y2,0<x<1时,y1<y2确定点A的横坐标,然后代入反比例函数解析式求出点A的纵坐标,从而得到点A的坐标,再利用待定系数法求直线解析式解答;(2)根据点C到x轴的距离判断出点C的纵坐标,代入反比例函数解析式求出横坐标,从而得到点C的坐标,过点C作CD∥x轴交直线AB于D,求出点D 的坐标,然后得到CD的长度,再联立一次函数与双曲线解析式求出点B的坐标,然后△ABC的面积=△ACD的面积+△BCD的面积,列式进行计算即可得解.10.已知函数(1)判断该函数的图象与轴的交点个数.(2)若,求出函数值在时的取值范围.(3)若方程在内有且只有一个解,直接写出的范围.【答案】(1)解:△,当时,图象与轴只有一个交点,当时,图象与轴有两个交点(2)解:时,,当时,函数有最小值,当时,,故:(3)解:若方程在内有且只有一个解,即为和函数只有一个交点,函数,与轴的交点为:,函数的顶点坐标为:,故在时,和函数只有一个交点时,或【解析】【分析】(1)△,即可求解;(2)时,,当时,函数有最小值,当时,,即可求解;(3)若方程在内有且只有一个解,即为和函数只有一个交点,即可求解11.如图1,平面直角坐标系中,B、C两点的坐标分别为B(0,3)和C(0,﹣),点A在x轴正半轴上,且满足∠BAO=30°.(1)过点C作CE⊥AB于点E,交AO于点F,点G为线段OC上一动点,连接GF,将△OFG沿FG翻折使点O落在平面内的点O′处,连接O′C,求线段OF的长以及线段O′C的最小值;(2)如图2,点D的坐标为D(﹣1,0),将△BDC绕点B顺时针旋转,使得BC⊥AB于点B,将旋转后的△BDC沿直线AB平移,平移中的△BDC记为△B′D′C′,设直线B′C′与x轴交于点M,N为平面内任意一点,当以B′、D′、M、N为顶点的四边形是菱形时,求点M 的坐标.【答案】(1)解:如图1中,∵∠AOB=90°,∠OAB=30°,∴∠CBE=60°,∵CE⊥AB,∴∠CEB=90°,∠BCE=30°,∵C(0,- ),∴OC= ,OF=OC•tan30°= ,CF=2OF=3 ,由翻折可知:FO′=FO= ,∴CO′≥CF-O′F,∴CO′≥ ,∴线段O′C的最小值为(2)解:①如图2中,当B′D′=B′M=BD= 时,可得菱形MND′B′.在Rt△AMB′中,AM=2B′M=2 ,∴OM=AM-OA=2 -3 ,∴M(3 -2 ,0).②如图3中,当B′M是菱形的对角线时,由题意B′M=2OB=6,此时AM=12,OM=12-3,可得M(3 -12,0).③如图4中,当B′D′是菱形的对角线时,由∠D′B′M=∠DBO可得,所以B′M=则在RT△AM B′中,AM=2B′M= ,所以OM=OA-AM=3 - ,所以M(3 - ,0).④如图5中,当MD′是菱形的对角线时,MB′=B′D′= ,可得AM=2 ,OM=OA+AM=3 +2 ,所以M(3 +2 ,0).综上所述,满足条件的点M的坐标为(3 +2 ,0)或(3 -12,0)或(3 -,0)或(3 +2 ,0)【解析】【分析】(1)根据直角三角形的两锐角互余求出∠CBE的度数,由垂直的定义可求出∠BCE的度数,由点C的坐标求出OC的长,再在Rt△OCF中,利用解直角三角形求出OF的长;然后利用折叠的性质,可得到FO′的长,然后根据CO′≥CF-O′F,可求出线段O′C的最小值。
浙江省2023年中考数学真题(一次函数与反比例函数)附答案

浙江省2023年中考数学真题(一次函数与反比例函数)一、选择题1.如图是中国象棋棋盘的一部分建立如图所示的平面直角坐标系已知“車”所在位留的坐标为(−2,2)则“炮”所在位置的坐标为().A.(3,1)B.(1,3)C.(4,1)D.(3,2)2.在直角坐标系中把点A(m,2)先向右平移1个单位再向上平移3个单位得到点B.若点B的横坐标和纵坐标相等则m=()A.2B.3C.4D.53.在平面直角坐标系中将点(m,n)先向右平移2个单位再向上平移1个单位最后所得点的坐标是()A.(m−2,n−1)B.(m−2,n+1)C.(m+2,n−1)D.(m+2,n+1)4.在平面直角坐标系中点P(-1 m2+1)位于()A.第一象限B.第二象限C.第三象限D.第四象限5.下图是底部放有一个实心铁球的长方体水槽轴截面示意图现向水槽匀速注水下列图象中能大致反映水槽中水的深度(y)与注水时间(x)关系的是()A.B.C.D.6.抛物线y=ax2−a(a≠0)与直线y=kx交于A(x1,y1)B(x2,y2)两点若x1+x2<0则直线y=ax+k一定经过().A.第一、二象限B.第二、三象限C.第三、四象限D.第一、四象限7.已知点M(−4,a−2),N(−2,a),P(2,a)在同一个函数图象上则这个函数图象可能是()A.B.C.D.8.已知点A(−2,y1),B(−1,y2),C(1,y3)均在反比例函数y=3x的图象上则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y3<y2<y19.如图两盘灯笼的位置A B的坐标分别是(-3 3)(1 2)将点B向右平移2个单位再向上平移1个单位得到点B' 则关于点A' B'的位置描述正确是()A.关于x轴对称B.关于y轴对称C.关于原点O对称D.关于直线y=x对称10.如果100N的压力F作用于物体上产生的压强p要大于1000Pa 则下列关于物体受力面积S(m2)的说法正确的是()A.S小于0.1m2B.S大于0.1m2C.S小于10m2D.S大于10m211.如图一次函数y=ax+b的图象与反比例函数y=kx的图象交于点A(2,3),B(m,−2)则不等式ax+b>kx的解是()A.−3<x<0或x>2B.x<−3或0<x<2 C.−2<x<0或x>2D.−3<x<0或x>312.如图一次函数y1=k1x+b(k1>0)的图像与反比例函数y2=k2x(k2>0)的图像相交于A,B两点点A的横坐标为1 点B的横坐标为−2当y1<y2时x的取值范围是()A.x<−2或x>1B.x<−2或0<x<1C.−2<x<0或x>1D.−2<x<0或0<x<1二、填空题13.在“探索一次函数y=kx+b的系数k、b与图象的关系”活动中老师给出了直角坐标系中的三个点:A(0 2)B(2 3)C(3 1).同学们画出了经过这三个点中每两个点的一次函数的图象并得到对应的函数表达式y1=k1x+b1,y2=k2x+b2,y3=k3x+b3.分别计算k1+b1k2+b2,k3+b3的值其中最大的值等于.14.在温度不变的条件下通过一次又一次地对汽缸顶部的活塞加压加压后气体对气缸壁所产生的压强p(kPa)与气缸内气体的体积V(mL)成反比例p关于V的函数图象如图所示.若压强由75kPa加压到100kPa则气体体积压缩了mL.15.如图在平面直角坐标系xOy中函数y=kx(k为大于0的常数x>0)图象上的两点A(x1,y1),B(x2,y2)满足x2=2x1.△ABC的边AC//x轴边BC//y轴若△OAB的面积为6 则△ABC的面积是.16.如图点A B分别在函数y=ax(a>0)图象的两支上(A在第一象限)连接AB交x轴于点C.点D E在函数y=bx(b<0,x<0)图象上AE∥x轴BD∥y轴连接DE,BE.若AC=2BC△ABE的面积为9 四边形ABDE的面积为14 则a−b的值为a的值为.三、解答题17.在直角坐标系中已知k1k2≠0设函数y1=k1x与函数y2=k2(x−2)+5的图象交于点A和点B.已知点A的横坐标是2 点B的纵坐标是−4.(1)求k1,k2的值.(2)过点A作y轴的垂线过点B作x轴的垂线在第二象限交于点C;过点A作x轴的垂线过点B作y轴的垂线在第四象限交于点D.求证:直线CD经过原点.18.如图在直角坐标系中点A(2,m)在直线y=2x−52上过点A的直线交y轴于点B(0,3).(1)求m的值和直线AB的函数表达式。
【精选】2020年中考数学《反比例函数》专题 复习试题(word版有答案)

中考数学《反比例函数》专题 复习试题命题点1 图象与性质1.一台印刷机每年可印刷的书本数量 y(万册)与它的使用时间x(年)成反比例关系,当x =2时,y =20.则y 与x 的函数图象大致是(C)A B C D2.反比例函数y =mx的图象如图所示,以下结论:①常数m <-1;②在每个象限内,y 随x的增大而增大;③若A(-1,h),B(2,k)在图象上,则h <k ;④若P(x ,y)在图象上,则P ′(-x ,-y)也在图象上.其中正确的是(C)A .①②B .②③C .③④D .①④3.如图,函数y =⎩⎪⎨⎪⎧1x (x >0),-1x (x <0)的图象所在坐标系的原点是(A)A .点MB .点NC .点PD .点Q4.定义新运算:a ⊕b =⎩⎪⎨⎪⎧a b (b >0),-ab (b <0). 例如:4⊕5=45,4⊕(-5)=45.则函数y =2⊕x(x≠0)的图象大致是(D)A B C D5.如图,若抛物线y =-x2+3与x 轴围成的封闭区域(边界除外)内整点(点的横、纵坐标都是整数)的个数为k ,则反比例函数y =kx(x >0)的图象是(D)A B CD命题点2 反比例函数、一次函数与几何图形综合6.如图,四边形ABCD 是平行四边形,点A(1,0),B(3,1),C(3,3).反比例函数y =mx(x>0)的图象经过点D ,点P 是一次函数y =kx +3-3k(k ≠0)的图象与该反比例函数图象的一个公共点.(1)求反比例函数的解析式;(2)通过计算说明一次函数y =kx +3-3k(k ≠0)的图象一定经过点C ;(3)对于一次函数y =kx +3-3k(k ≠0),当y 随x 的增大而增大时,确定点P 横坐标的取值范围.(不必写出过程)解:(1)∵B(3,1),C(3,3),四边形ABCD 是平行四边形, ∴AD =BC =2,AD ∥BC ,BC ⊥x 轴.∴AD ⊥x 轴. 又∵A(1,0),∴D(1,2).∵点D 在反比例函数y =mx的图象上,∴m =1×2=2.∴反比例函数的解析式为y =2x.(2)当x =3时,y =kx +3-3k =3,∴一次函数y =kx +3-3k(k ≠0)的图象一定过点C.(3)设点P 的横坐标为a ,则23<a <3.命题点3 反比例函数的实际应用(8年2考)7.(2019·杭州)方方驾驶小汽车匀速地从A 地行驶到B 地,行驶里程为480千米,设小汽车的行驶时间为t(单位:小时),行驶速度为v(单位:千米/小时),且全程速度限定为不超过120千米/小时.(1)求v 关于t 的函数解析式;(2)方方上午8点驾驶小汽车从A 地出发.①方方需在当天12点48分至14点(含12点48分和14点)间到达B 地,求小汽车行驶速度v 的范围;②方方能否在当天11点30分前到达B 地?说明理由.解:(1)∵vt =480,且全程速度限定为不超过120千米/小时,∴v 关于t 的函数解析式为v =480t (t ≥4).(2)①8点至12点48分时间长为245小时,8点至14点时间长为6小时.将t =6代入v =480t,得v =80;将t =245代入v =480t,得v =100.∴小汽车行驶速度v 的范围为80≤v ≤100.②方方不能在当天11点30分前到达B 地.理由如下:8点至11点30分时间长为72小时,将t =72代入v =480t ,得v =9607.∵9607>120,超速了. 故方方不能在当天11点30分前到达B 地.基础训练1.(2019·柳州)反比例函数y =2x的图象位于(A)A .第一、三象限B .第二、三象限C .第一、二象限D .第二、四象限2.(2019·哈尔滨)点(-1,4)在反比例函数y =kx的图象上,则下列各点在此函数图象上的是(A)A .(4,-1)B .(-14,1)C .(-4,-1)D .(14,2)3.(2019·邢台模拟)已知甲圆柱型容器的底面积为30 cm 2,高为8 cm ,乙圆柱型容器底面积为x cm 2.若将甲容器装满水,全部倒入乙容器中(乙容器没有水溢出),则乙容器水面高度y(cm)与x(cm 2)之间的大致图象是(C)A B C D4.(2019·唐山乐亭县模拟)若点(x 1,y 1),(x 2,y 2)都是反比例函数y =-6x图象上的点,并且y 1<0<y 2,则下列结论中正确的是(A)A .x 1>x 2B .x 1<x 2C .y 随x 的增大而减小D .两点有可能在同一象限5.(2019·唐山滦南县一模)如图,正比例函数y =x 与反比例函数y =4x的图象交于A ,B 两点,其中A(2,2),当y =x 的函数值大于y =4x的函数值时,x 的取值范围为(D)A .x >2B .x <-2C .-2<x <0或0<x <2D .-2<x <0或x >26.(2019·石家庄模拟)已知反比例函数y =kx的图象过第二、四象限,则一次函数y =kx +k的图象大致是(B)A B C D7.(2019·唐山路北区模拟)已知点P(m ,n)是反比例函数y =-3x图象上一点,当-3≤n <-1时,m 的取值范围是(A)A .1≤m <3B .-3≤m <-1C .1<m ≤3D .-3<m ≤-18.(原创)(2017·河北T15变式)将九年级某班40名学生的数学测试成绩分为5组,第1~4组的频率分别为0.3,0.25,0.15,0.2,第5组的频数记为k ,则反比例y =kx(x >0)的图象是(D)A B C D9.(原创)(2019·河北T12变式)如图,函数y =⎩⎪⎨⎪⎧mx(x >0),-mx(x<0)的图象如图所示,以下结论:①常数m >0;②在每个象限内,y 随x 增大而减小;③若点A(-2,a),B(3,b)在图象上,则a <b ;④若P(x ,y)在图象上,则P ′(-x ,y)也在图象上,其中正确的是(D)A .①②B .②③C .③④D .①④10.(2019·兰州)如图,矩形OABC 的顶点B 在反比例函数y =kx(x >0)的图象上,S 矩形OABC=6,则k =6.11.(2019·北京)在平面直角坐标系xOy 中,点A(a ,b)(a >0,b >0)在双曲线y =k 1x上,点A 关于x 轴的对称点B 在双曲线y =k 2x,则k 1+k 2的值为0.12.(2019·盐城)如图,一次函数y =x +1的图象交y 轴于点A ,与反比例函数y =kx(x >0)的图象交于点B(m ,2).(1)求反比例函数的解析式; (2)求△AOB 的面积.解:(1)∵点B(m ,2)在直线y =x +1上, ∴2=m +1,解得m =1. ∴点B 的坐标为(1,2).∵点B(1,2)在反比例函数y =kx(x >0)的图象上,∴2=k1,解得k =2.∴反比例函数的解析式是y =2x.(2)将x =0代入y =x +1,得y =1,则点A 的坐标为(0,1). ∵点B 的坐标为(1,2),∴△AOB 的面积为12×1×1=12.能力提升13.(2019·石家庄新华区模拟)如图,在平面直角坐标系中,点A(0,2),点P 是双曲线y =kx(x >0)上的一个动点,作PB ⊥x 轴于点B ,当点P 的横坐标逐渐减小时,四边形OAPB 的面积将会(C)A .逐渐增大B .不变C .逐渐减小D .先减小后增大14.(2019·陕西)如图,D 是矩形AOBC 的对称中心,A(0,4),B(6,0).若一个反比例函数的图象经过点D ,交AC 于点M ,则点M 的坐标为(32,4).16.(2019·秦皇岛海港区模拟)如图,在平面直角坐标系中,▱ABCD 的顶点A(1,b),B(3,b),D(2,b +1).(1)点C 的坐标是(4,b +1)(用b 表示);(2)双曲线y =kx过▱ABCD 的顶点B 和D ,求该双曲线的解析式;(3)如果▱ABCD 与双曲线y =4x(x >0)总有公共点,求b 的取值范围.