初中数学反比例函数知识点整理
(完整版)初中数学反比例函数知识点及经典例

04
利用相似三角形求解线段长度或角度大小
通过相似三角形的性质,我们可以建立 比例关系,从而求解未知线段长度或角 度大小。
解方程求解未知量。
具体步骤
根据相似比建立等式关系。
确定相似三角形,找出对应边或对应角 。
经典例题讲解和思路拓展
例题1
解题思路
例题2
解题思路
已知直角三角形ABC中, ∠C=90°,AC=3,BC=4,将 △ABC沿CB方向平移2个单位 得到△DEF,若AG⊥DE于点G ,则AG的长为____反比例函数$y = frac{m}{x}$的图像经过点$A(2,3)$,且与直线$y = -x + b$相 交于点$P(4,n)$,求$m,n,b$的
值。
XXX
PART 03
反比例函数与不等式关系 探讨
REPORTING
一元一次不等式解法回顾
一元一次不等式的定义
01
在材料力学中,胡克定律指出弹簧的 伸长量与作用力成反比。这种关系同 样可以用反比例函数来描述。
牛顿第二定律
在物理学中,牛顿第二定律表明物体 的加速度与作用力成正比,与物体质 量成反比。这种关系也可以用反比例 函数来表示。
经济学和金融学领域应用案例分享
供需关系
在经济学中,供需关系是决定商品价 格的重要因素。当供应量增加时,商 品价格下降;反之,供应量减少时, 商品价格上升。这种供需关系可以用 反比例函数来表示。
XXX
PART 02
反比例函数与直线交点问 题
REPORTING
求解交点坐标方法
方程组法
将反比例函数和直线的方程联立 ,解方程组得到交点坐标。
图像法
在同一坐标系中分别作出反比例 函数和直线的图像,找出交点并 确定其坐标。
初三反比例函数知识点

初三反比例函数知识点反比例函数是数学中的一种特殊函数,也称为倒数函数。
初三学习反比例函数是为了帮助学生更好地理解函数关系及其图像,在解决实际问题中的应用也非常广泛。
本文将从反比例函数的定义、性质、图像及实际应用等方面进行详细介绍。
一、反比例函数的定义和性质反比例函数是指一个函数与其自变量的乘积为常数的函数。
通常用符号y=k/x表示,其中k为常数。
1. 定义:反比例函数可以定义为y=k/x,其中k为常数,x≠0。
2. 性质:反比例函数的一个重要性质是其定义域和值域都不包括0。
因为当x=0时,函数值无意义,除数不能为0。
此外,反比例函数的图像一般是一个双曲线,具有一个垂直渐近线x=0和一个水平渐近线y=0。
二、反比例函数的图像反比例函数的图像是一个双曲线,在以原点为中心的坐标平面上对称分布。
其图像的特点如下:1. x轴和y轴:反比例函数的图像与x轴和y轴有关,当x趋近于无穷大或无穷小,y趋近于0;当y趋近于无穷大或无穷小,x趋近于0。
2. 渐近线:反比例函数有两条渐近线,水平渐近线和垂直渐近线。
水平渐近线表示y=0,x轴就是一个水平渐近线;垂直渐近线表示x=0,y轴就是一个垂直渐近线。
3. 对称性:反比例函数图像具有关于原点的对称性,即当(x, y)在图像上时,则(-x, -y)也在图像上。
三、反比例函数的实际应用反比例函数在实际生活中具有广泛的应用,特别是与数量关系有关的问题中常会涉及到反比例函数的应用。
1. 比例尺:反比例函数可以用来解决比例尺相关的问题。
比如,当地图缩小为原来的1/1000时,比例尺变为原来的1000倍。
2. 工作时间与工作效率:工作时间和工作效率之间通常存在反比例关系。
如果一项工作需要的时间越长,那么单位时间内的工作效率就会越低。
比如,甲乙两个人共同完成一项任务,甲需要10小时完成,乙需要5小时完成,乙的工作效率就是甲的两倍。
3. 电阻和电流关系:在电路中,电阻和电流之间往往存在反比例关系。
初中数学反比例函数知识点及经典例题

初中数学反比例函数知识点及经典例题反比例函数是数学中常见的一类函数,它是由一元二次函数反过来得到的。
反比例函数的特点是,自变量的增大导致函数值的减小,自变量的减小导致函数值的增大。
本文将介绍反比例函数的定义、性质、图像、经典例题以及解题思路。
