湖南省邵阳市隆回县万和实验学校高中数学教案选修2-2第二章2.2直接证明与间接证明2
湖南省邵阳市隆回二中高中数学苏教版选修2-2教学课件2.1合情推理与演绎推理(二)

A )
A. 为定值 B. 为变数 C. 有时为定值,有时为变数 D. 与正四面体无关的常数
课堂练习
5. 在等差数列{an}中,若a10=0,则有
等式a1+a2+a3+… +an=a1+a2+a3
+… +a19-n(n<19,n∈N*)成立.类比
2.1合情推理与演绎推理(二)
讲授新课
类比推理 由两类对象具有某些类似特征和其 中一类对象的某些已知特征,推出另一 类对象也具有这些特征的推理称为类比 推理(简称类比).
例1 填写表中球的相关特征,并说说推理的 过程.
圆的概念和性质圆的周长 球的类似概念和性质 圆的周长 圆的面积 圆心与弦(非直径)中点 的连线垂直于弦. 与圆心距离相等的两弦相 等,与圆心距离不等的两 弦不等,距圆心较近的弦 较长. 以点(x0,y0)为圆心,r为半 径的圆的方程为 (x-x0)2+(y-y0)2=r2.
球的面积
球的体积 球心与截面(非大圆面) 圆心的连线垂直于截面.
与球心距离相等的两截面 面积相等,与球心距离不 等的两截面面积不等,距 球心较近的截面面积较大. 以点(x0, y0,z0)为球心,r为 半径的球的方程为(x-x0)2 +(y-y0)2 +(z-z0)2 =r堂练习
3. 类比平面内正三角形的“三边相等,三 内角相等”的性质,可推出正四面体下列 性质,你认为比较恰当的是( ) (1)各棱长相等,同一顶点上的任两条棱的 夹角都相等. (2)各个面都是全等的正三角形,相邻两个 面所成的三面角都相等. (3)各个面都是全等的正三角形,同一顶点 上的任两条棱的夹角都相等. A. (1) B. (1)(2) C. (1)(2)(3) D. (3)
例1 填写表中球的相关特征,并说说推理的 过程.
湖南省邵阳市隆回县万和实验学校高中数学教案 选修2-2 第二章 2.2 直接证明与间接证明 5

二、讲解新课:综合法1.综合法是从已知条件出发,经过逐步的推理,最后达到待证结论.2.综合法是从原因推导到结果的思维方法,综合法又叫做由因导果法.分析法1.分析法是从待证结论出发,一步一步寻求结论成立的充分条件,最后达到题设的已知条件或已被证明的事实.2.分析法是一种从结果追溯到产生这一结果的原因的思维方法,分析法又叫做执果索因法.例题分析例1. 已知:c b a ,,是不全相等的正数,求证: ()()()abc ba c a cbc b a 6222222>+++++证明:综合法 ()abcc b a a bc c b 20,22222≥+∴>≥+Θ 同理:()()abcb ac abcc a b 222222≥+≥+ 因为c b a ,,是不全相等的正数,所以上述三个等号不会同时成立. ()()()abc b a c a c b c b a 6222222>+++++∴ .3)2cot()2tan(4sin 22sin .2=-+=οοοααα,求证已知例证明:综合法 )]2()2sin[(2)]2()2sin[(οοοο--+=-++αααα由已知得)2cos()2sin()2sin()2cos(3οοοο-+=-+αααα展开整理得73+525273<+()()225273<+2021210<+10212<521<2521<证明:因为 和都是正数,所以为了证明 只需证明 展开得因为 成立,所以 成立2521<5273<+ 3)2sin()2cos()2cos()2sin(=-+-+∴οοοοαααα,即3)2cot()2tan(=-+οοαα 小结:(结论)(已知)综合法证题步骤:nP P P P ⇒⇒⇒⇒Λ210.5273.3<+例 证明:分析法(略)小结 .21(已知)(结论)分析法证题步骤:nB B B B ⇐⇐⇐⇐Λ.11114c b a c b a abc c b a ++<++=求证:,为互不相等的正数且、、已知例 .222222.ab ac bc c b a ab ac bc c b a ++<++++<++也就是证明立,即证证明:要证原不等式成..2222222222221222所以,原不等式成立相加得;;;所以,为互不相等的正数且、、因为ab ac bc c b a b c ab bc ab a bc a ab ac c abc ac bc abc c b a ++<++=>+=>+=>+=三、课堂练习: .313tan )tan(0cos 5)2cos(8.1=+=++αβαββα求证,已知 .3213.2---<--≥a a a a a ,求证:已知四、课堂小结:综合法和分析法是直接证明中最基本的两种方法,也是解决数学问题时常用的思维方式,常把它们结合起来使用.即当遇到较难的新命题时,应当先用分析法来探求解法,然后将找到的解法用综合法叙述出来.五、作业:(略)。
湖南省邵阳市隆回县第二中学高中数学 2.2.2双曲线的简单几何性质导学案(1)新人教A版选修1-1

湖南省邵阳市隆回县第二中学高中数学 2.2.2双曲线的简单几何性质(1)导学案 新人教A 版选修1-1【学习目标】1. 理解并掌握双曲线的几何性质.【自主学习】(预习教材P49~ P51)问题1:由椭圆的哪些几何性质出发,类比探究双曲线22221x y a b-=的几何性质?范围:x : y :对称性:双曲线关于 轴、 轴及 都对称.顶点:( ),( ).实轴,其长为 ;虚轴,其长为 . 离心率:1c e a=>. 渐近线:双曲线22221x y a b-=的渐近线方程为:0x y a b ±=.问题2:双曲线22221y x a b-=的几何性质? 图形:范围:x : y :对称性:双曲线关于 轴、 轴及 都对称.顶点:( ),( )实轴,其长为 ;虚轴,其长为 .离心率:1c e a=>. 渐近线:双曲线22221y x a b-=的渐近线方程为: .新知:实轴与虚轴等长的双曲线叫双曲线.【合作探究】例1.(教材P51例3)求双曲线22916144y x-=的实半轴长和虚半轴长、焦点坐标、离心率、渐近线方程.例2求双曲线的标准方程:⑴实轴的长是10,虚轴长是8,焦点在x轴上;⑶渐近线方程为23y x=±,经过点9(,1)2M-.【目标检测】1.双曲线221168x y-=实轴和虚轴长分别是().A.8、.8、.4、.4、2.双曲线224x y-=-的顶点坐标是().A.(0,1)± B.(0,2)± C.(1,0)± D.(2,0±)3.双曲线22148x y-=的离心率为().A.1 B.2 4.双曲线2241x y-=的渐近线方程是.5、已知双曲线的离心率e=(5,3)M-,求其标准方程。
人教版高中数学选修2-2教学案2.2直接证明与间接证明(教师版)-文档资料

直接证明与间接证明__________________________________________________________________________________ __________________________________________________________________________________(1)了解直接证明的一种基本方法──综合法、分析法; (2) 了解间接证明的一种基本方法──反证法;(3)了解综合法、分析法、反证法的思考过程与特点,会用综合法、分析法、反证法证明数学问题.类型一、直接证明: 一. 综合法1.定义:从命题的条件出发,利用定义、公理、定理及运算法则,经过一系列的推理论证,最后推导出所要证明的结论成立.2.思维特点:由因导果,即由已知条件出发,利用已知的数学定理、性质和公式,推出结论的一种证明方法3.框图表示:(P 表示已知条件、已有的定义、定理、公理等,Q 表示要证明的结论) 二.分析法1.定义:一般地,从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判断一个明显成立的条件(已知条件、定理、定义、公理等)为止,这种证明方法叫做分析法.2. 思维特点:执果索因步步寻求上一步成立的充分条件,它与综合法是对立统一的两种方法3.框图表示:(用Q 表示要证明的结论,P n 表示充分条件)4.分析法的书写格式:类型二、反证法: 反证法:假设命题结论不成立(即命题结论的反面成立),经过正确的推理,引出矛盾,因此说明假设错误,从而证明原命题成立,这样的的证明方法叫反证法。