解:(2)∵双曲线y =kx过▱ABCD 的顶点B(3,b)和D(2,b +1),∴3b =2(b +1),解得b =2,即B(3,2),D(2,3).则该双曲线解析式为y =6x .(3)将A(1,b)代入y =4x ,得b =4;将C(4,b +1)代入y =4x ,得b +1=1,即b =0.则▱ABCD 与双曲线y =4x(x >0)总有公共点时,b 的取值范围为0≤b ≤4.17.如图为某公园“水上滑梯”的侧面图,其中BC 段可看成是一段双曲线,建立如图的直角坐标系后,其中,矩形AOEB 为向上攀爬的梯子,OA =5米,进口AB ∥OD ,且AB =2米,出口C 点距水面的距离CD 为1米,则B ,C 之间的水平距离DE 的长度为(D)A .5米B .6米C .7米D .8米18.(1)探究新知:如图1,已知△ABC 与△ABD 的面积相等,试判断AB 与CD 的位置关系,并说明理由.(2)结论应用:①如图2,点M ,N 在反比例函数y =kx(x >0)的图象上,过点M 作ME ⊥y 轴,过点N 作NF ⊥x 轴,垂足分别为E ,F ,试证明:MN ∥EF ;②若①中的其他条件不变,只改变点M ,N 的位置,如图3所示,请判断MN 与EF 是否平行?解:(1)AB ∥CD.理由:过点C 作CG ⊥AB 于点G ,过点D 作DH ⊥AB 于点H , ∴∠CGA =∠DHB =90°.∴CG ∥DH. ∵△ABC 和△ABD 的面积相等, ∴CG =DH.∴四边形CGHD 是矩形.∴AB ∥CD.(2)①证明:连接MF ,NE ,设M(x 1,y 1),N(x 2,y 2),∵点M ,N 在反比例函数y =kx(x >0)的图象上,∴x 1y 1=k ,x 2y 2=k. ∵ME ⊥y 轴,NF ⊥x 轴,∴EM =x 1,OE =y 1,OF =x 2,NF =y 2.∴S △EFM =12x 1·y 1=12k ,S △EFN =12x 2y 2=12k.∴S △EFM =S △EFN ,由(1)中的结论可知,MN ∥EF.②MN ∥EF ,理由:连接MF ,NE ,设M(x 1,y 1),N(x 2,y 2).∵M ,N 在反比例函数y =kx(k >0)的图象上,∴x 1y 1=k ,x 2y 2=k. ∵ME ⊥y 轴,NF ⊥x 轴,∴EM =x 1,OE =y 1,OF =-x 2,NF =-y 2.∴S △EFM =12x 1·y 1=12k ,S △EFN =12(-x 2)(-y 2)=12k.∴S △EFM =S △EFN .由(1)中的结论可知,MN ∥EF.反比例函数中的面积问题1.(2019·枣庄)如图,在平面直角坐标系中,等腰Rt △ABC 的顶点A ,B 分别在x 轴、y 轴的正半轴上,∠ABC =90°,CA ⊥x 轴,点C 在函数y =kx(x >0)的图象上.若AB =1,则k的值为(A)A .1B.22C. 2 D .22.如图,A ,B 两点在双曲线y =4x(x >0)上,分别经过A ,B 两点向x 轴作垂线段,已知S阴影=1,则S 1+S 2=(D)A .3B .4C .5D .63.(2019·黄冈)如图,一直线经过原点O ,且与反比例函数y =kx(k>0)相交于点A ,B ,过点A 作AC ⊥y 轴,垂足为C ,连接BC.若△ABC 面积为8,则k =8.4.如图,A ,B 是反比例函数y =2x的图象上关于原点对称的任意两点,BC ∥x 轴,AC ∥y 轴,△ABC 的面积记为S ,则(B)A .S =2B .S =4C .2<S <4D .S >45.(2019·郴州)如图,点A ,C 分别是正比例函数y =x 与反比例函数y =4x的图象的交点,过A 点作AD ⊥x 轴于点D ,过C 点作CB ⊥x 轴于点B ,则四边形ABCD 的面积为8.6.如图,AB 是反比例函数y =3x在第一象限内的图象上的两点,且A ,B 两点的横坐标分别是1和3,则S △AOB =4.7.(2019·鸡西)如图,在平面直角坐标系中,点O 为坐标原点,▱OABC 的顶点A 在反比例函数y =1x (x >0)的图象上,顶点B 在反比例函数y =5x(x >0)的图象上,点C 在x 轴的正半轴上,则▱OABC 的面积是(C)A.32B.52C .4D .68.如图,在平面直角坐标系中,点A 是x 轴上任意一点,BC 平行于x 轴,分别交反比例函数y =3x (x >0),y =kx(x <0)的图象于B ,C 两点.若△ABC 的面积为2,则k 的值为-1.9.(2019·株洲)如图所示,在平面直角坐标系xOy 中,点A ,B ,C 为反比例函数y =k x(k >0)图象上不同的三点,连接OA ,OB ,OC ,过点A 作AD ⊥y 轴于点D ,过点B ,C 分别作BE ,CF 垂直x 轴于点E ,F ,OC 与BE 相交于点M ,记△AOD ,△BOM ,四边形CMEF 的面积分别为S 1,S 2,S 3,则(B)A .S 1=S 2+S 3B .S 2=S 3C .S 3>S 2>S 1D .S 1S 2<S 2310.(2019·本溪)如图,在平面直角坐标系中,等边△OAB 的边OA 和菱形OCDE 的边OE 都在x 轴上,点C 在OB 边上,S △ABD =3,反比例函数y =kx (x >0)的图象经过点B ,则k 的值。
2023中考数学真题汇编11 反比例函数及其应用(含答案与解析)

2023中考数学真题汇编·11反比例函数及其应用一、单选题1.(2023·云南)若点 1,3A 是反比例函数(0)ky k x图象上一点,则常数k 的值为()A .3B .3C .32D .322.(2023·湖南永州)已知点 2,M a 在反比例函数ky x的图象上,其中a ,k 为常数,且0k ﹐则点M 一定在()A .第一象限B .第二象限C .第三象限D .第四象限3.(2023·湖北随州)已知蓄电池的电压为定值,使用某蓄电池时,电流I (单位:A)与电阻R (单位: )是反比例函数关系,它的图象如图所示,则当电阻为6 时,电流为()A .3AB .4AC .6AD .8A4.(2023·湖南)如图,矩形OABC 的顶点B 和正方形ADEF 的顶点E 都在反比例函数 0ky k x的图像上,点B 的坐标为 2,4,则点E 的坐标为()A . 4,4B . 2,2C . 2,4D .4,25.(2023·浙江)如果100N 的压力F 作用于物体上,产生的压强P 要大于1000Pa ,则下列关于物体受力面积 2S m 的说法正确的是()A .S 小于20.1mB .S 大于20.1m C .S 小于210m D .S 大于210m 6.(2023·浙江嘉兴)已知点 1232,,1,,1,A y B y C y 均在反比例函数3y x的图象上,则123,,y y y 的大小关系是()A .123y y y B .213y y y C .312y y y D .321y y y 7.(2023·天津)若点 123,2,,1,)2(,A x B x C x 都在反比例函数2y x的图象上,则123,,x x x 的大小关系是()A .321x x x B .213x x x C .132x x x D .231x x x 8.(2023·山西)已知(2,),(1,),(3,)A a B b C c 都在反比例函数4y x的图象上,则a 、b 、c 的关系是()A .a b cB .b a cC .c b aD .c a b9.(2023·湖北宜昌)某反比例函数图象上四个点的坐标分别为 1233,,2,3,1,,2,y y y ,则,123,,y y y 的大小关系为()A .213y y y B .321y y y C .231y y y D .132y y y 10.(2023·内蒙古通辽)已知点 1122,,,A x y B x y 在反比例函数2y x的图像上,且120x x ,则下列结论一定正确的是()A .120y y B .120y y C .120y y D .120y y 11.(2023·湖北)在反比例函数4ky x的图象上有两点 1122,,,A x y B x y ,当120x x 时,有12y y ,则k 的取值范围是()A .0k B .0k C .4k D .4k 12.(2023·吉林长春)如图,在平面直角坐标系中,点A 、B 在函数(0,0)k y k x x的图象上,分别以A 、B 为圆心,1为半径作圆,当A 与x 轴相切、B 与y 轴相切时,连结AB ,32AB ,则k 的值为()A .3B .32C .4D .613.(2023·湖南)如图,平面直角坐标系中,O 是坐标原点,点A 是反比例函数 0ky k x图像上的一点,过点A 分别作AM x 轴于点M ,AN y 轴于直N ,若四边形AMON 的面积为2.则k 的值是()A .2B .2C .1D .114.(2023·黑龙江绥化)在平面直角坐标系中,点A 在y 轴的正半轴上,AC 平行于x 轴,点B ,C 的横坐标都是3,2BC ,点D 在AC 上,且其横坐标为1,若反比例函数ky x(0x )的图像经过点B ,D ,则k 的值是()A .1B .2C .3D .3215.(2023·湖南张家界)如图,矩形OABC 的顶点A ,C 分别在y 轴、x 轴的正半轴上,点D 在AB 上,且14AD AB,反比例函数 0ky k x的图象经过点D 及矩形OABC 的对称中心M ,连接,,OD OM DM .若ODM △的面积为3,则k 的值为()A .2B .3C .4D .516.(2023·内蒙古)如图,在平面直角坐标系中,OAB 三个顶点的坐标分别为(0,0),(23,0),(3,1),O A B OAB △与OAB 关于直线OB 对称,反比例函数(0,0)ky k x x的图象与A B 交于点C .若A C BC ,则k 的值为()A .23B .332C .3D .3217.(2023·湖南怀化)如图,反比例函数(0)ky k x的图象与过点(1,0) 的直线AB 相交于A 、B 两点.已知点A 的坐标为(1,3),点C 为x 轴上任意一点.如果9ABC S ,那么点C 的坐标为()A .(3,0)B .(5,0)C .(3,0) 或(5,0)D .(3,0)或(5,0)18.(2023·福建)如图,正方形四个顶点分别位于两个反比例函数3y x和ny x的图象的四个分支上,则实数n 的值为()A .3B .13C .13D .319.(2023·广西)如图,过(0)ky x x 的图象上点A ,分别作x 轴,y 轴的平行线交1y x的图象于B ,D两点,以AB ,AD 为邻边的矩形ABCD 被坐标轴分割成四个小矩形,面积分别记为1S ,2S ,3S ,4S ,若23452S S S ,则k 的值为()A .4B .3C .2D .120.(2023·黑龙江)如图,ABC 是等腰三角形,AB 过原点O ,底边BC x ∥轴,双曲线ky x过,A B 两点,过点C 作CD y ∥轴交双曲线于点D ,若12BCD S ,则k 的值是()A .6B .12C .92D .921.(2023·四川宜宾)如图,在平面直角坐标系xOy 中,点A 、B 分别在y ,x轴上,BC x 轴.点M 、N 分别在线段BC 、AC 上,BM CM ,2NC AN ,反比例函数 0ky x x的图象经过M 、N 两点,P 为x 正半轴上一点,且:1:4OP BP ,APN 的面积为3,则k 的值为()A .454B .458C .14425D .7225二、填空题22.(2023·广东)某蓄电池的电压为48V ,使用此蓄电池时,电流I (单位:A )与电阻R (单位: )的函数表达式为48I R,当12R 时,I 的值为_______A .23.(2023·四川成都)若点 123,y ,1,A B y 都在反比例函数6y x的图象上,则1y _______2y (填“ ”或“ ”).23.(2023·浙江温州)在温度不变的条件下,通过一次又一次地对汽缸顶部的活塞加压,加压后气体对汽缸壁所产生的压强P (kPa )与汽缸内气体的体积V (mL )成反比例,P 关于V 的函数图象如图所示.若压强由75kPa 加压到100kPa ,则气体体积压缩了___________mL .24.(2023·河北)如图,已知点(3,3),(3,1)A B ,反比例函数(0)ky k x图像的一支与线段AB 有交点,写出一个符合条件的k 的数值:_________.25.(2023·黑龙江齐齐哈尔)如图,点A 在反比例函数 0ky k x图像的一支上,点B 在反比例函数2ky x图像的一支上,点C ,D 在x 轴上,若四边形ABCD 是面积为9的正方形,则实数k 的值为______.26.(2023·广东深圳)如图,Rt OAB 与Rt OBC △位于平面直角坐标系中,30AOB BOC ,BA OA ,CB OB ,若AB 0ky kx恰好经过点C ,则k ______.27.(2023·江苏连云港)如图,矩形OABC 的顶点A 在反比例函数(0)ky x x的图像上,顶点B C 、在第一象限,对角线AC x ∥轴,交y 轴于点D .若矩形OABC 的面积是6,2cos 3OAC ,则k __________.28.(2023·新疆)如图,在平面直角坐标系中,OAB 为直角三角形,90A ,30AOB ,4OB .若反比例函数 0ky k x的图象经过OA 的中点C ,交AB 于点D ,则k ______.29.(2023·山东烟台)如图,在直角坐标系中,A 与x 轴相切于点,B CB 为A 的直径,点C 在函数(0,0)ky k x x的图象上,D 为y 轴上一点,ACD 的面积为6,则k 的值为________.26.(2023·湖北鄂州)如图,在平面直角坐标系中,直线11y k x b 与双曲线22k y x(其中120k k )相交于 2,3A , ,2B m 两点,过点B 作BP x ∥轴,交y 轴于点P ,则ABP 的面积是___________.30.(2023·浙江绍兴)如图,在平面直角坐标系xOy 中,函数ky x(k 为大于0的常数,0x )图象上的两点 1122,,,A x y B x y ,满足212x x .ABC 的边AC x ∥轴,边∥BC y 轴,若OAB 的面积为6,则ABC 的面积是________.31.(2023·四川内江)如图,在平面直角坐标系中,O 为坐标原点,MN 垂直于x 轴,以MN 为对称轴作ODE 的轴对称图形,对称轴MN 与线段DE 相交于点F ,点D 的对应点B 恰好落在反比例函数(0)ky x x的图象上,点O 、E 的对应点分别是点C 、A .若点A 为OE 的中点,且14EAF S △,则k 的值为___________.32.(2023·浙江宁波)如图,点A ,B 分别在函数(0)ay a x图象的两支上(A 在第一象限),连接AB 交x 轴于点C .点D ,E 在函数(0,0)by b x x图象上,AE x 轴,BD y ∥轴,连接,DE BE .若2AC BC ,ABE 的面积为9,四边形ABDE 的面积为14,则a b 的值为__________,a 的值为__________.33.(2023·湖北荆州)如图,点 2,2A 在双曲线(0)k y x x上,将直线OA 向上平移若干个单位长度交y 轴于点B ,交双曲线于点C .若2BC ,则点C 的坐标是___________.34.