一、反比例函数的定义反比例函数是指当两个变量之间满足一个恒等关系时,这个关系可以用一个反比例关系式表示。
一般地,反比例关系式可以表示为:y=k/x,其中k为常数。
二、反比例函数的性质1.反比例函数的定义域是非零实数集。
2.反比例函数的值域是非零实数集。
3.反比例函数的图像是一个经过原点的开口向右下方的双曲线。
4.当自变量等于1时,反比例函数的值等于常数k。
5.反比例函数的平行于y轴的渐近线是x=0。
三、反比例函数的图像反比例函数的图像是一个经过原点的开口向右下方的双曲线。
当自变量趋于正无穷时,函数值趋近于0;当自变量趋于负无穷时,函数值趋近于无穷大。
反比例函数的图像与x轴和y轴均不相交,且在第一象限和第三象限上。
四、反比例函数的经典例题及解题思路解题思路:根据题意可得到等式3=k/2,解方程可得到k=6、因此,此反比例函数为y=6/x。
例题2:证明反比例函数y=3/x与y=4/x在坐标原点处相交。
解题思路:将两个函数分别带入坐标原点,可得到y1=3/0=0,y2=4/0=0,因此,两个函数在坐标原点处相交。
例题3:如果一个反比例函数的变量x增加了50%,那么函数值y会发生什么变化?解题思路:根据反比例函数的定义可以得到y=k/x,将x增加了50%相当于原来的x增加了1.5倍,那么y就变成了原来的1.5倍。
例题4:如果一个反比例函数的函数值y减少了60%,那么自变量x会发生什么变化?解题思路:根据反比例函数的定义可以得到y=k/x,将y减少了60%相当于原来的y减少了0.6倍,那么x就变成了原来的0.6倍。
总结:反比例函数是一类常见的函数,它的特点是自变量的增大导致函数值的减小,自变量的减小导致函数值的增大。
反比例函数知识点

反比例函数知识点(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲致辞、规章制度、策划方案、合同协议、条据文书、心得体会、职业规划、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as speeches, rules and regulations, planning plans, contract agreements, documentary evidence, insights, career planning, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!反比例函数知识点反比例函数知识点_反比例函数知识考点数学函数知识点有什么?数学之所以有高声誉,另一个理由就是数学使得自然科学实现定理化,给予自然科学某种程度的可靠性。
初中数学知识归纳反比例函数

初中数学知识归纳反比例函数反比例函数是初中数学中的重要内容,它指的是两个变量之间存在着反比关系的函数。
在学习反比例函数时,我们需要了解其定义、性质以及常见的应用。
本文将对初中数学中关于反比例函数的知识进行归纳总结,以帮助同学们更好地理解和掌握这一内容。
一、反比例函数的定义反比例函数又称为倒数函数,它的定义可以表示为:若两个变量x 和y满足x×y=k(k≠0),则称y是x的反比例函数。
根据反比例函数的定义可以看出,变量x和y之间的乘积是一个常数k。
当x增大时,y就会减小,反之亦然。
这种函数关系在数学中非常常见,例如时间与速度之间的关系、商品价格与需求量之间的关系等。
二、反比例函数的性质反比例函数具有一些特殊的性质,下面我们来一一介绍。
1. 定义域和值域:反比例函数的定义域为除去0以外的所有实数,即x≠0。
对于y=f(x)=k/x,其值域为除去0以外的所有实数,即y≠0。
2. 图像特点:通过观察反比例函数的图像,我们可以发现它具有以下特点:- 当x趋近于正无穷大或负无穷大时,函数值趋近于0。
- 函数的图像关于y轴对称。
3. 零点:反比例函数的零点即为使得函数值为0的解。
由于反比例函数除去x=0时,函数值始终不为零,所以它没有零点。
4. 单调性:反比例函数的单调性与x的取值有关。
当x>0时,函数单调递减;当x<0时,函数单调递增。