(2)反证法的一般步骤: a 、反设:假设命题结论不成立(即假设结论的反面成立); b 、归缪:从假设出发,经过推理论证,得出矛盾; c 、下结论:由矛盾判定假设不成立,从而肯定命题成立。
(3)应用反证法的情形: ①直接证明困难;②需分成很多类进行讨论.③结论为“至少”、“至多”、“有无穷多个” ---类命题; ④结论为 “唯一”类命题; (4)关键在于归缪矛盾:要证:⋯⋯ 只要证:⋯⋯ 只需证:⋯⋯ ⋯⋯显然成立 上述各步均可逆 所以,结论成立例3 求证:5273<+ 证明:因为5273和+都是正数, 所以要证5273<+ 只需证22)52()73(<+ 展开得 2021210<+只需证 ,521< 只需证 2521< 因为2521<显然成立, 所以5273<+a 、与已知条件矛盾;b 、与公理、定理、定义矛盾;c 、自相矛盾。
湖南省邵阳市隆回二中高中数学苏教版选修2-2教学课件 2.3 数学归纳法(2)

2
2
请你写出一个具有一般性的等式, 使你写出 的等式包含了已知的等式,这个等式是
课堂练习
1.观察 1 = 1,1 +3 = 4,1 +3 +5 = 9, 1 + 3 + 5 + 7 = 16,…,猜想一般结论为 2 1 3 5 ( 2n 1) n
2. 已知等式 sin 30°+ sin 30°+ sin30° · sin30°
3 3 2 2 = , sin 40°+ sin 20°+ sin40° · sin20°= . 4 4
2
2
请你写出一个具有一般性的等式, 使你写出 的等式包含了已知的等式,这个等式是 3 2 2 sin sin ( 60 ) sin sin( 60 ) 4
课堂练习
例题讲解
1 {a n },a1 a (a 0,且 例 5. 对于数列 a 1 a 1),a n 1 a1 ; an (1)求a 2,a 3,a4并猜想这个数列的通项 公式; (2)用数学归纳法证明你 的猜想.
例题讲解
例 1.(1)设x R,且x 0,若x x 1 3, 2n 2n * 猜想x x ( x N )的个位数字是多少?
例题讲解
例 1.(1)设x R,且x 0,若x x 1 3, 2n 2n * 猜想x x ( x N )的个位数字是多少?
例题讲解
例 4. 设数列{a n }的前n项和为S n,且方程 x 2 a n x a n 0有一根为S n 1,n 1, 2, 3, . (1)求a1,a 2; (2) {a n }的通项式.
例题讲解
湖南省邵阳市隆回县万和实验学校高中数学教案 选修2-2 第二章 2.1合情推理与演绎推理3

一.二.复习:合情推理归纳推理从特殊到一般类比推理从特殊到特殊从具体问题出发――观察、分析比较、联想――归纳。
类比――提出猜想三.问题情境。
观察与思考1所有的金属都能导电铜是金属,所以,铜能够导电2.一切奇数都不能被2整除,(2100+1)是奇数,所以,(2100+1)不能被2整除.3.三角函数都是周期函数,tan α是三角函数,所以,tan α是周期函数。
提出问题:像这样的推理是合情推理吗?二.学生活动:1.所有的金属都能导电←————大前提铜是金属, ←-----小前提所以,铜能够导电←――结论2.一切奇数都不能被2整除←————大前提(2100+1)是奇数,←――小前提所以,(2100+1)不能被2整除.←―――结论3.三角函数都是周期函数, ←——大前提tan α是三角函数,←――小前提所以,tan α是周期函数。