(2023·山东枣庄)如图,在反比例函数8(0)y x x的图象上有1232024,,,P P P P 等点,它们的横坐标依次为1,2,3,…,2024,分别过这些点作x 轴与y 轴的垂线,图中所构成的阴影部分的面积从左到右依次为1232023,,,,S S S S ,则1232023S S S S ___________.35.(2023·湖北十堰)函数ky x a的图象可以由函数k y x的图象左右平移得到.(1)将函数1y x的图象向右平移4个单位得到函数1y x a的图象,则 a ____;(2)下列关于函数1y x a的性质:①图象关于点 ,0a 对称;②y 随x 的增大而减小;③图象关于直线y x a 对称;④y 的取值范围为0y .其中说法正确的是________(填写序号);(3)根据(1)中a 的值,写出不等式11x a x的解集:_________.三、解答题36.(2023·湖南常德)如图所示,一次函数1y x m 与反比例函数2ky x相交于点A 和点 3,1B .(1)求m 的值和反比例函数解析式;(2)当12y y 时,求x 的取值范围.37.(2023·湖南)如图,点A 的坐标是 3,0 ,点B 的坐标是(0,4),点C 为OB中点,将ABC 绕着点B 逆时针旋转90 得到A BC △.(1)反比例函数ky x的图像经过点C ,求该反比例函数的表达式;(2)一次函数图像经过A 、A 两点,求该一次函数的表达式.38.(2023·四川广安)如图,一次函数94y kx(k 为常数,0k )的图象与反比例函数(my m x为常数,0)m 的图象在第一象限交于点 1,A n ,与x 轴交于点 3,0B .(1)求一次函数和反比例函数的解析式.(2)点P 在x 轴上,ABP 是以AB 为腰的等腰三角形,请直接写出点P 的坐标.39.(2023·山东)如图,已知坐标轴上两点 0,4,2,0A B ,连接AB ,过点B 作BC AB ,交反比例函数ky x在第一象限的图象于点(,1)C a .(1)求反比例函数ky x和直线OC 的表达式;(2)将直线OC 向上平移32个单位,得到直线l ,求直线l 与反比例函数图象的交点坐标.40.(2023·浙江杭州)在直角坐标系中,已知120k k ,设函数11k y x与函数 2225y k x 的图象交于点A 和点B .已知点A 的横坐标是2,点B 的纵坐标是4 .(1)求12,k k 的值.(2)过点A 作y 轴的垂线,过点B 作x 轴的垂线,在第二象限交于点C ;过点A 作x 轴的垂线,过点B 作y 轴的垂线,在第四象限交于点D .求证:直线CD 经过原点.41.(2023·四川自贡)如图,点 24A ,在反比例函数1my x图象上.一次函数2y kx b 的图象经过点A ,分别交x 轴,y 轴于点B ,C ,且OAC △与OBC △的面积比为2:1.(1)求反比例函数和一次函数的解析式;(2)请直接写出12y y 时,x 的取值范围.42.(2023·四川泸州)如图,在平面直角坐标系xOy 中,直线:2l y kx 与x ,y 轴分别相交于点A ,B ,与反比例函数 0my x x的图象相交于点C ,已知1OA ,点C 的横坐标为2.(1)求k ,m 的值;(2)平行于y 轴的动直线与l 和反比例函数的图象分别交于点D ,E ,若以B ,D ,E ,O 为顶点的四边形为平行四边形,求点D 的坐标.43.(2023·四川南充)如图,一次函数图象与反比例函数图象交于点 16A ,3,3B a a,与x 轴交于点C ,与y 轴交于点D .(1)求反比例函数与一次函数的解析式;(2)点M 在x 轴上,若OAM OAB S S △△,求点M 的坐标.44.(2023·四川宜宾)如图,在平面直角坐标系xOy 中,等腰直角三角形ABC 的直角顶点 30C ,,顶点A 、 6B m ,恰好落在反比例函数ky x第一象限的图象上.(1)分别求反比例函数的表达式和直线AB 所对应的一次函数的表达式;(2)在x 轴上是否存在一点P ,使ABP 周长的值最小.若存在,求出最小值;若不存在,请说明理由.45.(2023·四川遂宁)如图,一次函数1y k x b 的图像与反比例函数2k y x的图像交于 41A ,, 4B m ,两点.(1k ,2k ,b 为常数)(1)求一次函数和反比例函数的解析式;(2)根据图像直接写出不等式21k k x b x的解集;(3)P 为y 轴上一点,若PAB 的面积为3,求P 点的坐标.46.(2023·四川眉山)如图,在平面直角坐标系xOy 中,直线y kx b与x 轴交于点 4,0A ,与y 轴交于点 0,2B ,与反比例函数m y x在第四象限内的图象交于点 6,C a .(1)求反比例函数的表达式:(2)当mkx b x时,直接写出x 的取值范围;(3)在双曲线my x上是否存在点P ,使ABP 是以点A 为直角顶点的直角三角形?若存在,求出点P 的坐标;若不存在,请说明理由.47.(2023·江西)如图,已知直线y x b 与反比例函数(0)k y x x的图象交于点(2,3)A ,与y 轴交于点B ,过点B 作x 轴的平行线交反比例函数(0)k y x x的图象于点C .(1)求直线AB 和反比例函数图象的表达式;(2)求ABC 的面积.48.(2023·四川乐山)如图,一次函数y kx b 的图象与反比例函数4y x的图象交于点 ,4A m ,与x 轴交于点B ,与y 轴交于点 0,3C .(1)求m 的值和一次函数的表达式;(2)已知P 为反比例函数4y x图象上的一点,2OBP OAC S S △△,求点P 的坐标.49.(2023·湖南岳阳)如图,反比例函数kyx(k 为常数,0k )与正比例函数y mx (m 为常数,0m )的图像交于 1,2,A B 两点.(1)求反比例函数和正比例函数的表达式;(2)若y 轴上有一点 0,,C n ABC △的面积为4,求点C 的坐标.50.(2023·湖南)如图,正比例函数43y x的图象与反比例函数12(0)y x x的图象相交于点A .(1)求点A 的坐标.(2)分别以点O 、A 为圆心,大于OA 一半的长为半径作圆弧,两弧相交于点B 和点C ,作直线BC ,交x 轴于点D .求线段OD 的长.51.(2023·江苏苏州)如图,一次函数2y x 的图象与反比例函数(0)ky x x的图象交于点 4,A n .将点A 沿x 轴正方向平移m 个单位长度得到点,B D 为x 轴正半轴上的点,点B 的横坐标大于点D 的横坐标,连接,BD BD 的中点C 在反比例函数(0)k y x x的图象上.(1)求,n k 的值;(2)当m 为何值时,AB OD 的值最大?最大值是多少?52.(2023·山东东营)如图,在平面直角坐标系中,一次函数 0y ax b a与反比例函数 0ky k x交于 ,3A m m , 4,3B 两点,与y 轴交于点C ,连接OA ,OB .(1)求反比例函数和一次函数的表达式;(2)求AOB 的面积;(3)请根据图象直接写出不等式kax b x的解集.53.(2023·山东枣庄)如图,一次函数(0)y kx b k 的图象与反比例函数4y x的图象交于(,1),(2,)A m B n 两点.(1)求一次函数的表达式,并在所给的平面直角坐标系中画出这个一次函数的图象;(2)观察图象,直接写出不等式4kx b x的解集;(3)设直线AB 与x 轴交于点C ,若(0,)P a 为y 轴上的一动点,连接,AP CP ,当APC △的面积为52时,求点P 的坐标.54.(2023·山东滨州)如图,直线(,y kx b k b 为常数)与双曲线my x(m 为常数)相交于 2,A a , 1,2B 两点.(1)求直线y kx b 的解析式;(2)在双曲线my x上任取两点 11,M x y 和 22,N x y ,若12x x ,试确定1y 和2y 的大小关系,并写出判断过程;(3)请直接写出关于x 的不等式mkx b x的解集.55.(2023·甘肃兰州)如图,反比例函数 0ky x x与一次函数2y x m的图象交于点 1,4A ,BC y 轴于点D ,分别交反比例函数与一次函数的图象于点B ,C .(1)求反比例函数ky x与一次函数2y x m 的表达式;(2)当1OD 时,求线段BC 的长.56.(2023·湖北黄冈)如图,一次函数1(0)y kx b k 与函数为2(0)my x x的图象交于1(4,1),,2A B a两点.(1)求这两个函数的解析式;(2)根据图象,直接写出满足120y y 时x 的取值范围;(3)点P 在线段AB 上,过点P 作x 轴的垂线,垂足为M ,交函数2y 的图象于点Q ,若POQ △面积为3,求点P 的坐标.57.(2023·四川)如图,已知一次函数6y kx 的图象与反比例函数 0my m x的图象交于 34A ,,B 两点,与x 轴交于点C ,将直线AB 沿y 轴向上平移3个单位长度后与反比例函数图象交于点D ,E .(1)求k ,m 的值及C 点坐标;(2)连接AD ,CD ,求ACD 的面积.58.(2023·山东)如图,正比例函数112y x和反比例函数2(0)ky x x的图像交于点 ,2A m .(1)求反比例函数的解析式;(2)将直线OA 向上平移3个单位后,与y 轴交于点B ,与2(0)ky x x的图像交于点C ,连接AB AC ,,求ABC 的面积.59.(2023·四川内江)如图,在平面直角坐标系中,一次函数y mx n 与反比例函数ky x的图象在第一象限内交于 ,4A a 和 4,2B 两点,直线AB 与x 轴相交于点C ,连接OA .(1)求一次函数与反比例函数的表达式;(2)当0x 时,请结合函数图象,直接写出关于x 的不等式kmx n x≥的解集;(3)过点B 作BD 平行于x 轴,交OA 于点D ,求梯形OCBD 的面积.60.(2023·山东聊城)如图,一次函数y kx b 的图像与反比例函数m y x的图像相交于 1,4A , ,1B a 两点.(1)求反比例函数和一次函数的表达式;(2)点 ,0P n 在x 轴负半轴上,连接AP ,过点B 作BQ AP ∥,交my x的图像于点Q ,连接PQ .当BQ AP 时,若四边形APQB 的面积为36,求n 的值.61.(2023·河南)小军借助反比例函数图象设计“鱼形”图案,如图,在平面直角坐标系中,以反比例函数ky x图象上的点A 和点B 为顶点,分别作菱形AOCD 和菱形OBEF ,点D ,E 在x 轴上,以点O 为圆心,OA 长为半径作 AC ,连接BF .(1)求k 的值;(2)求扇形AOC 的半径及圆心角的度数;(3)请直接写出图中阴影部分面积之和.62.(2023·四川成都)如图,在平面直角坐标系xOy 中,直线5y x 与y 轴交于点A ,与反比例函数ky x的图象的一个交点为(,4)B a ,过点B 作AB 的垂线l .(1)求点A 的坐标及反比例函数的表达式;(2)若点C 在直线l 上,且ABC 的面积为5,求点C 的坐标;(3)P 是直线l 上一点,连接PA ,以P 为位似中心画PDE △,使它与PAB 位似,相似比为m .若点D ,E 恰好都落在反比例函数图象上,求点P 的坐标及m 的值.【参考答案与解析】1.【答案】A【解析】解:∵点 1,3A 是反比例函数(0)ky k x图象上一点,∴133k ,故选:A .2.【答案】A【解析】解:0k ∵, 反比例函数ky x的图象经过第一、三象限,故点M 可能在第一象限或者第三象限,2,M a ∵的横坐标大于0, 2,M a 一定在第一象限,故选:A .3.【答案】B【解析】解:设该反比函数解析式为 0kI k R,由题意可知,当8R 时,3I ,38k,解得:24k , 设该反比函数解析式为24I R, 当6R 时,2446I,即电流为4A ,故选:B .4.【答案】D【解析】∵ 0k y k x经过 2,4,∴解析式为8y x,设正方形的边长为x ,则点 2,E x x ,∴ 28x x ,解得122,4x x (舍去),故点 4,2E ,故选:D .5.【答案】A【解析】解:假设P 为1000Pa ,∵F 为100N ,2F 100S =0.1m P 1000.P 1000Pa Q ,2S 0.1m .故选:A.6.【答案】B【解析】解:∵30k ,∴图象在一三象限,且在每个象限内y 随x 的增大而减小,∵2101 ,∴2130y y y .故选:B .7.【答案】D【解析】解:2y x,20 ,∴双曲线在二,四象限,在每一象限,y 随x 的增大而增大;∵ 123,2,,1,)2(,A x B x C x ,∴1230,0x x x ,∴231x x x ;故选:D .8.【答案】B【解析】解:∵反比例函数4y x中0k ,∴函数图象的两个分支分别位于一、三象限,且在每一象限内y 随x 的增大而减小.∵20,10, ∴(2,),(1,)A a B b 位于第三象限,∴0,0,a b ∵210, ∴0.a b ∵30,∴点(3,)C c 位于第一象限,∴0,c ∴.b a c 故选:B .9.【答案】C【解析】解:设反比例函数的解析式为k y x,将点 2,3 代入得:236k ,则反比例函数的解析式为6y x,所以这个函数的图象位于第二、四象限,且在每一象限内,y 随x 的增大而增大,又∵点 1233,,1,,2,y y y 在函数6y x 的图象上,且3012 ,1320y y y ,即231y y y ,故选:C .10.【答案】D【解析】解:∵点 11,A x y , 22,B x y )是反比例函数2y x的图像上的两点,∴11222x y x y ,∵120x x ,∴210y y ,即120y y ,故D 正确.故选:D .11.【答案】C【解析】解:∵当120x x 时,有12y y ,∴反比例函数4ky x的图象在一三象限,∴40k 解得:4k ,故选:C .12.【答案】C【解析】解:如图所示,过点A B ,分别作y x ,轴的垂线,垂足分别为E D ,,AE BD ,交于点C ,依题意,B 的横坐标为1,A 的纵坐标为1,设 ,1A k , 1,B k ∴ 1,1C ,则1,1AC k BC k ,又∵90ACB ,AB ∴ 22211k k ,∴3BC AC ,∴13k 解得:4k ,故选:C .13.【答案】A【解析】解:AM x ∵轴于点M ,AN y 轴于直N ,90MON , 四边形AMON 是矩形,∵四边形AMON 的面积为2,2k ,∵反比例函数在第一、三象限,2k ,故选:A .14.【答案】C 【解析】设 3,B m ,∵点B ,C 的横坐标都是3,2BC ,AC 平行于x 轴,点D 在AC 上,且其横坐标为1,∴ 3,2,1,2C m D m ,∴32m m ,解得1m ,∴ 3,1B ,∴313k ,故选:C .15.【答案】C【解析】解:∵四边形OCBA 是矩形,∴AB OC ,OA BC ,设B 点的坐标为(,)a b ,∵矩形OABC 的对称中心M ,∴延长OM 恰好经过点B ,(,)22a bM ,∵点D 在AB 上,且14AD AB ,∴1(,)4D a b ,∴34BD a ,∴1133()224216BDM b S BD h a b ab∵D 在反比例函数的图象上,∴14ab k ,∵11332216ODM AOB AOD BDM ab S S S S ab k ,∴11332816ab ab ab ,解得:16ab ,∴144k ab,故选:C .16.【答案】A【解析】解:如图所示,过点B 作BD x 轴,∵(0,0),(23,0),(3,1)O A B ,∴1,3BD OD ∴3AD OD ,3tan BD BOA OD∴222OB AB OD BD ,30BOA BAO ,∴60OBD ABD ,120OBA ,∵OA B 与OAB 关于直线OB 对称,∴120OBA ,∴180OBA OBD ,∴A ,B ,O 三点共线,∴2A B AB ,∵A C BC ,∴1BC ,∴2CD ,∴3,2C ,将其代入(0,0)ky k x x得:23k ,故选:A .17.