三、反比例函数的应用反比例函数在实际生活中具有广泛的应用,下面我们来介绍几个常见的应用。
1. 速度与时间的关系:当物体匀速运动时,速度和时间之间存在反比关系。
设物体的速度为v,时间为t,则速度和时间的关系可以表示为v×t=k(k为常数)。
这也是为什么我们常说“速度与时间成反比”。
2. 距离与时间的关系:在匀速直线运动中,距离和时间之间也存在反比关系。
设物体在t 时间内的位移为s,则位移和时间的关系可以表示为s×t=k(k为常数)。
3. 分数的倒数:在数学中,分数的倒数即为倒数。
初中数学:反比例函数的概念,真简单

初中数学:反比例函数的概念,真简单反比例函数是数学中一个基本的函数类型,它的特点是当自变量增大时,函数值减小;当自变量减小时,函数值增大。
下面,我们将会深入探讨反比例函数的概念以及它的相关知识点。
一、反比例函数的定义反比例函数,简称反比函数,指的是若一函数 y 与另一函数 x 成反比例关系,即 y = k/x(k为常数),则称 y 为 x 的反比函数。
其中,k 为反比例函数的比例系数,通常用正数表示。
二、反比例函数的图像特点反比例函数的图像呈现出 x 轴的非零实数的全体是定义域,y 轴的非零实数的全体是值域的形态,其图像是一个对称于第二象限和第四象限的双曲线。
三、反比例函数的性质1. 反比函数的定义域为 R - {0},值域也是 R - {0}。
2. 当 x > 0 时,反比例函数单调递减;当 x < 0 时,反比例函数单调递增。
3. 反比例函数在原点处不存在定义,但是可以趋近于无穷大或无穷小。
4. 当 x 的值增加,k 不变时 y 的值逐渐减小,表现出反比例函数的反比例关系。
四、反比例函数的应用反比例函数是数学中非常重要的函数类型,具有广泛的应用。
下面我们列举一些实际中应用反比例函数的例子:1. 银行利率:银行将存款金额与利息之间的关系建立为反比例关系,可以使用反比例函数来描述。
2. 太阳能电池板:当太阳光照射到电池板上时,电压和电流成反比例关系,可以使用反比例函数来描述。
3. 计算机处理速度:计算机的处理速度与处理任务的复杂程度呈反比例关系。
4. 等比例速度问题:有时需要研究物体在不同速度下的行驶时间,这时可以使用反比例函数来描述。
以上是反比例函数的定义、图像特点、性质及应用的详细介绍。
相信通过对反比例函数的学习,我们可以更好地理解数学中的基本概念。
反比例知识点总结

反比例是数学中一种重要的函数关系,主要出现在初中数学的学习内容中。
以下是反比例函数的相关知识点总结:1. 定义:两种相关联的变量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的乘积一定,那么我们就称这两种量成反比例关系。
表达式为:y = k/x (k ≠0),其中,k 是常数,x 是自变量,y 是因变量。
2. 图像特征:反比例函数的图像是一条双曲线,分布在第一、三象限或第二、四象限,具体分布取决于k的正负。
函数图像关于原点成中心对称。
3. 性质:在每个象限内,从左到右,y随x的增大而减小;反之,y随x 的减小而增大。
图像永远不会与坐标轴相交。
如果点(x1, y1)在反比例函数图像上,那么点(-x1, -y1)、(y1, x1)也在该图像上。
4. 应用:反比例关系广泛存在于现实生活中的各种问题,如物理学中的功率与时间的关系,化学中的反应速率与反应物浓度的关系,经济学中的价格与需求量的关系等。
5. 解题方法:遇到求反比例函数解析式的问题,通常可以通过找出满足函数关系的两个对应值,代入公式求解k值。
对于图像和性质的分析,可以根据上述性质进行判断和解答。
反比例函数在数学中的意义主要体现在它描述了一种特殊的变量关系,这种关系是两个变量之间乘积恒定的规律。
具体来说:1. 定义与形式:如果两个变量x和y之间的关系可以表示为y = k/x(其中k是不为零的常数),那么我们称y是x的反比例函数。
这里的k是比例系数,决定了曲线的形状和位置。