←――结论三,建构数学演绎推理的定义:从一般性的原理出发,推出某个特殊情况下的结论,这种推理称为演绎推理.1.演绎推理是由一般到特殊的推理;2.“三段论”是演绎推理的一般模式;包括⑴大前提---已知的一般原理;⑵小前提---所研究的特殊情况;⑶结论-----据一般原理,对特殊情况做出的判断.三段论的基本格式(小前提)是二次函数函数12++=x x y M —P (M 是P ) (大前提)S —M (S 是M ) (小前提)S —P (S 是P ) (结论)3.三段论推理的依据,用集合的观点来理解:若集合M 的所有元素都具有性质P,S 是M 的一个子集,那么S 中所有元素也都具有性质P. 四,数学运用例1.把“函数21y x x =++的图象是一条抛物线”恢复成完全三段论.解:二次函数的图象是一条抛物线 (大前提)例2.已知lg2=m,计算lg0.8解 (1) lgan=nlga(a>0)---------大前提lg8=lg23————小前提lg8=3lg2————结论lg(a/b)=lga-lgb(a>0,b>0)——大前提lg0.8=lg(8/10)——-小前提lg0.8=lg(8/10)——结论例3.如图;在锐角三角形ABC 中,AD ⊥BC, BE ⊥AC,D,E 是垂足,求证AB 的中点M 到D,E 的距离相等.解: (1)因为有一个内角是只直角的三角形是直角三角形, ——大前提在△ABC 中,AD ⊥BC,即∠ADB=90° —-小前提所以△ABD 是直角三角形 ——结论(2)因为直角三角形斜边上的中线等于斜边的一半,——大前提因为 DM 是直角三角形斜边上的中线, ——小前提所以 DM=21AB ——结论 同理 EM=21AB 所以 DM=EM.由此可见,应用三段论解决问题时,首先应该明确什么是大前提和小前提.但为了叙 述简洁,如果大前提是显然的,则可以省略.再来看一个例子.例4.证明函数2()2f x x x =-+在(,1)-∞内是增函数.分析:证明本例所依据的大前提是:在某个区间(a, b )内,如果'()0f x >,那么函数()y f x =在这个区间内单调递增.小前提是2()2f x x x =-+的导数在区间(,1)-∞内满足'()0f x >,这是证明本例的关键.证明:'()22f x x =-+.当(,1)x ∈-∞时,有10x ->,所以'()222(1)0f x x x =-+=->.于是,根据“三段论”得,2()2f x x x =-+在(,1)-∞内是增函数.在演绎推理中,只要前提和推理形式是正确的,结论必定是正确的.还有其他的证明方法吗? 结论)的图象是一条抛物线(所以,函数12++=x x y思考:因为指数函数x y a =是增函数,——大前提 而1()2x y =是指数函数, ——小前提 所以1()2xy =是增函数. ——结论(1)上面的推理形式正确吗?(2)推理的结论正确吗?为什么?上述推理的形式正确,但大前提是错误的(因为当01a <<时,指数函数x y a =是减函数),所以所得的结论是错误的.“三段论”是由古希腊的亚里士多德创立的.亚里士多德还提出了用演绎推理来建立各门学科体系的思想.例如,欧几里得的《原本》.就是一个典型的演绎系统,它从10条公理和公设出发,利用演绎推理,推出所有其他命题.像这种尽可能少地选取原始概念和一组不加证明的原始命题(公理、公设),以此为出发点,应用演绎推理,推出尽可能多的结论的方法,称为公理化方法.继《原本》之后,公理化方法广泛应用于自然科学、社会科学领域.例如,牛顿在他的巨著《自然哲学的数学原理》中,以牛顿三定律为公理,运用演绎推理推出关于天体空间的一系列科学理论,建立了牛顿力学的一整套完整的理论体系.至此,我们学习了两种推理方式一一合情推理与演绎推理.思考: 合情推理与演绎推理的主要区别是什么?归纳和类比是常用的合情推理从推理形式上看,归纳是由部分到整体、个别到一般的推理,类比是由特殊到特殊的推理;而演绎推理是由一般到特殊的推理.从推理所得的结论来看,合情推理的结论不一定正确,有待进一步证明;演绎推理在大前提、小前提和推理形式都正确的前提下,得到的结论一定正确.人们在认识世界的过程中,需要通过观察、将积累的知识加工、整理,使之条理化、实验等获取经验;也需要辨别它们的真系统化.合情推理和演绎推理分别在这两个环节中扮演着重要角色.就数学而言,演绎推理是证明数学结论、建立数学体系的重要思维过程,但数学结明思路等的发现,主要靠合情推理.因此,我们不仅要学会证明,也要学会猜想.巩固练习:第35页 练习第 1,2,3,4,题作业:第35页 练习 第5题 。