【答案】D【解析】解:∵反比例函数(0)k y k x的图象过点(1,3),∴133k ∴3y x设直线AB 的解析式为y mx n ,∴30m n m n ,解得:3232m n,∴直线AB 的解析式为3322y x,联立33223y x y x,解得:13x y 或232x y ,∴32,2B ,设 ,0C c ,∵1313922ABC S c,解得:3c 或5c ,∴C 的坐标为(3,0)或(5,0) ,故选:D .18.【答案】A【解析】解:如图所示,连接正方形的对角线,过点,A B 分别作x 轴的垂线,垂足分别为,C D ,点B 在3y x上,∵OB OA ,90AOB BDO ACO ,∴90CAO AOC BOD .∴AOC OBD ≌.∴32AOC OBD S S2n .∵A 点在第二象限,∴3n .故选:A .19.【答案】C【解析】设 ,A a b ,则1,B b b ,1,D a a,11,C b a∵点A 在(0)ky x x的图象上,则1S ab k ,同理∵B ,D 两点在1y x 的图象上,则241S S ,故3511122S ,又∵31211S b a,即112ab ,故2ab ,∴2k ,故选:C .20.【答案】C【解析】解:由题意,设,k B b b,∵AB 过原点O ,∴,k A b b,过点A 作AE BC 于E ,∵ABC 是等腰三角形,∴ 2CE BE b b b ,∴4BC b ,点D 的横坐标为3b ,∵底边BC x ∥轴,CD y ∥轴,∴1141222BCD S BC CD b CD,∴6CD b,∴点D 的纵坐标为66k k b b b ,∴63,k D b b,∴ 6336k k b k b ,解得:92k ,故选:C.21.【答案】B【解析】解:如图,过点N 作NQ x 轴于点Q,设点A 的坐标为 0,0A a a ,点M 的坐标为 5,0,0M b c b c ,点N 的坐标为 ,0,0N m n m n ,则 5,2C b c ,OA a ,5OB b ,:1:4OP BP ∵,,4OP b BP b ,2NC AN ∵, 5202223b m m n c a c,解得53223b m a c n,522,33b a c N ,522,33b a cOQ NQ,23bPQ OQ OP,APN ∵ 的面积为3,3AOP NPQ OANQ S S S 梯形,即15221122232332233a c b a c b a ab ,整理得:29ab bc ,将点 5225,,,33b a c M b c N代入k y x 得:522533b a c k bc ,整理得:27a c ,将27a c 代入29ab bc 得:79bc bc ,解得98bc ,则4558k bc,故选:B .二、填空题22.【答案】4【解析】解:∵12R ,∴4848412I R A 故答案为:4.23.【答案】 【解析】解:∵点 123,y ,1,A B y 都在反比例函数6y x的图象上,∴1623y,2661y ,∵26 ,∴1y 2y ,故答案为: .23.【答案】20【解析】解:设P 关于V 的函数解析式为kP V,由图象可把点 100,60代入得:6000k ,∴P 关于V 的函数解析式为6000P V,∴当75kPa P 时,则60008075V,∴压强由75kPa 加压到100kPa ,则气体体积压缩了1008020mL ;故答案为:20.24.【答案】4(答案不唯一,满足39k 均可)【解析】解:当反比例函数(0)ky k x图像过(3,3)A 时,339k ;当反比例函数(0)ky k x图像过(3,1)B 时,313k ;∴k 的取值范围为39k ,∴k 可以取4.故答案为:4(答案不唯一,满足39k 均可).25.【答案】6 【解析】解:如图:∵点A 在反比例函数 0k y k x 图像的一支上,点B 在反比例函数2ky x 图像的一支上,∴,22ODAE OCBE k k S k k S∵四边形ABCD 是面积为9的正方形,∴9ODAE OCBE S S ,即92kk ,解得:6k .故答案为:6 .26.【答案】3【解析】解:过点C 作CD x 轴于点D ,如图所示:∵30AOB BOC ,BA OA ,CB OB ,∴11,22AB OB BC OC ,∵90AOD ,∴30COD ,∵3AB ∴23OB AB 在Rt OBC △中,2233OB OC BC BC ,∴2BC ,4OC ,∵30COD ,90CDO ,∴122CD OC ,∴323OD CD ,∴点23,2C ,∴43k ,故答案为:4327.【答案】83【解析】解:方法一:∵2cos 3OAC ,∴2cos 3AD AO OAC AO AC设2AD a ,则3AO a ,∴92AC a∵矩形OABC 的面积是6,AC 是对角线,∴AOC 的面积为3,即132AO OC ∴623OC a a在Rt AOC 中,222AC AO OC 即 2229232a a a即22813644a a解得:2a 在Rt ADC中,DO∵对角线AC x ∥轴,则AD OD ,∴2458222153AOD k S a ,∵反比例函数图象在第二象限,∴83k ,方法二:∵2cos 3OAC ,∴2cos 3AD AO OAC AO AC设2AD a ,则3AO a ,∴92AC a,∴24992AD a AC a,488226993AOD AOC S S,∵0k ,∴83k ,故答案为:83.28.【答案】334【解析】解:如图,作CE OB 交OB 于点E ,,∵90A ,30AOB ,4OB ,3cos3043OA OB∵点C 为OA 的中点,113322OC OA∵CE OB ,90OEC ,30COE ∵,113333cos303222CE OC OE OC ,332C,,∵点C 在反比例函数图象上,333224k,3329.【答案】24【解析】解:设,k C a a,∵A 与x 轴相切于点B ,∴BC x 轴,∴,kOB a AC a,则点D 到BC 的距离为a ,∵CB 为A 的直径,∴122k AC BC a ,∴16224ACDk k S a a ,解得:24k ,故答案为:24.26.【答案】152【解析】∵直线11y k x b 与双曲线22k y x(其中120k k )相交于 2,3A , ,2B m 两点,∴2232k m ∴263k m ,,∴双曲线的表达式为:26y x, 3,2B ,∵过点B 作BP x ∥轴,交y 轴于点P ,∴3BP ,∴1153(32)22ABP S,故答案为:152.30.【答案】2【解析】解:如图,过点A B 、作AF y 轴于点F ,AD x 轴于点D ,BE x ⊥于点E,6AFO ABO BOE FABEO S S S S k ∵五边形AFOD FABEO ADEB ADEB S S S k S 矩形五边形梯形梯形6ADEB S 梯形2121()()62y y x x∵212x x 2112y y11112121111()(2)()()32==6224y y x x y y x x y x 11=8x y 8k21121111111111()()82222244ABC S AC BC x x y y x y x y =×=-×-=×==´=故答案为:2.31.【答案】6 【解析】解:连接BO,设对称轴MN 与x 轴交于点G ,∵ODE 与CBA △关于对称轴MN ,∴AG EG ,AC EO ,EC AO ,∵点A 为OE 的中点,设AG EG a ,则2EC AO AE a ,∴4AC EO a ,∵14EAF S △,∴8112EGF EAF S S△△,∵GF OD ,∴EFG EDO ∽△△,∴2EGF EOD S EG S EO △△,即2184EOD a S a △,∴11628EOD S △,∴2ACB S △,∵4AC a ,2AO a ,∴213OCB ACB AOB S S S △△△,∴132k ,∵0k ,∴6k ,故答案为:6 .32.【答案】12;9【解析】解:如图,延长BD ,AE 交于点Q ,BD 与x 轴交于点K ,而AE x 轴,BD y ∥轴,∴90Q ,∵ABE 的面积为9,四边形ABDE 的面积为14,∴BDE △的面积是5,设,a A m m ,,a B n n,∴,a Q n m ,,b D n n ,,bm a E a m∴b a BD n n ,bm EQ n a ,bm AE m a,a a BQ m n ,∴152b a bm n n n a ,192bm a a m a m n ,整理得: 10b a bm an na ①, 18n m a b n ②,∵OK AQ ∥,2AC BC ,∴12BK BC QK AC ,∴2QK BK ,∴2a a m n,则2n m ③,把③代入②得: 3182m a b m ,∴12a b ,即12b a ④,把③代入①得: 220b a b a a ⑤,把④代入⑤得:9a ;故答案为:12;9.33.【答案】【解析】解:把 2,2A 代入(0)ky x x ,可得22k ,解得4k , 反比例函数解析式4(0)y x x,如图,过点A 作x 轴的垂线段交x 轴于点E ,过点C 作y 轴的垂线段交y 轴于点D ,2,2A ∵,AE OE ,45AOE ,9045AOD AOE ,∵将直线OA 向上平移若干个单位长度交y 轴于点B ,45CBD ,在Rt CBD △中,sin 45CD CB 22CD即点C把x 4(0)y x x,可得yC ,故答案为:.34.【答案】2023253【解析】当1x 时,1P 的纵坐标为8,当2x 时,2P 的纵坐标为4,当3x 时,3P 的纵坐标为83,当4x 时,4P 的纵坐标为2,当5x 时,5P 的纵坐标为85,…则11(84)84S ;2881(4)433S ;3881(2)233S ;481(22558S ;…881n S n n ;1238888888844228335111n n S S S S n n n n ,∴12320238202320242532023S S S S.故答案为:2023253.35.【答案】(1)4 ;(2)①④.(3)0x 或4x .【解析】(1)根据“左加右减”的规律即可求解;∵函数1y x 的图象向右平移4个单位得到函数14y x 的图象,∴4a ;(2)根据平移的性质得出①正确;类比反比例函数图象的性质即可判断②④,根据平移的性质将y x 向左平移a 个单位,得出y x a ,即可判断③;∵1y x a可以看作是由1y x 向左平移a 0a 个单位得到的,∵函数1y x 图象的对称中心为 00,,将其对称中心向左平移a 个单位,则对称中心为 ,0a ,故①正确,②类比反比例函数图象,可得x a ¹-,故函数图象不是连续的,在直线x a 两侧,y 随x 的增大而减小;故②错误;③∵1y x关于y x 对称,同①可得,y x 向左平移a 个单位得到: y x a x a ,∴图象关于直线y x a 对称;故③不正确;④∵平移后的对称中心为 ,0a ,左右平移图象后,1y x a与y 轴没有交点,∴y 的取值范围为0y .故④正确,(3)根据题意,画出两个函数图象,结合图象即可求解.∵4a ,∴不等式114x x如图所示,在第三象限内和第一象限内,114x x ,∴0x 或4x ,36.【答案】(1)2m ,3y x;(2)1x 或03x 【解析】(1)将点 3,1B 代入1y x m 得:31m 解得:2m 将 3,1B 代入2k y x得: 313k ∴23y x(2)由12y y 得:32x x,解得121,3x x 所以,A B 的坐标分别为1,3,3,1A B 由图形可得:当1x 或03x 时,12y y 37.【答案】(1)解:∵点B 的坐标是(0,4),点C 为OB 中点,∴ 0,2C ,2OC BC ,由旋转可得:2BC BC ,90CBC ,∴ 2,4C ,∴248k ,∴反比例函数的表达式为8y x;(2)如图,过A 作A H BC 于H ,则90AOB A HB ,而90ABA ,AB A B,∴90ABO BAO ABO A BO ,∴BAO A BH ¢Ð=Ð,∴ABO BA H ≌,∴3AO BH ,4OB A H ,∴431OH ,∴ 4,1A ,设直线AA 为y mx n ,∴3041m n m n ,解得:1737m n,∴直线AA 为1377y x .【解析】(1)由点B 的坐标是(0,4),点C 为OB 中点,可得 0,2C ,2OC BC ,由旋转可得:2BC BC ,90CBC ,可得 2,4C ,可得248k ,从而可得答案;(2)如图,过A 作A H BC 于H ,则90AOB A HB ,而90ABA ,AB A B ,证明ABO BA H ≌,可得3AO BH ,4OB A H , 4,1A ,设直线AA 为y mx n ,再建立方程组求解即可.38.【答案】(1)解:把点 3,0B 代入一次函数94y kx 得,930,4k 解得:34k ,故一次函数的解析式为3944y x,把点 1,A n 代入3944y x ,得39344n ,(1,3)A ,把点(1,3)A 代入m y x,得3m ,故反比例函数的解析式为3y x;(2)解: 3,0B ,(1,3)A ,5AB ,当5AB PB 时,(8,0)P 或(2,0),当PA AB 时,点,P B 关于直线1x 对称,(5,0)P ,综上所述:点P 的坐标为(8,0) 或(2,0)或(5,0).【解析】(1)根据待定系数法,把已知点代入再解方程即可得出答案;(2)首先利用勾股定理求出得AB 的长,再分两种情形讨论即可.39.【答案】(1)如图,过点C 作CD x 轴于点D ,则1CD ,90CDB ,∵BC AB ,∴90ABC ,∴90ABO CBD ,∵90CDB ,∴90BCD CBD ,∴BCD ABO ,∴ABO BCD ∽ ,∴OA BD OB CD,∵ 0,4,2,0A B ,∴4OA ,2OB ,∴421BD ,∴2BD ,∴224OD ,∴点 4,1C ,将点C 代入k y x 中,可得4k ,∴4y x,设OC 的表达式为y mx ,将点 4,1C 代入可得14m ,解得:14m,∴OC 的表达式为14y x ;(2)直线l 的解析式为1342y x,当两函数相交时,可得13442x x ,解得12x ,8x ,代入反比例函数解析式,得1122x y ,22812x y∴直线l 与反比例函数图象的交点坐标为 2,2或18,2【解析】(1)如图,过点C 作CD x 轴于点D ,证明ABO BCD ∽ ,利用相似三角形的性质得到2BD ,求出点C 的坐标,代入k y x可得反比例函数解析式,设OC 的表达式为y mx ,将点 4,1C 代入即可得到直线OC 的表达式;(2)先求得直线l 的解析式,联立反比例函数的解析式即可求得交点坐标.40.【答案】(1)∵点A 的横坐标是2,∴将2x 代入 22255y k x ,∴ 2,5A ,∴将 2,5A 代入11k y x得,110k ,∴110y x ,∵点B 的纵坐标是4 ,∴将4y 代入110y x 得,52x ,∴5,42B ,∴将5,42B 代入 2225y k x 得,254252k,∴解得22k ,∴ 222521y x x ;(2)如图所示,由题意可得,5,52C, 2,4D ,∴设CD 所在直线的表达式为y kx b ,∴55224k b k b ,解得20k b ,∴2y x ,∴当0x 时,0y ,∴直线CD 经过原点.