2. 关系特征:反比例函数反映的是两个变量成反向变化的关系,即一个变量增大时,另一个变量会按相同的比例减小,以保持它们乘积的不变性。
3. 几何意义:反比例函数在坐标平面上的图像是一条双曲线,分布在第一、三象限或第二、四象限,取决于系数k的正负。
双曲线具有对称性,并且永远不会与坐标轴相交。
4. 实际应用:反比例函数关系广泛存在于现实生活中的多个领域,如物理学中的力矩和力臂的关系、电流强度与电阻的关系(欧姆定律)、经济学中的价格和需求量的关系等。
初中数学反比例函数知识点整理

初中数学反比例函数知识点整理反比例函数是初中数学中的一个重要知识点。
在初中阶段,学生通过学习反比例函数的相关特性、图像和应用,培养对数学的抽象思维和数学建模能力。
下面将对反比例函数的相关知识点进行整理。
一、概念反比例函数是指两个变量之间的关系呈现出一种反比例的关系,即:一个变大,另一个变小;一个变小,另一个变大。
一般来说,反比例函数的定义域为定义在非零实数集上的实函数。
反比例函数可以表示为y=k/x,其中k≠0。
x和y分别为自变量和因变量,k为比例常数。
反比例函数的图像通常为一个经过原点的拋物线,斜率随着x的变化而改变。
二、性质1.当x=0时,函数无定义。
因此,反比例函数的定义域为R*(非零实数集),值域为R*。
2.k的正负决定了反比例函数的开口方向。
-当k>0时,函数的图像开口向上。
-当k<0时,函数的图像开口向下。
3.当x不等于0时,反比例函数的图像经过第一象限和第三象限。
4.当x>0时,y>0;当x<0时,y<0。
反比例函数在第一象限和第三象限的值都是正数。
5.反比例函数在x轴和y轴上都不存在渐近线。
三、图像根据反比例函数的性质,可以绘制出函数的图像。
在第一象限和第三象限,我们可以选择几个不同的x值,利用函数的公式计算相应的y值,然后将两者连接起来,得到一系列点,最后将这些点连成一条曲线。
需要注意的是,由于反比例函数的性质,我们需要选择比例常数k的不同正负情况,从而确定图像的开口方向。
四、应用反比例函数在生活中有着广泛的应用。
1.比例尺:地图上通常有一个比例尺,用来表示地图上的距离与实际距离的比例关系。
比例尺就是一个反比例函数,地图上的距离和实际距离呈现反比例关系。
2.速度和时间:物体的速度与所用时间呈现反比例关系。
例如,当车辆速度增加时,所需时间减少;当车辆速度减慢时,所需时间增加。
3.工作时间和人数:一个任务所需的时间与人员数量呈现反比例关系。
当人员数量增加时,所需时间减少;当人员数量减少时,所需时间增加。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
__________________________________________________反比例函数知识点整理一、 反比例函数的概念1、解析式:()0≠=k x ky 其他形式:①k xy =②1-=kx y 例1.下列等式中,哪些是反比例函数 (1)3xy =(2)x y 2-=(3)xy =21(4)25+=x y (5)x y 23-=(6)31+=x y例2.当m 取什么值时,函数23)2(m x m y --=是反比例函数? 例3.函数22)12(--=mx m y 是反比例函数,且它的图像在第二、四象限,m 的值是_____ 例4.已知函数y =y 1+y 2,y 1与x 成正比例,y 2与x 成反比例,且当x =1时,y =4;当x =2时,y =5(1) 求y 与x 的函数关系式(2)当x =-2时,求函数y 的值 2.反比例函数图像上的点的坐标满足:k xy =例1.已知反比例函数的图象经过点(m ,2)和(-2,3)则m 的值为 例2.下列函数中,图像过点M (-2,1)的反比例函数解析式是( )x y A 2.=2.B y x =-x y C 21.=xy D 21.-= 例3.如果点(3,-4)在反比例函数ky x =的图象上,那么下列各点中,在此图象上的是()A .(3,4) B . (-2,-6) C .(-2,6) D .(-3,-4)例4.