【解析】(1)首先将点A 的横坐标代入 2225y k x 求出点A 的坐标,然后代入11k y x 求出110k ,然后将点B 的纵坐标代入110y x 求出5,42B,然后代入 2225y k x 即可求出22k ;(2)首先根据题意画出图形,然后求出点C 和点D 的坐标,然后利用待定系数法求出CD 所在直线的表达式,进而求解即可.41.【答案】(1)解:将 24A ,代入1m y x 得,42m ,解得8m ,∴反比例函数解析式为18y x;当0x ,2y b ,则 0C b ,,OC b ,当20y ,b x k,则0b B k ,b OB k ,∵OAC 与OBC △的面积比为2:1,∴2212A OC x OC OB ,整理得2A x OB ,即22b k ,解得b k 或b k ,当b k 时,将 24A ,代入2y kx b 得,42k k ,解得43k ,则24433y x ;当b k 时,将 24A ,代入2y kx b 得,42k k ,解得4k ,则244y x ;综上,一次函数解析式为24433y x 或244y x ;∴反比例函数解析式为18y x ,一次函数解析式为24433y x 或244y x ;(2)解:由题意知,由一次函数解析式不同分两种情况求解:①当一次函数解析式为24433y x 时,如图1,联立1284433y x y x ,解得383x y 或24x y ,由函数图象可知,12y y 时,x 的取值范围为3x 或02x ;②当一次函数解析式为244y x 时,如图2,联立12844y x y x ,解得18x y 或24x y ,由函数图象可知,12y y 时,x 的取值范围为1x 或02x ;综上,当一次函数解析式为24433y x 时,x 的取值范围为3x 或02x ;当一次函数解析式为244y x 时x 的取值范围为1x 或02x .【解析】(1)将 24A ,代入1m y x 得,42m ,解得8m ,可得反比例函数解析式为18y x ;当0x ,2y b ,则 0C b ,,OC b ,当20y ,b x k,则0b B k ,,b OB k ,由OAC 与OBC △的面积比为2:1,可得2212A OC x OC OB ,整理得2A x OB ,即22b k ,解得b k 或b k ,当b k 时,将 24A ,代入2y kx b 得,42k k ,解得43k ,则24433y x ;当b k 时,将 24A ,代入2y kx b 得,42k k ,解得4k ,则244y x ;(2)由一次函数解析式不同分两种情况求解:①当一次函数解析式为24433y x 时,如图1,联立1284433y x y x ,解得383x y 或24x y ,根据函数图象判断x 的取值范围即可;②当一次函数解析式为244y x 时,如图2,联立12844y x y x ,解得18x y 或24x y ,根据函数图象判断x 的取值范围即可.42.【答案】(1)解:∵1OA ,∴ 10A ,,∵直线2y kx 经过点 10A ,,∴02k ,解得,2k ,∴直线的解析式为22y x ,∵点C 的横坐标为2,∴2226y ,∴ 26C ,,∵反比例函数 0m y x x的图象经过点C ,∴2612m ;(2)解:由(1)得反比例函数的解析式为12y x ,令0x ,则2022y ,∴点 02B ,,设点 22D a a ,,则点12E a a,,∵以B ,D ,E ,O 为顶点的四边形为平行四边形,∴2DE OB ,∴12222a a,整理得12222a a 或12222a a ,由12222a a得222122a a a ,整理得26a ,解得a ∵0a ,∴a∴点 2D ;由12222a a得222122a a a ,整理得2260a a ,解得1a ,∵0a ,∴1a ,∴点1D ;综上,点D 的坐标为 2或1.【解析】(1)求得 10A ,,利用待定系数法即可求得直线的式,再求得 26C ,,据此即可求解;(2)设点 22D a a ,,则点12E a a,,利用平行四边形的性质得到12222a a ,解方程即可求解.43.【答案】(1)解:设反比例函数解析式为1k y x ,将 16A ,代入1k y x ,可得161k ,解得16k ,反比例函数的解析式为6y x ,把3,3B a a 代入6y x ,可得336a a ,解得1a ,经检验,1a 是方程的解,3,2B ,设一次函数的解析式为2y k x b ,将 16A ,, 3,2B 代入2y k x b ,可得623x bx b ,解得224k b ,一次函数的解析式为24y x ;(2)解:当0y 时,可得024x ,解得2x ,2,0C ,2OC ,112622822OAC OBC OAB S S S △△△,。
初中数学中考复习 备战2020年中考数学一轮专项复习——反比例函数综合 能力提升卷(含解析答案)

中考数学一轮专项复习——反比例函数综合 能力提升卷一、选择题1.(2019•济南)函数y =﹣ax +a 与y =(a ≠0)在同一坐标系中的图象可能是( )A .B .C .D .2. (2019呼和浩特)二次函数y =ax 2与一次函数y =ax +a 在同一坐标系中的大致图象可能是( )3. (2019青岛)已知反比例函数y =ab x的图象如图所示,则二次函数y =ax 2-2x 和一次函数y =bx +a 在同一平面直角坐标系中的图象可能是( )4.如图,在菱形ABOC 中,∠ABO =120°,它的一个顶点C 在反比例函数y =的图象上,若将菱形向下平移2个单位,点A 恰好落在函数图象上,则该反比函数的表达式为( )A .y =﹣B .y =﹣C .y =﹣D .y =﹣5.如图所示,点P (3a ,a )是反比例函数y =(k >0)与⊙O 的一个交点,图中阴影部分的面积为10π,则反比例函数的解析式为( )A .y =B .y =C .y =D .y =6. 如图,二次函数y =ax 2+c的图象与反比例函数y =cx 的图象相交于A (-32,1),则关于x 的不等式ax 2+c >cx的解集为( )A. x <-32B. x >-32C. x <-32或x >0D. -32<x <17. (2019宜宾模拟)如图,关于二次函数y =ax 2+bx +c (a ≠0)的结论正确的是( )①2a +b =0; ②当-1≤x ≤3时,y <0;③若(x 1,y 1),(x 2,y 2)在函数图象上,当x 1<x 2时,y 1<y 2; ④3a +c =0.A. ①②④B. ①④C. ①②③D. ③④8. (人教九上P 35例3改编)怎样移动抛物线y =-12x 2就可以得到抛物线y =-12(x +1)2-1的是( ) A. 向左平移1个单位,再向上平移1个单位 B. 向左平移1个单位,再向下平移1个单位 C. 向右平移1个单位,再向上平移1个单位 D. 向右平移1个单位,再向下平移1个单位9. (2019绵阳模拟)二次函数y =ax 2+bx +c (a ≠0)的大致图象如图所示,顶点坐标为(-2,-9a ),下列结论:①a -3b +2c >0; ②3a -2b -c =0;③若方程a (x +5)(x -1)=-1有两个根x 1和x 2,且x 1<x 2,则-5<x 1<x 2<1; ④若方程|ax 2+bx +c |=1有四个根,则这四个根的和为-8. 其中正确的结论有( ) A. 1个B. 2个C. 3个D. 4个二、填空题:10.(2019山西)如图,在平面直角坐标系中,点O 为坐标原点,菱形ABCD 的顶点B 在x 轴的正半轴上,点A 坐标为(-4,0),点D 的坐标为(-1,4),反比例函数)0(>=x xky 的图象恰好经过点C ,则k 的值为 .11.如图,两个反比例函数y =和y =在第一象限的图象如图所示,当P 在y =的图象上,PC ⊥x 轴于点C ,交y =的图象于点A ,PD ⊥y 轴于点D ,交y =的图象于点B ,则四边形PAOB 的面积为 .12. 如图所示,两个反比例函数7y x =和3y x=在第一象限内的图象依次是C 1和C 2,设点P 在C 1上,PC 丄x 轴于点C ,交C 2于点A ,PD 丄y 轴于点D ,交C 2于点B ,则四边形PAOB 的面积为_______.13. (2019眉山模拟)如图,双曲线y =k x(x <0)经过Rt △ABC 的两个顶点A ,C ,∠ABC =90°,AB ∥x 轴,连接OA ,将Rt △ABC 沿AC 翻折后得到Rt △AB ′C ,点B ′刚好落在线段OA 上,连接OC ,OC 恰好平分OA 与x 轴负半轴的夹角,若Rt △ABC 的面积为1,则k 的值为________.14. (2019绵阳模拟)若关于t 的不等式组⎩⎪⎨⎪⎧t -a ≥02t +1≤4恰有三个整数解,则关于x 的一次函数y =14x -a 的图象与反比例函数y =3a +2x的图象的公共点的个数为________.15. (2019湖州)如图,已知在平面直角坐标系xOy 中,直线y =12x -1分别交x 轴,y 轴于点A 和点B ,分别交反比例函数y 1=k x(k >0,x >0),y 2=2kx(x <0)的图象于点C 和点D ,过点C 作CE ⊥x 轴于点E ,连接OC ,OD .若△COE的面积与△DOB的面积相等,则k的值是________.三、解答题16.如图一次函数y=kx+b的图象与反比例函数y=(x>0)的图象交于A(n,﹣1),B(,﹣4)两点.(1)求反比例函数的解析式;(2)求一次函数的解析式;(3)若点C坐标为(0,2),求△ABC的面积.17.如图,在平面直角坐标系中,直线AB与x轴、y轴分别交于B、A两点,与反比例函数y=的图象交于点C,连接CO,过C作CD⊥x轴于D,直线AB的解析式为y=﹣x+2,CD=3.(1)求tan∠ABO的值和反比例函数的解析式;(2)根据图象直接写0<x+2<﹣的自变量x的范围.18. (2019绵阳模拟)某工厂生产甲、乙两种产品,已知生产1吨产品甲需要2吨原材料;生产1吨产品乙需要3吨原材料,根据市场调研,产品甲、乙所获利润y(万元)与其产量x(吨)之间分别满足下列函数关系:产品甲:y=ax2+bx且x=2时,y=2.6; x=3时,y=3.6产品乙:y=310x(1)求产品甲所获利润y(万元)与其产量x(吨)之间满足的函数关系;(2)若现有原材料20吨,请设计方案,应怎样分配给甲、乙两种产品进行生产,才能使得最终所获利润最大.19.如图,四边形OABC是矩形,A、C分别在y轴、x轴上,且OA=6cm,OC=8cm,点P从点A开始以2cm/s 的速度向B运动,点Q从点B开始以1cm/s的速度向C运动,设运动时间为t.(1)如图(1),当t为何值时,△BPQ的面积为4cm2?(2)当t为何值时,以B、P、Q为顶点的三角形与△ABC相似?(3)如图(2),在运动过程中的某一时刻,反比例函数y=的图象恰好同时经过P、Q两点,求这个反比例函数的解析式.20.如图所示,在平面直角坐标系中,一次函数y=kx+b(k≠0)与反比例函数y=(m≠0)的图象交于第二、四象限A、B两点,过点A作AD⊥x轴于D,AD=4,sin∠AOD=,且点B的坐标为(n,﹣2).(1)求一次函数与反比例函数的解析式;(2)请直接写出满足kx+b>的x的取值范围;(3)E是y轴上一点,且△AOE是等腰三角形,请直接写出所有符合条件的E点坐标.参考答案一、选择题1.(2019•济南)函数y =﹣ax +a 与y =(a ≠0)在同一坐标系中的图象可能是( )A .B .C .D .解:a >0时,﹣a <0,y =﹣ax +a 在一、二、四象限,y =在一、三象限,无选项符合.a <0时,﹣a >0,y =﹣ax +a 在一、三、四象限,y =(a ≠0)在二、四象限,只有D 符合;故选:D .2. (2019呼和浩特)二次函数y =ax 2与一次函数y =ax +a 在同一坐标系中的大致图象可能是( )【解析】 D 一次函数y =ax +a =0时,x =-1,因此排除A 、B 选项;C 选项中一次函数a >0,二次函数a <0,相互矛盾;D 选项中a >0,二次函数开口向上,一次函数过第一、二、三象限且过点(-1,0).3. (2019青岛)已知反比例函数y =ab x的图象如图所示,则二次函数y =ax 2-2x 和一次函数y =bx +a 在同一平面直角坐标系中的图象可能是( )【解析】 C ∵反比例函数y =ab x的图象在第一、三象限,∴ab >0,即a 与b 同号.当a >0,b >0时,y =ax 2-2x 的开口向上,且经过原点,令y =0,得ax 2-2x =0,解得x 1=0,x 2=2a>0,即它与x 轴有两个交点,一个为原点,另一个在正半轴上,对于y =bx +a ,图象经过第一、二、三象限,∴选项C 正确,B 不正确.当a <0,b <0时,y =ax 2-2x的开口向下,且经过原点,令y =0,得ax 2-2x =0,解得x 1=0,x 2=2a<0,即它与x轴有两个交点,一个为原点,另一个在负半轴上,∴选项A 、D 不正确,故选C .4.如图,在菱形ABOC 中,∠ABO =120°,它的一个顶点C 在反比例函数y =的图象上,若将菱形向下平移2个单位,点A 恰好落在函数图象上,则该反比函数的表达式为( )A.y=﹣B.y=﹣C.y=﹣D.y=﹣【分析】点C作CD⊥x轴于D,设菱形的边长为a,根据菱形的性质和三角函数分别表示出C,以及点A向下平移2个单位的点,再根据反比例函数图象上点的坐标特征得到方程组求解即可.【解析】过点C作CD⊥x轴于D,设菱形的边长为a,在Rt△CDO中,OD=a•cos60°=a,CD=a•sin60°=a,则C(﹣a,a),点A向下平移2个单位的点为(﹣a﹣a,a﹣2),即(﹣a,a﹣2),则,解得.故反比例函数解析式为y=﹣.故选:B.5.如图所示,点P(3a,a)是反比例函数y=(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的解析式为()A.y=B.y=C.y=D.y=解:由于函数图象关于原点对称,所以阴影部分面积为圆面积,则圆的面积为10π×4=40π.因为P(3a,a)在第一象限,则a>0,3a>0,根据勾股定理,OP==a.于是π=40π,a =±2,(负值舍去),故a =2.P 点坐标为(6,2).将P (6,2)代入y =, 得:k =6×2=12. 反比例函数解析式为:y =.故选:D .6. 如图,二次函数y =ax 2+c的图象与反比例函数y =cx 的图象相交于A (-32,1),则关于x 的不等式ax 2+c >cx的解集为( )A. x <-32B. x >-32C. x <-32或x >0D. -32<x <17. (2019宜宾模拟)如图,关于二次函数y =ax 2+bx +c (a ≠0)的结论正确的是( )①2a +b =0; ②当-1≤x ≤3时,y <0; ③若(x 1,y 1),(x 2,y 2)在函数图象上,当x 1<x 2时,y 1<y 2; ④3a +c =0.A. ①②④B. ①④C. ①②③D. ③④【解析】B ①∵抛物线过点(-1,0)与(3,0),∴抛物线的对称轴为直线x =1,∴-b2a =1,∴b +2a =0,故①正确;②由图象可知:当-1≤x ≤3时,y ≤0,故②错误;③当x 1<x 2<1时,y 1>y 2,故③错误;④当x =-1时,y =a -b +c =0,∵2a =-b ,∴a +2a +c =0,∴3a +c =0,故④正确.8. (人教九上P 35例3改编)怎样移动抛物线y =-12x 2就可以得到抛物线y =-12(x +1)2-1的是( ) A. 向左平移1个单位,再向上平移1个单位 B. 向左平移1个单位,再向下平移1个单位 C. 向右平移1个单位,再向上平移1个单位 D. 向右平移1个单位,再向下平移1个单位答案. B9. (2019绵阳模拟)二次函数y =ax 2+bx +c (a ≠0)的大致图象如图所示,顶点坐标为(-2,-9a ),下列结论:①a -3b +2c >0; ②3a -2b -c =0;③若方程a (x +5)(x -1)=-1有两个根x 1和x 2,且x 1<x 2,则-5<x 1<x 2<1; ④若方程|ax 2+bx +c |=1有四个根,则这四个根的和为-8. 其中正确的结论有( ) A. 1个B. 2个C. 3个D. 4个【解析】答案:C ∵抛物线的开口向上,∴a >0,∵抛物线的顶点坐标为(-2,-9a ),∴-b2a =-2,4ac -b 24a =-9a ,∴b =4a ,c =-5a ,∴抛物线的解析式为y =ax 2+4ax -5a ,∴a -3b +2c =a -12a -10a =-21a <0,故①结论错误;3a -2b -c =3a -8a +5a =0,故②结论正确;∵抛物线y =ax 2+4ax -5a 交x 轴于(-5,0),(1,0),∴若方程a (x +5)(x -1)=-1有两个根x 1和x 2,且x 1<x 2,则-5<x 1<x 2<1,故结论③正确;若方程|ax 2+bx +c |=1有四个根,设方程ax 2+bx +c =-1的两根分别为x 1、x 2,则x 1+x 22=-2,可得x 1+x 2=-4,设方程ax 2+bx +c =1的两根分别为x 3、x 4,则x 3+x 42=-2,可得x 3+x 4=-4.所以这四个根的和为-8,故结论④正确.综上所述,共有2个正确的结论.二、填空题:10.(2019山西)如图,在平面直角坐标系中,点O 为坐标原点,菱形ABCD 的顶点B 在x 轴的正半轴上,点A 坐标为(-4,0),点D 的坐标为(-1,4),反比例函数)0(>=x xky 的图象恰好经过点C ,则k 的值为 .【解析】过点D 作DE ⊥AB 于点E ,则AD=5,∵四边形ABCD 为菱形,∴CD=5 ∴C (4,4),将C 代入x k y =得:44k=,∴16=k11.如图,两个反比例函数y =和y =在第一象限的图象如图所示,当P 在y =的图象上,PC ⊥x 轴于点C ,交y =的图象于点A ,PD ⊥y 轴于点D ,交y =的图象于点B ,则四边形PAOB 的面积为 .解:由于P 点在y =上,则S □PCOD =2,A 、B 两点在y =上,则S △DBO =S △ACO =×1=.∴S 四边形PAOB =S □PCOD ﹣S △DBO ﹣S △ACO =2﹣﹣=1. ∴四边形PAOB 的面积为1. 故答案为:1.12. 如图所示,两个反比例函数7y x =和3y x=在第一象限内的图象依次是C 1和C 2,设点P 在C 1上,PC 丄x 轴于点C ,交C 2于点A ,PD 丄y 轴于点D ,交C 2于点B ,则四边形PAOB 的面积为_______.答案:4解析 ∵PC 丄x 轴,PD 丄y 轴, ∴S 矩形PCOD = 7,13322ACO BDO S S ==⨯=V V , ∴四边形PAOB 的面积=7 -2×32= 4.13. (2019眉山模拟)如图,双曲线y =k x(x <0)经过Rt △ABC 的两个顶点A ,C ,∠ABC =90°,AB ∥x 轴,连接OA ,将Rt △ABC 沿AC 翻折后得到Rt △AB ′C ,点B ′刚好落在线段OA 上,连接OC ,OC 恰好平分OA 与x 轴负半轴的夹角,若Rt △ABC 的面积为1,则k 的值为________.【解析】如解图,过点C 作CD ⊥x 轴于点D .∵将Rt △ABC 沿AC 翻折后得到Rt △AB ′C ,点B ′刚好落在线段OA 上,∴∠CB ′A =90°,CB =CB ′,∵OC 平分OA 与x 轴负半轴的夹角,∴CD =CB ′=CB ,设点B (x ,2y )(x <0),则C (x ,y ),AB =a ,则A 的坐标为(x +a ,2y ),∴2y (x +a )=xy ,整理得a =-12x ,∴x +a =12x ,∴AB =-12x ,BC=y ,∴12×(-12xy )=1,∴-xy =4,∴k =-4.14. (2019绵阳模拟)若关于t 的不等式组⎩⎪⎨⎪⎧t -a ≥02t +1≤4恰有三个整数解,则关于x 的一次函数y =14x -a 的图象与反比例函数y =3a +2x的图象的公共点的个数为________.答案:1或0 【解析】不等式组⎩⎪⎨⎪⎧t -a ≥0 ①2t +1≤4 ②,解不等式①得t ≥a ,解不等式②得t ≤1.5,∴不等式的解集为a ≤t ≤1.5,∵⎩⎪⎨⎪⎧t -a ≥02t +1≤4恰好有3个整数解,∴-2<a ≤-1,联立一次函数y =14x -a 与反比例函数y =3a +2x得⎩⎪⎨⎪⎧y =14x -a y =3a +2x,得14x -a -3a +2x =0,等式两边同时乘以x 得:14x 2-ax -3a -2=0,Δ=a 2-4×14×(-3a -2)=a 2+3a +2=(a +1)(a +2),当-2<a <-1时,Δ<0,即一次函数y =14x -a 与反比例函数y =3a +2x 没有交点;当a =-1时,Δ=0,即一次函数y =14x-a 与反比例函数y =3a +2x有一个交点.15. (2019湖州)如图,已知在平面直角坐标系xOy 中,直线y =12x -1分别交x 轴,y 轴于点A 和点B ,分别交反比例函数y 1=k x(k >0,x >0),y 2=2kx(x <0)的图象于点C 和点D ,过点C 作CE ⊥x 轴于点E ,连接OC ,OD .若△COE 的面积与△DOB 的面积相等,则k 的值是________.15. 2 【解析】令y =12x -1=0,解得x =2,∴点A 的坐标为(2,0),令x =0,得y =-1,∴点B 的坐标为(0,-1),∴OB =1.∵点C 在直线y =12x -1上,∴设点C 的坐标为(a ,12a -1),∴OE =a ,CE =12a -1,∴S △OCE=12OE ·CE =12a (12a -1)=12k ,∵点D 在直线y =12x -1上,∴设点D 的坐标为(m ,12m -1).∵点D 在反比例函数y 2=2k x 的图象上,∴m (12m -1)=2k ,∵S △OCE =S △OBD ,∴S △OBD =12OB ·(-m )=12a ·(12a -1),即-m =a (12a -1)=k ,∴m (12m -1)=-2m ,解得m =0(舍去)或m =-2,∴k =2.三、解答题16.如图一次函数y =kx +b 的图象与反比例函数y =(x >0)的图象交于A (n ,﹣1),B (,﹣4)两点. (1)求反比例函数的解析式; (2)求一次函数的解析式;(3)若点C 坐标为(0,2),求△ABC 的面积.解:(1)∵一次函数y =kx +b 的图象与反比例函数y =(x >0)的图象交于A (n ,﹣1),B (,﹣4)两点. ∴m =×(﹣4)=﹣2, ∴反比例函数的解析式y =﹣;(2)把A (n ,﹣1)代入y =﹣得﹣1=﹣, ∴n =2, ∴A (2,﹣1),∵次函数y =kx +b 的图象经过A (2,﹣1),B (,﹣4),∴,解得:∴一次函数解析式y=2x﹣5;(3)设一次函数解析式y=2x﹣5图象交y轴为点D∴D(0,﹣5)∵C(0,2),∵S△ABC=S△ACD﹣S△BCD∴S△ABC==.17.如图,在平面直角坐标系中,直线AB与x轴、y轴分别交于B、A两点,与反比例函数y=的图象交于点C,连接CO,过C作CD⊥x轴于D,直线AB的解析式为y=﹣x+2,CD=3.(1)求tan∠ABO的值和反比例函数的解析式;(2)根据图象直接写0<x+2<﹣的自变量x的范围.解:(1)在直线ABy=﹣x+2中,令y=0,解得x=4;令x=0,则y=2,∴A(0,2),B(4,0),∴OB=4,OA=2,把y=3代入y=﹣x+2,求得x=﹣2,∴C(﹣2,3),∴DB=2+4=6∵CD⊥x轴,∴tan∠ABO===,将C(﹣2,3)代入y=,得k=﹣2×3=﹣6∴反比例函数解析式为y=﹣;(2)由图象可知,0<x+2<﹣的自变量x的范围是﹣2<x<0.18. (2019绵阳模拟)某工厂生产甲、乙两种产品,已知生产1吨产品甲需要2吨原材料;生产1吨产品乙需要3吨原材料,根据市场调研,产品甲、乙所获利润y(万元)与其产量x(吨)之间分别满足下列函数关系:产品甲:y =ax 2+bx 且x =2时,y =2.6; x =3时,y =3.6 产品乙:y =310x(1)求产品甲所获利润y (万元)与其产量x(吨)之间满足的函数关系;(2)若现有原材料20吨,请设计方案,应怎样分配给甲、乙两种产品进行生产,才能使得最终所获利润最大.解:(1)由已知得,当x =2时,y =2.6,当x =3时,y =3.6,代入y =ax 2+bx 可得⎩⎪⎨⎪⎧4a +2b =2.69a +3b =3.6,解得⎩⎪⎨⎪⎧a =-110b =32,故甲所获利润与其产量之间的函数关系式为y =-110x 2+32x (x ≥0);(2)设生产产品甲x 吨,需要原材料2x 吨,则可分配给产品乙的原材料有(20-2x )吨,可生产产品乙20-2x3吨,甲、乙两种产品总的利润为w ,则w =-110x 2+32x +310×20-2x3, 整理得w =-110(x -132)2+24940,即当生产产品甲132吨时,利润达到最大,分配给产品中原材料132×2=13吨,给产品乙原材料20-13=7吨,答:分配13吨原材料给产品甲,分配7吨原材料给产品乙,能使得最终所获利润最大.19.如图,四边形OABC 是矩形,A 、C 分别在y 轴、x 轴上,且OA =6cm ,OC =8cm ,点P 从点A 开始以2cm /s 的速度向B 运动,点Q 从点B 开始以1cm /s 的速度向C 运动,设运动时间为t .(1)如图(1),当t 为何值时,△BPQ 的面积为4cm 2? (2)当t 为何值时,以B 、P 、Q 为顶点的三角形与△ABC 相似?(3)如图(2),在运动过程中的某一时刻,反比例函数y =的图象恰好同时经过P 、Q 两点,求这个反比例函数的解析式.解:(1)由题意AB=OC=8cm,AO=BC=6cm,∠B=90°,∵PA=2t,BQ=t,∴PB=8﹣2t,∵△BPQ的面积为4cm2,∴•(8﹣2t)•t=4,解得t=2,∴t=2s时,△PBQ的面积为4.(2)①当△BPQ∽△BAC时,=,∴=,解得t=.②当△BPQ∽△BCA时,=,∴=,解得t=,∴t为s或s时,以B、P、Q为顶点的三角形与△ABC相似.(3)由题意P(2t,6),Q(8,6﹣t),∵反比例函数y=的图象恰好同时经过P、Q两点,∴12t=8(6﹣t),解得t=,∴P(,6),∴m=,∴反比例函数的解析式为y=.20.如图所示,在平面直角坐标系中,一次函数y=kx+b(k≠0)与反比例函数y=(m≠0)的图象交于第二、四象限A、B两点,过点A作AD⊥x轴于D,AD=4,sin∠AOD=,且点B的坐标为(n,﹣2).(1)求一次函数与反比例函数的解析式;(2)请直接写出满足kx+b>的x的取值范围;(3)E是y轴上一点,且△AOE是等腰三角形,请直接写出所有符合条件的E点坐标.解:∵AD⊥x轴,∴∠ADO=90°,在Rt△AOD中,AD=4,∴sin∠AOD===,∴OA=5,根据勾股定理得,OD=3,∵点A在第二象限,∴A(﹣3,4),∵点A在反比例函数y=的图象上,∴m=﹣3×4=﹣12,∴反比例函数解析式为y=﹣,∵点B(n,﹣2)在反比例函数y=﹣上,∴﹣2n=﹣12,∴n=6,∴B(6,﹣2),∵点A(﹣3,4),B(6,﹣2)在直线y=kx+b上,∴,∴,∴一次函数的解析式为y=﹣x+1;(2)由图象知,满足kx+b>的x的取值范围为x<﹣3或0<x<6;(3)设点E的坐标为(0,a),∵A(﹣3,4),O(0,0),∴OE=|a|,OA=5,AE=,∵△AOE是等腰三角形,∴①当OA=OE时,|a|=5,∴a=±5,∴P(0,5)或(0,﹣5),②当OA=AE时,5=,∴a=8或a=0(舍),∴P(0,8),③当OE=AE时,|a|=,∴a=,∴P(0,),即:满足条件的点P的坐标为P(0,5)或(0,﹣5)或(0,8)或(0,).。
中考数学总复习《反比例函数的性质》练习题及答案

中考数学总复习《反比例函数的性质》练习题及答案班级:___________姓名:___________考号:_____________一、单选题1.对于反比例函数y=2x,下列说法正确是()A.图象经过点(2,﹣1)B.图象位于第二、四象限C.图象是中心对称图形D.当x<0时,y随x的增大而增大2.对于反比例函数y=2x,下列说法不正确的是()A.当x<0时,y随x的增大而减小B.点(-2,-1)在它的图象上C.它的图象在第一、三象限D.当x>0时,y随x的增大而增大3.如图,过y轴上任意一点P,作x轴的平行线,分别与反比例函数y=4x和y=2x的图象交于A点和B点,若C为x轴上任意一点,连接AC,BC,则△ABC的面积为()A.3B.4C.5D.64.已知反比例函数y=k x的图象如图所示,则一次函数y=kx+k的图象经过()A.第一、二、三象限B.第二、三、四象限C.第一、二、四象限D.第一、三、四象限5.若点M(﹣3,a),N(4,﹣6)在同一个反比例函数的图象上,则a的值为()A.8B.﹣8C.﹣7D.56.函数y=1x+√x的图象在()A.第一象限B.第一、三象限C.第二象限D.第二、四象限7.图所示矩形ABCD中,BC=x,CD=y,y与x满足的反比例函数关系如图2所示,等腰直角三角形AEF的斜边EF过C点,M为EF的中点,则下列结论正确的是A.当x=3时,EC<EM B.当y=9时,EC>EMC.当x增大时,EC·CF的值增大。
D.当y增大时,BE·DF的值不变。
8.已知函数y=−k 2+1x的图象经过点P1(x1,y1),P2(x2,y2),如果x2<0<x1,那么()A.0<y2<y1B.y1>0>y2C.y2<y1<0D.y1<0<y29.已知双曲线y=k−1x向右平移2个单位后经过点(4,1),则k的值等于()A.1B.2C.3D.510.对于反比例函数y=k x(k≠0),下列说法正确的是()A.当k>0时,y随x增大而增大B.当k<0时,y随x增大而增大C.当k>0时,该函数图象在二、四象限D.若点(1,2)在该函数图象上,则点(2,1)也必在该函数图象上11.下列关于反比例函数y=8x的描述,正确的是()A.它的图象经过点(12,4)B.图象的两支分别在第二、四象限C.当x>2时,0<y<4D.x>0时,y随x的增大而增大12.反比例函数y= 1x的图象的两个分支分别位于()象限.A.一、二B.一、三C.二、四D.一、四二、填空题13.如图,已知点A、B在双曲线y= k x(x>0)上,AC△x轴于点C,BD△y轴于点D,AC与BD 交于点P,P是AC的中点,若△ABP的面积为3,则k=.14.如图,矩形ABCD的顶点A和对称中心在反比例函数y=k x(k≠0,x>0)的图象上,若矩形ABCD的面积为16,则k的值为.15.已知反比例函数y= k x(k为常数,k≠0)的图象位于第一、第三象限,写出一个符合条件的k的值为.16.若反比例函数y=﹣mx的图象经过点(﹣3,﹣2),则当x<0时,y随x的增大而.17.若点(4,m)与点(5,n)都在反比例函数y=8x(x≠0)的图象上,则m n(填>,<或=).18.如图,A(1,1),B(2,2),双曲线y= k x与线段AB有公共点,则k的取值范围是。