如果反比例函数xky =的图象经过点(3,-1),那么函数的图象应在()A .第一、三象限B .第二、四象限C .第一、二象限D .第三、四象限 二、反比例函数的图像与性质 1、基础知识0>k 时,图像在一、三象限,在每一个象限内,y 随着x 的增大而减小;0<k 时,图像在二、四象限,在每一个象限内,y 随着x 的增大而增大;例1.已知反比例函数y a x a =--()226当x >0时,y 随x 的增大而增大,求函数关系式例2.已知反比例函数xk y 12+=的图象在每个象限内函数值y 随自变量x 的增大而减小,且k 的值还满足)12(29--k ≥2k -1,若k 为整数,求反比例函数的解析式 2、面积问题(1)三角形面积:k S AOB 21=∆ 例1.如图,过反比例函数xy 1=(x >0)的图象上任意两点A 、B 分别作x 轴的垂线,垂足分别为C 、D ,连接OA 、OB ,设△AOC 和△BOD的面积分别是S 1、S 2,比较它们的大小,可得()(A )S 1>S 2(B )S 1=S 2 (C )S 1<S 2(D )大小关系不能确定 例2.如图,点P 是反比例函数1yx=的图象上任一点,PA 垂直在x 轴,垂足为A ,设OAP ∆的面积为S ,则S 的值为例3.直线OA 与反比例函数的图象在第一象限交于A 点,AB ⊥x 轴于点B ,若△OAB 的面积为2,则k =. 例4.如图,若点A 在反比例函数(0)ky k x=≠的图象上,AM x ⊥轴于点M ,AMO △的面积为3,则k =.例5.如图,在x 轴的正半轴上依次截取112233445OA A A A A A A A A ====,过点12345A A A A A 、、、、分别作x 轴的垂线与反比例函数的()20y x x=≠的图象相交于点12345P P P P P 、、、、,得直角三角形1112233344455OP A A P A A P A A P A A P A 2、、、、,并设其面积分别为12345S S S S S 、、、、,则5S 的值为.例6.如图,A 、B 是函数2y x=的图象上关于原点对称的任意两点,BC ∥x 轴,AC ∥y 轴,△ABC 的面积记为S ,则() A .2S =B .4S =C .24S <<D .4S >(2)矩形面积:k=OBACS 矩形例1.如图,P 是反比例函数(0)ky k x=<图象上的一点,由P 分别 pyAxO第4题__________________________________________________向x 轴和y 轴引垂线,阴影部分面积为3,则k=。
例2.如图,已知点C 为反比例函数6y x=-上的一点,过点C 向坐标轴引垂线,垂足分别为A 、B ,那么四边形AOBC 的面积为.例3.如图,点A 、B 是双曲线3y x=上的点,分别经过A 、B 两点向x 轴、y 轴作垂线段,若1S =阴影,则12S S +=.例4、如图,矩形AOCB 的两边OC ,OA 分别位于x 轴,y 轴上,点B 的坐标为B (320-,5),D 是AB 边上的一点,将△ADO 沿直线OD 翻折,使A 点恰好落在对角线OB 上的点E 处,若点E 在一反比例函数的图像上,那么该函数的解析式是______.例5.两个反比例函数y=k x 和y=1x 在第一象限内的图像如图3所示,点P 在y=kx的图像上,PC ⊥x 轴于点C ,交y=1x 的图像于点A ,PD ⊥y 轴于点D ,交y=1x的图像于点B ,当点P 在y=kx的图像上运动时,以下结论:① △ODB 与△OCA 的面积相等;② ②四边形PAOB 的面积不会发生变化;③PA 与PB 始终相等④当点A 是PC 的中点时,点B 一定是PD 的中点.其中一定正确的是_______(把你认为正确结论的序号都填上,少填或错填不给分). 3.利用图像比较大小问题 (1)比较点的坐标大小例1.已知点(-1,y 1)、(2,y 2)、(π,y 3)在双曲线xk y 12+-=上,则下列关系式正确的是()(A )y 1>y 2>y 3(B )y 1>y 3>y 2(C )y 2>y 1>y 3(D )y 3>y 1>y 2 例2.