中考数学复习----《反比例函数之综合应用》知识点总结与练习题(含答案解析)

中考数学复习----《反比例函数之综合应用》知识点总结与练习题(含答案解析)知识点总结1. 反比例函数k 的集合意义:①过反比例函数图像上任意一点作坐标轴的垂线,两垂线与坐标轴构成一个矩形,矩形的面积等于k 。
②过反比例函数图像上任意一点作其中一条坐标轴的垂线,并连接这个点与原点,则构成一个三角形。
这个三角形的面积等于2k 。
2. 待定系数法求反比例函数解析式:在反比例函数中只有一个系数k ,所以只需要在图像上找一个对应的点即可求出k 的值,从而求出反比例函数解析式。
3. 反比例函数与一次函数的不等式问题: 若反比例函数()0≠=k x ky 与一次函数()0≠+=k b kx y 有交点,则不等式b kx xk +>的解集取反比例函数图像在一次函数图像上方的部分所对应的自变量取值范围;等式b kx xk+<的解集取反比例函数图像在一次函数图像下方的部分所对应的自变量取值范围。
反比例函数与一次函数的交点把自变量分成三部分。
练习题1、(2022•日照)如图,矩形OABC 与反比例函数y 1=xk1(k 1是非零常数,x >0)的图像交于点M ,N ,与反比例函数y 2=xk2(k 2是非零常数,x >0)的图像交于点B ,连接OM ,ON .若四边形OMBN 的面积为3,则k 1﹣k 2=( )A .3B .﹣3C .23 D .﹣23【分析】根据矩形的性质以及反比例函数系数k 的几何意义即可得出结论. 【解答】解:∵y 1、y 2的图像均在第一象限, ∴k 1>0,k 2>0,∵点M 、N 均在反比例函数y 1=(k 1是非零常数,x >0)的图像上,∴S △OAM =S △OCN =k 1,∵矩形OABC 的顶点B 在反比例函数y 2=(k 2是非零常数,x >0)的图像上,∴S 矩形OABC =k 2,∴S 四边形OMBN =S 矩形OABC ﹣S △OAM ﹣S △OCN =3, ∴k 2﹣k 1=3, ∴k 1﹣k 2=﹣3, 故选:B .2、(2022•牡丹江)如图,等边三角形OAB ,点B 在x 轴正半轴上,S △OAB =43,若反比例函数y =xk(k ≠0)图像的一支经过点A ,则k 的值是( )A .233 B .23C .433 D .43【分析】根据正三角形的性质以及反比例函数系数k 的几何意义,得出S △AOC =S △AOB =2=|k |,即可求出k 的值.【解答】解:如图,过点A 作AC ⊥OB 于点C , ∵△OAB 是正三角形, ∴OC =BC ,∴S △AOC =S △AOB =2=|k |,又∵k >0, ∴k =4,故选:D .3、(2022•郴州)如图,在函数y =x2(x >0)的图像上任取一点A ,过点A 作y 轴的垂线交函数y =﹣x8(x <0)的图像于点B ,连接OA ,OB ,则△AOB 的面积是( )A .3B .5C .6D .10【分析】根据反比例函数系数k 的几何意义进行计算即可. 【解答】解:∵点A 在函数y =(x >0)的图像上, ∴S △AOC =×2=1,又∵点B 在反比例函数y =﹣(x <0)的图像上, ∴S △BOC =×8=4, ∴S △AOB =S △AOC +S △BOC =1+4 =5, 故选:B .4、(2022•黑龙江)如图,在平面直角坐标系中,点O 为坐标原点,平行四边形OBAD 的顶点B 在反比例函数y =x 3的图像上,顶点A 在反比例函数y =xk的图像上,顶点D 在x 轴的负半轴上.若平行四边形OBAD 的面积是5,则k 的值是( )A .2B .1C .﹣1D .﹣2【分析】设B (a ,),根据四边形OBAD 是平行四边形,推出AB ∥DO ,表示出A 点的坐标,求出AB =a ﹣,再根据平行四边形面积公式列方程,解出即可.【解答】解:设B (a ,), ∵四边形OBAD 是平行四边形, ∴AB ∥DO , ∴A (,),∴AB =a ﹣,∵平行四边形OBAD 的面积是5, ∴(a ﹣)=5,解得k =﹣2, 故选:D .5、(2022•十堰)如图,正方形ABCD 的顶点分别在反比例函数y =xk 1(k 1>0)和y =xk 2(k 2>0)的图像上.若BD ∥y 轴,点D 的横坐标为3,则k 1+k 2=( )A .36B .18C .12D .9【分析】连接AC交BD于E,延长BD交x轴于F,连接OD、OB,设AE=BE=CE=DE =m,D(3,a),根据BD∥y轴,可得B(3,a+2m),A(3+m,a+m),即知k1=3(a+2m)=(3+m)(a+m),从而m=3﹣a,B(3,6﹣a),由B(3,6﹣a)在反比例函数y=(k1>0)的图像上,D(3,a)在y=(k2>0)的图像上,得k1=3(6﹣a)=18﹣3a,k2=3a,即得k1+k2=18﹣3a+3a=18.【解答】解:连接AC交BD于E,延长BD交x轴于F,连接OD、OB,如图:∵四边形ABCD是正方形,∴AE=BE=CE=DE,设AE=BE=CE=DE=m,D(3,a),∵BD∥y轴,∴B(3,a+2m),A(3+m,a+m),∵A,B都在反比例函数y=(k1>0)的图像上,∴k1=3(a+2m)=(3+m)(a+m),∵m≠0,∴m=3﹣a,∴B(3,6﹣a),∵B(3,6﹣a)在反比例函数y=(k1>0)的图像上,D(3,a)在y=(k2>0)的图像上,∴k1=3(6﹣a)=18﹣3a,k2=3a,∴k1+k2=18﹣3a+3a=18;故选:B .6、(2022•邵阳)如图是反比例函数y =x1的图像,点A (x ,y )是反比例函数图像上任意一点,过点A 作AB ⊥x 轴于点B ,连接OA ,则△AOB 的面积是( )A .1B .C .2D .【分析】由反比例函数的几何意义可知,k =1,也就是△AOB 的面积的2倍是1,求出△AOB 的面积是.【解答】解:∵A (x ,y ), ∴OB =x ,AB =y ,∵A 为反比例函数y =图像上一点, ∴xy =1,∴S △ABO =AB •OB =xy =1=,故选:B .7、(2022•内江)如图,在平面直角坐标系中,点M 为x 轴正半轴上一点,过点M 的直线l ∥y 轴,且直线l 分别与反比例函数y =x 8和y =xk的图像交于P 、Q 两点.若S △POQ =15,则k 的值为( )A .38B .22C .﹣7D .﹣22【分析】利用k 的几何意义解题即可. 【解答】解:∵直线l ∥y 轴, ∴∠OMP =∠OMQ =90°,∴S △OMP =×8=4,S △OMQ =﹣k . 又S △POQ =15, ∴4﹣k =15, 即k =11,∴k =﹣22. 故选:D .8、(2022•东营)如图,△OAB 是等腰直角三角形,直角顶点与坐标原点重合,若点B 在反比例函数y =x1(x >0)的图像上,则经过点A 的函数图像表达式为 .【分析】作AD ⊥x 轴于D ,BC ⊥x 轴于C ,根据△OAB 是等腰直角三角形,可证明△BOC ≌△OAD ,利用反比例函数k 的几何意义得到S △OBC =,则S △OAD =,所以|k |=,然后求出k 得到经过点A 的反比例函数解析式. 【解答】解:如图,作AD ⊥x 轴于D ,BC ⊥x 轴于C , ∴∠ADO =∠BCO =90°,∵∠AOB =90°, ∴∠AOD +∠BOC =90°, ∴∠AOD +∠DAO =90°, ∴∠BOC =∠DAO , ∵OB =OA ,∴△BOC ≌△OAD (AAS ),∵点B 在反比例函数y =(x >0)的图像上, ∴S △OBC =, ∴S △OAD =, ∴k =﹣1,∴经过点A 的反比例函数解析式为y =﹣. 故答案为:y =﹣.9、(2022•盐城)已知反比例函数的图像经过点(2,3),则该函数表达式为 . 【分析】利用反比例函数的定义列函数的解析式,运用待定系数法求出函数的解析式即可. 【解答】解:令反比例函数为y =(k ≠0), ∵反比例函数的图像经过点(2,3), ∴3=, k =6,∴反比例函数的解析式为y =. 故答案为:y =.10、(2022•湖北)在反比例函数y =xk 1−的图像的每一支上,y 都随x 的增大而减小,且整式x 2﹣kx +4是一个完全平方式,则该反比例函数的解析式为 . 【分析】由整式x 2﹣kx +4是一个完全平方式,可得k =±4,由反比例函y =的图像的每一支上,y 都随x 的增大而减小,可得k ﹣1>0,解得k >1,则k =4,即可得反比例函数的解析式.【解答】解:∵整式x 2﹣kx +4是一个完全平方式,∴k =±4, ∵反比例函数y =的图像的每一支上,y 都随x 的增大而减小,∴k ﹣1>0, 解得k >1, ∴k =4,∴反比例函数的解析式为y =. 故答案为:y =.35.(2022•陕西)已知点A (﹣2,m )在一个反比例函数的图像上,点A '与点A 关于y 轴对称.若点A '在正比例函数y =21x 的图像上,则这个反比例函数的表达式为 .【分析】根据轴对称的性质得出点A '(2,m ),代入y =x 求得m =1,由点A (﹣2,1)在一个反比例函数的图像上,从而求得反比例函数的解析式. 【解答】解:∵点A '与点A 关于y 轴对称,点A (﹣2,m ), ∴点A '(2,m ),∵点A '在正比例函数y =x 的图像上, ∴m ==1,∴A (﹣2,1),∵点A (﹣2,1)在一个反比例函数的图像上, ∴反比例函数的表达式为y =﹣, 故答案为:y =﹣.11、(2022•攀枝花)如图,正比例函数y =k 1x 与反比例函数y =xk 2的图像交于A (1,m )、B 两点,当k 1x ≤xk2时,x 的取值范围是( )A .﹣1≤x <0或x ≥1B .x ≤﹣1或0<x ≤1C .x ≤﹣1或x ≥1D .﹣1≤x <0或0<x ≤1【分析】根据反比例函数的对称性求得B 点的坐标,然后根据图像即可求得. 【解答】解:∵正比例函数y =k 1x 与反比例函数y =的图像交于A (1,m )、B 两点,∴B (﹣1,﹣m ), 由图像可知,当k 1x ≤时,x 的取值范围是﹣1≤x <0或x ≥1,故选:A .37.(2022•东营)如图,一次函数y 1=k 1x +b 与反比例函数y 2=xk 2的图像相交于A ,B 两点,点A 的横坐标为2,点B 的横坐标为﹣1,则不等式k 1x +b <xk2的解集是( )A .﹣1<x <0或x >2B .x <﹣1或0<x <2C .x <﹣1或x >2D .﹣1<x <2【分析】根据两函数图像的上下位置关系结合交点横坐标,即可得出不等式k 1x +b <的解集,此题得解.【解答】解:观察函数图像可知,当﹣1<x <0或x >2时,一次函数y 1=k 1x +b 的图像在反比例函数y 2=的图像的下方,∴不等式k 1x +b <的解集为:﹣1<x <0或x >2,故选:A .12、(2022•朝阳)如图,正比例函数y =ax (a 为常数,且a ≠0)和反比例函数y =xk(k 为常数,且k ≠0)的图像相交于A (﹣2,m )和B 两点,则不等式ax >xk的解集为( )A .x <﹣2或x >2B .﹣2<x <2C .﹣2<x <0或x >2D .x <﹣2或0<x <2【分析】根据关于原点对称的点的坐标特征求得B (2,﹣m ),然后根据函数的图像的交点坐标即可得到结论.【解答】解:∵正比例函数y =ax (a 为常数,且a ≠0)和反比例函数y =(k 为常数,且k ≠0)的图像相交于A (﹣2,m )和B 两点, ∴B (2,﹣m ),∴不等式ax >的解集为x <﹣2或0<x <2, 故选:D .13、(2022•无锡)一次函数y =mx +n 的图像与反比例函数y =xm的图像交于点A 、B ,其中点A 、B 的坐标为A (﹣m1,﹣2m )、B (m ,1),则△OAB 的面积是( ) A .3B .413C .27D .415【分析】根据反比例函数图像上点的坐标特征求出m ,进而求出点A 、B 的坐标,根据三角形的面积公式计算即可.【解答】解:∵点A (﹣,﹣2m )在反比例函数y =上, ∴﹣2m =,解得:m =2,∴点A 的坐标为:(﹣,﹣4),点B 的坐标为(2,1), ∴S △OAB =××5﹣××4﹣×2×1﹣×1=,故选:D .14、(2022•荆州)如图是同一直角坐标系中函数y 1=2x 和y 2=x2的图像.观察图像可得不等式2x >x2的解集为( )A .﹣1<x <1B .x <﹣1或x >1C .x <﹣1或0<x <1D .﹣1<x <0或x >1【分析】结合图像,数形结合分析判断.【解答】解:由图像,函数y 1=2x 和y 2=的交点横坐标为﹣1,1, ∴当﹣1<x <0或x >1时,y 1>y 2,即2x >, 故选:D .15、(2022•怀化)如图,直线AB 交x 轴于点C ,交反比例函数y =xa 1−(a >1)的图像于A 、B 两点,过点B 作BD ⊥y 轴,垂足为点D ,若S △BCD =5,则a 的值为( )A.8B.9C.10D.11【分析】设点B的坐标为(m,),然后根据三角形面积公式列方程求解.【解答】解:设点B的坐标为(m,),∵S△BCD=5,且a>1,∴×m×=5,解得:a=11,故选:D.16、(2022•宁夏)在显示汽车油箱内油量的装置模拟示意图中,电压U一定时,油箱中浮子随油面下降而落下,带动滑杆使滑动变阻器滑片向上移动,从而改变电路中的电流,电流表的示数对应油量体积,把电流表刻度改为相应油量体积数,由此知道油箱里剩余油量.在不考虑其他因素的条件下,油箱中油的体积V与电路中总电阻R总(R总=R+R0)是反比例关系,电流I与R总也是反比例关系,则I与V的函数关系是()A.反比例函数B.正比例函数C.二次函数D.以上答案都不对【分析】由油箱中油的体积V与电路中总电阻R总是反比例关系,电流I与R总是反比例关系,可得V=I(为常数),即可得到答案.【解答】解:由油箱中油的体积V与电路中总电阻R总是反比例关系,设V•R总=k(k为常数),由电流I与R总是反比例关系,设I•R总=k'(k为常数),∴=,∴V=I(为常数),∴I与V的函数关系是正比例函数,故选:B.17、(2022•宜昌)已知经过闭合电路的电流I(单位:A)与电路的电阻R(单位:Ω)是反比例函数关系.根据下表判断a和b的大小关系为()A.a>b B.a≥b C.a<b D.a≤b【分析】根据等量关系“电流=”,即可求解.【解答】解:∵闭合电路的电流I(单位:A)与电路的电阻R(单位:Ω)是反比例函数关系,∴40a=80b,∴a=2b,∴a>b,故选:A.18、(2022•丽水)已知电灯电路两端的电压U为220V,通过灯泡的电流强度I(A)的最大限度不得超过0.11A.设选用灯泡的电阻为R(Ω),下列说法正确的是()A.R至少2000ΩB.R至多2000ΩC.R至少24.2ΩD.R至多24.2Ω【分析】利用已知条件列出不等式,解不等式即可得出结论.【解答】解:∵电压U一定时,电流强度I(A)与灯泡的电阻为R(Ω)成反比例,∴I=.∵已知电灯电路两端的电压U为220V,∴I=.∵通过灯泡的电流强度I(A)的最大限度不得超过0.11A,∴≤0.11,∴R≥2000.故选:A.19、(2022•郴州)科技小组为了验证某电路的电压U(V)、电流I(A)、电阻R(Ω)三者之间的关系:I=U,测得数据如下:那么,当电阻R=55Ω时,电流I=A.【分析】由表格数据求出反比例函数的解析式,再将R=55Ω代入即可求出答案.【解答】解:把R=220,I=1代入I=得:1=,解得U=220,∴I=,把R=55代入I=得:I==4,故答案为:4.20、(2022•山西)根据物理学知识,在压力不变的情况下,某物体承受的压强p(Pa)是它的受力面积S(m2)的反比例函数,其函数图像如图所示.当S=0.25m2时,该物体承受的压强p的值为Pa.【分析】设p=,把(0.1,1000)代入得到反比例函数的解析式,再把S=0.25代入解析式即可解决问题.【解答】解:设p=,∵函数图像经过(0.1,1000),∴k=100,∴p=,当S=0.25m2时,物体所受的压强p==400(Pa),故答案为:400.。
中考数学反比例函数专题训练(含答案)

中考数学反比例函数专题训练(含答案)一、反比例函数的图象与性质1.已知反比例函数的解析式为y=( |a|-2 ) / x,则a 的取值范围是( )A. a ≠2B. a ≠-2C. a ≠±2D. a=±22.反比例函数y=-3 / x,下列说法不正确的是( )A. 图象经过点(1,-3)B. 图象位于第二、四象限C. 图象关于直线y=x 对称D. y 随x 的增大而增大3.下列各点中,与点(-3,4) 在同一个反比例函数图象上的点的是( )A. (2,-3)B. (3,4)C. (2,-6)D. (-3,-4)4.点M(a,2a) 在反比例函数y=8 / x 的图象上,那么a 的值是( )A. 4B. -4C. 2D. ±25.如果反比例函数y=(a-2) / x ( a 是常数) 的图象在第一、三象限,那么a 的取值范围是( )A. a<0B. a>0C. a<2D. a>26.若点A(-3,y1),B(-2,y2),C(1,y3) 都在反比例函数y=-12 / x 的图象上,则y1,y2,y3 的大小关系是( )A. y2<y1<y3B. y3<y1<y2C. y1<y2<y3D. y3<y2<y17.反比例函数y=k / x 的图象经过点A(-1,2),则当x>1 时,函数值y 的取值范围是( )A. y>-1B. -1<y<0C. y<-2D. -2<y<08.若点A(a,b) 在反比例函数y=3 / x 的图象上,则代数式ab-1 的值为________.9.反比例函数y=(2m-1)xm2-2,x>0时,y 随着x 的增大而增大,则m 的值是________.10.已知一个反比例函数的图象位于第二、四象限内,点P(x0,y0) 在这个反比例函数的图象上,且x0y0>-4.请你写出这个反比例函数的表达式__________.(写出符合题意的一个即可)11.已知A(x1,y1),B(x2,y2) 都在反比例函数y=-2 / x 的图象上.若x1x2=-4,则y1y2 的值为________.12.已知A(1,m),B(2,n) 是反比例函数y=k/x 图象上的两点,若m-n=4,则k 的值为________.13.已知反比例函数的图象经过三个点A(-4,-3)、B(2m,y1)、C(6m,y2).若y1-y2=4,则m 的值为________.14.已知反比例函数y=m / x 在其所在象限内y 随x 的增大而减小,点P(2-m,m+1) 是该反比例函数图象上一点,则m 的值为________.15.已知A(x1,y1),B(x2,y2) 是反比例函数y=k / x 图象上的两点,且x1+x2=-2,x1·x2=2,y1+y2=-4/3,则k=________.16.已知点A(x1,y1)、B(x2,y2) 是反比例函数y=k/x 图象上的两点,且(x1-x2)(y1-y2)=9,3x1=2x2,则k 的值为________.17.在平面直角坐标系xOy 中,点A(a,b) (a>0,b>0) 在双曲线y=k1/x 上,点A 关于x 轴的对称点B 在双曲线y=k2/x 上,则k1+k2 的值为________.18.反比例函数y=k/x 的图象上有一点P(2,n),将点P 向右平移1 个单位,再向下平移1 个单位得到点Q,若点Q 也在该函数的图象上,则k=________.19.已知A、B 两点分别在反比例函数y=(2m-3) / x ( m ≠3/2 ) 和y=(3m-2) / x ( m ≠2/3) 的图象上,且点A 与点B 关于y 轴对称,则m 的值为________.【参考答案】二、反比例函数与几何图形或一次函数结合1.若一次函数y=ax+6 (a≠0) 的图象与反比例函数y=3/x 的图象只有一个交点,则a 的值为________.2.若直线y=-x+m 与双曲线y=n/x (x>0) 交于A(2,a),B(4,b) 两点,则mn 的值为________.3.一次函数y1=-x+6 与反比例函数y2=8/x (x>0) 的图象如图所示,当y1>y2 时,自变量x 的取值范围是________.4. 如图,在平面直角坐标系中,直线y=-x+2 与反比例函数y=1/x 的图象有唯一公共点.若直线y=-x+b 与反比例函数y=1/x 的图象没有公共点,则b 的取值范围是________.5.如图,过x 轴的正半轴上任意一点P,作y 轴的平行线,分别与反比例函数y=3/x (x>0),y=-6/x (x>0) 的图象相交于点A,B,若C 为y 轴上任意一点,连接AC,BC,则△ABC 的面积为________.6.如图,矩形ABCD 的顶点A,C 在反比例函数y=k/x (k>0,x>0) 的图象上,若点A 的坐标为(3,4),AB=2,AD∥x 轴,则点C 的坐标为________.7.如图,正方形ABCD 的边长为2,点B 与原点O 重合,与反比例函数y=k/x 的图象交于E、F 两点,若△DEF 的面积为9/8,则k 的值为________.8.如图,已知反比例函数y=4/x 的图象经过Rt△OAB 斜边OB 的中点D,与直角边AB 相交于点C,则△OBC 的面积为________.9.如图,反比例函数y=k/x 的图象经过平行四边形ABCD 对角线的交点P,已知点A、C、D 在坐标轴上,BD⊥DC,平行四边形ABCD 的面积为6,则k=________.10.如图,点A,C 分别是正比例函数y=x 的图象与反比例函数y=4/x 的图象的交点,过A 点作AD⊥x 轴于点D,过C 点作CB⊥x 轴于点B,则四边形ABCD 的面积为________.11.如图,点A 是反比例函数y=-8/x 图象上的一点,过点A 的直线与y 轴交于点B,与反比例函数y=k/x (x>0) 的图象交于点C、D.若AB=BC=CD,则k 的值为________.12.如图,△OAC 和△BAD 都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=k/x 在第一象限的图象经过点B,若OA2-AB2=8,则k 的值为________.【参考答案】。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学反比例函数综合题附答案 一、反比例函数 1.如图,四边形OP1A1B1、A1P2A2B2、A2P3A3B3、…、An﹣1PnAnBn都是正方形,对角线OA1、A1A2、A2A3、…、An﹣1An都在y轴上(n≥1的整数),点P1(x1 , y1),点P2(x2 ,
y2),…,Pn(xn , yn)在反比例函数y= (x>0)的图象上,并已知B1(﹣1,1).
(1)求反比例函数y= 的解析式; (2)求点P2和点P3的坐标; (3)由(1)、(2)的结果或规律试猜想并直接写出:△PnBnO的面积为 ________ ,点Pn的坐标为________ (用含n的式子表示). 【答案】(1)解:在正方形OP1A1B1中,OA1是对角线, 则B1与P1关于y轴对称, ∵B1(﹣1,1),
∴P1(1,1).
则k=1×1=1,即反比例函数解析式为y= (2)解:连接P2B2、P3B3 , 分别交y轴于点E、F, 又点P1的坐标为(1,1), ∴OA1=2,
设点P2的坐标为(a,a+2),
代入y=得a=-1, 故点P2的坐标为(-1,+1), 则A1E=A2E=2-2,OA2=OA1+A1A2=2, 设点P3的坐标为(b,b+2),
代入y=(>0)可得b=-, 故点P3的坐标为(-,+) (3)1;(- , +)
【解析】【解答】解:(3)∵ =2=2×=1,=2=2×=1,… ∴△PnBnO的面积为1,
由P1(1,1)、P2( ﹣1, +1)、P3( ﹣ , + )知点Pn的坐标为( ﹣ , + ), 故答案为:1、( ﹣ , + ). 【分析】(1)由四边形OP1A1B1为正方形且OA1是对角线知B1与P1关于y轴对称,得出点P1(1,1),然后利用待定系数法求解即可; (2)连接P2B2、P3B3 , 分别交y轴于点E、F,由点P1坐标及正方形的性质知OA1=2,设P2的坐标为(a,a+2),代入解析式求得a的值即可,同理可得点P3的坐标; (3)先分别求得S△P1B1O、S△P2B2O的值,然后找出其中的规律,最后依据规律进行计算即可.
2.阅读理解:配方法是中学数学的重要方法,用配方法可求最大(小)值。对于任意正实数a、b , 可作如下变形a+b= = - + = + , 又∵ ≥0, ∴ + ≥0+ ,即 ≥ .
(1)根据上述内容,回答下列问题:在 ≥ (a、b均为正实数)中,若ab为定值p , 则a+b≥ ,当且仅当a、b满足________时,a+b有最小值 .
(2)思考验证:如图1,△ABC中,∠ACB=90°,CD⊥AB,垂足为D,CO为AB边上中线,AD=2a , DB=2b, 试根据图形验证 ≥ 成立,并指出等号成立时的条件.
(3)探索应用:如图2,已知A为反比例函数 的图象上一点,A点的横坐标为1,将一块三角板的直角顶点放在A处旋转,保持两直角边始终与x轴交于两点D、E,F(0,-3)为y轴上一点,连接DF、EF,求四边形ADFE面积的最小值.
【答案】(1)a=b (2)解:有已知得CO=a+b,CD=2 ,CO≥CD,即 ≥2 . 当D与O重合时或a=b时,等式成立.
(3)解: , 当DE最小时S四边形ADFE最小. 过A作AH⊥x轴,由(2)知:当DH=EH时,DE最小,
所以DE最小值为8,此时S四边形ADFE= (4+3)=28. 【解析】【分析】(1)根据题中的例子即可直接得出结论。 (2)根据直角三角形的性质得出CO=a+b,CD=,再由(1)中的结论即可得出等号成立时的条件。 (3)过点A作AH⊥x轴于点H,根据S四边形ADFE=S△ADE+S△FDE
, 可知当DH=EH时DE最
小,由此可证得结论。
3.如图,正比例函数和反比例函数的图象都经过点A(3,3),把直线OA向下平移后,与反比例函数的图象交于点B(6,m),与x轴、y轴分别交于C、D两点. (1)求m的值; (2)求过A、B、D三点的抛物线的解析式; (3)若点E是抛物线上的一个动点,是否存在点E,使四边形OECD的面积S1 , 是四边
形OACD面积S的 ?若存在,求点E的坐标;若不存在,请说明理由. 【答案】(1)解:∵反比例函数的图象都经过点A(3,3),
∴经过点A的反比例函数解析式为:y= , 而直线OA向下平移后,与反比例函数的图象交于点B(6,m),
∴m=
(2)解:∵直线OA向下平移后,与反比例函数的图象交于点B(6, ), 与x轴、y轴分别交于C、D两点, 而这些OA的解析式为y=x, 设直线CD的解析式为y=x+b
代入B的坐标得: =6+b, ∴b=﹣4.5, ∴直线OC的解析式为y=x﹣4.5, ∴C、D的坐标分别为(4.5,0),(0,﹣4.5), 设过A、B、D三点的抛物线的解析式为y=ax2+bx+c,
分别把A、B、D的坐标代入其中得: 解之得:a=﹣0.5,b=4,c=﹣4.5 ∴y=﹣0.5x2+4x﹣4.5
(3)解:如图, 设E的横坐标为x, ∴其纵坐标为﹣0.5x2+4x﹣4.5,
∴S1= (﹣0.5x2+4x﹣4.5+OD)×OC,
= (﹣0.5x2+4x﹣4.5+4.5)×4.5, = (﹣0.5x2+4x)×4.5, 而S= (3+OD)×OC= (3+4.5)×4.5= , ∴ (﹣0.5x2+4x)×4.5= ,
解之得x=4± , ∴这样的E点存在,坐标为(4﹣ ,0.5),(4+ ,0.5). 【解析】【分析】(1)先根据点A的坐标求得反比例函数的解析式,又点B在反比例函数图像上,代入即可求得m的值;(2)先根据点A的坐标求得直线OA的解析式,再结合点B的坐标求得直线CD的解析式,从而可求得点C、D的坐标,利用待定系数法即可求得抛物线的解析式;(3)先设出抛物线上E点的坐标,从而表示出面积S1,再求得面积S的值,令其相等可得到关于x的二元一次方程,方程有解则点E存在,并可求得点E的坐标.
4.如图1,已知直线y=x+3与x轴交于点A,与y轴交于点B,将直线在x轴下方的部分沿x轴翻折,得到一个新函数的图象(图中的“V形折现”)
(1)类比研究函数图象的方法,请列举新函数的两条性质,并求新函数的解析式; (2)如图2,双曲线y= 与新函数的图象交于点C(1,a),点D是线段AC上一动点(不包括端点),过点D作x轴的平行线,与新函数图象交于另一点E,与双曲线交于点P. ①试求△PAD的面积的最大值; ②探索:在点D运动的过程中,四边形PAEC能否为平行四边形?若能,求出此时点D的坐标;若不能,请说明理由. 【答案】(1)解:如图1,新函数的性质:1.函数的最小值为0;2.函数图象的对称轴为直线x=3. 由题意得,点A的坐标为(-3,0),分两种情况: ①当x-3时,y=x+3; ②当x<-3时,设函数解析式为y=kx+b, 在直线y=x+3中,当x=-4时,y=-1, 则点(-4,-1)关于x轴的对称点为(-4,1), 把点(-4,1),(-3,0),代入y=kx+b中,
得:, 解得:, ∴y=-x-3.
综上,新函数的解析式为y=. (2)解:如图2, ①∵点C(1,a)在直线y=x+3上, ∴a=4,
∵点C(1,4)在反比例函数y=上, ∴k=4,
∴反比例函数的解析式为y=. ∵点D是线段AC上一动点, ∴设点D的坐标为(m,m+3),且-3∵DP∥x轴,且点P在双曲线上,
∴点P的坐标为(,m+3), ∴PD=-m, ∴S△PAD=(-m)(m+3)=m2-m+2=(m+)2+,
∵a=<0, ∴当m=时,S有最大值,最大值为, 又∵-3<<1, ∴△PAD的面积的最大值为. ②在点D的运动的过程中,四边形PAEC不能为平行四边形,理由如下: 当点D为AC的中点时,其坐标为(-1,2),此时点P的坐标为(2,2),点E的坐标为(-5,2), ∵DP=3,DE=4, ∴EP与AC不能互相平分, ∴四边形PAEC不能为平行四边形. 【解析】【分析】(1)根据一次函数的性质,结合函数图象写出新函数的两条性质;利用待定系数法求新函数解析式,注意分两种情况讨论;(2)①先求出点C的坐标,再利用待定系数法求出反比例函数解析式,设出点D的坐标,进而得到点P的坐标,再根据三角形的面积公式得出函数解析式,利用二次函数的性质求解即可;②先求出A的中点D的坐标,再计算DP、DE的长度,如果对角线互相平分,则能成为平行四边形,如若对角线不互相平分,则不能成为平行四边形.
5.在平面直角坐标系xOy中,反比例函数 的图象经过点A(1,4),B(m,n).
(1)求反比例函数 的解析式; (2)若二次函数 的图象经过点B,求代数式 的值;
(3)若反比例函数 的图象与二次函数 的图象只有一个交点,且该交点在直线y=x的下方,结合函数图象,求a的取值范围.
【答案】 (1)解:将A(1,4)代入函数y= 得:k=4 反比例函数y= 的解析式是