已知三点111()P x y ,,222()P x y ,,3(12)P -,都在反比例函数ky x =的图象上,若10x <,20x >,则下列式子正确的是()A .120y y << B .120y y <<C .120y y >>D .120y y >> 例3.反比例函数xy 2-=,当x =-2时,y =;当x <-2时;y 的取值范围是;当x>-2时;y 的取值范围是 例4.点A (2,1)在反比例函数y kx=的图像上,1﹤x ﹤4时,y 的取值范围是. 例5.A (1x ,1y )、B (2x ,2y )在函数12y x=的图象上,1x 、2x 满足_时,1y >2y . 例6.在反比例函数12my x-=的图象上有两点A ()11,x y ,B ()22,x y ,当120x x <<时,有12y y <,则m 的取值范围是() A 、0m < B 、0m > C 、12m < D 、12m >例7、已知反比例函数)0(<=k xky 的图像上有两点A(1x ,1y ),B(2x ,2y ),且21x x <,则21y y -的值是()A 、正数 B 、负数 C 、非正数 D 、不能确定(2)比较函数值大小例1.如图是一次函数y 1=kx+b 和反比例函数y 2=mx的图象,观察图象写出y 1>y 2时,x 的取值范围例2.如图,一次函数y=x-1与反比例函数y=的图像交于点A (2,1),B (-1,-2),则使y>y的x的取值范围是() A. x>2 B. x>2 或-1<x<0 C. -1<x<2 D. x>2 或x<-1 三、 反比例函数与一次函数的综合题 (1) 在同一坐标系中的图像问题 例1.一次函数y kx k =-与反比例函数ky x=在同一直角坐标系内的大致图象是(__________________________________________________例2.函数y =-ax +a 与xay -=(a ≠0)在同一坐标系中的图象可能是()(2)其他类型例1.如图,已知一次函数b kx y +=的图象与反比例函数xy 8-=的图象交于A 、B 两点,且点A 的横坐标和点B 的纵坐标都是2-,求: (1)一次函数的解析式;(2)△AOB 的面积. 例2.如图,在直角坐标系中,直线y=6-x 与函数y=x4(x>0)的图象相交于点 A 、B ,设点A 的坐标为(x 1,,y 1),那么长为x 1,宽为y 1的矩形面积和周长分别为( )A .4,12B .8,12C .4,6D .8,6 例3.如图:已知一次函数)0(≠+=k b kx y 的图象与x 轴、y 轴分别交于A 、B 两点,且与反比例函数)0(≠=m xmy 的图象在第一象限交于C 点,CD ⊥x 轴,垂足为D ,若1===OD OB OA(1)求点A 、B 、D 的坐标;(2)求一次函数与反比例函数的解析式;;例4:如图,反比例函数ky x=的图象与一次函数y mx b =+的图象交于(13)A ,,(1)B n -,两点.(1)求反比例函数与一次函数的解析式;(2)根据图象回答:当x 取何值时,反比例函数的值大于一次函数的值 例5.如图,A 、B 是反比例函数y =2x的图象上的两点。
AC 、BD 都垂直于x 轴,垂足分别为C 、D 。
AB 的延长线交x 轴于点E 。
若C 、D 的坐标分别为(1,0)、(4,0),则ΔBDE 的面积与ΔACE 的面积的比值是()A .21B .41C.81 D .161四、 反比例函数的应用例1.已知甲、乙两地相s (千米),汽车从甲地匀速行驶到达乙地,如果汽车每小时耗油量为a (升),那么从甲地到乙地汽车的总耗油量y (升)与汽车的行驶速度v (千米/时)的函数图象大致是()例2.一张正方形的纸片,剪去两个一样的小矩形得到一个“E ”图案,如图所示,设小矩形的长和宽分别为x 、y ,剪去部分的面积为20,若210x ≤≤,则y 与x 的函数图象是( )yxBAOxyC xODA yyxAOB。