湖南省邵阳市隆回县第2中学高中数学 2.2.2双曲线的简单几何性质导学案(2)新人教A版选修1-1
湖南省邵阳市隆回县第二中学高中数学双曲线的简单几何性质(2)导学案新人教A版选修1 -1【学习目标】1.理解并掌握双曲线的几何性质.线的位置关系 .【自主学习】 (预习教材P52~ P53 )问题1:双曲线的一条渐近线方程是30x y+= ,那么可设双曲线方程为 ?问题2:假设双曲线与22464x y+=有相同的焦点 ,它的一条渐近线方程是30x y+= ,那么双曲线的方程是 ?【合作探究】例1. (教材P52例5 )点(,)M x y到定点(5,0)F的距离和它到定直线l:165x=的距离的比是常数54,求点M的轨迹.【目标检测】1.以椭圆2212516x y+=的焦点为顶点 ,离心率为2的双曲线的方程 ( ).A.2211648x y-= B.221927x y-=C.2211648x y-=或221927x y-= D. 以上都不对1.双曲线的渐近线方程为20x y±= ,焦距为10 ,这双曲线的方程为_______________.3.方程22141x yk k+=--表示焦点在x轴上的双曲线 ,那么k的取值范围.4.双曲线的焦点在x轴上 ,方程为22221x ya b-= ,两顶点的距离为8 ,一渐近线上有点(8,6)A ,试求此双曲线的方程.学习反思:本节课我学到了什么?本节课我的学习效率如何?本节课还有哪些我没学懂?。
高中数学教案选修2-2《第2章 推理与证明》
目标定位:1.推理与证明是数学的基本思维过程,也是人们学习和生活中经常使用的思维方法.和过去的教学内容(例如函数)相比,在本章中是把基本的数学(思维)方法(而不是某个数学对象)作为正面研究对象的.因此,本章的学习过程,是中学生第一次对数学活动过程的正面的系统的审视——这就是我们对本章教学活动的定位.2.推理方法与证明方法是从思维活动中抽象出来的,是由数学思维过程凝缩而成的“对象”.我们不能离开数学思维活动来谈论数学思维方法,不能满足于把数学方法看成是既定的程序、步骤和规则,不能满足于对方法做静态的逻辑的分析(这正是过去传统的教材中所强调的),而应当从(数学)活动本身,特别是从数学活动的过程来考察推理方法和证明方法建构的过程,以及这些方法是如何被运用到数学活动中成为“活”的方法的?应当着重于体会方法的特点、联系和作用(这正是传统教材中忽略的,而在苏教版教材中特别强调的).这样一来,考察和研究数学思维过程就应该成为本模块学习的出发点和归宿了.3.与数学知识(如概念)的建构不同,在数学方法建构的过程中,数学思维活动过程本身就是被考察的对象并提供了抽象的原型.例如,在本章的引言中,教材就是通过对“摸球中的思维过程”的分析,抽象出推理、证明方法的.在这里,摸球中的思维过程本身就成为抽象的原型!正是这样的特点,决定了在有关“方法”的教学必须建立在对数学思维活动做“正面”考察的基础之上.4.课程标准明确指出:设置本模块的目的是让学生结合已学过的数学实例和生活中的实例,对合情推理、演绎推理以及数学证明的方法进行概括与总结,进一步体会合情推理、演绎推理以及两者之间的联系与差异;体会数学证明的特点,了解数学证明的基本方法,感受逻辑证明在数学以及日常生活中的作用,养成言之有理、论证有据的习惯,提高数学思维能力,形成对数学较为完整的认识.课程标准的上述要求.决定了本章中对思维过程的考察与分析应该是系统的,因为只有进行系统的考察才能让学生形成对数学较为完整的认识,才能通过对各种方法的比较,掌握各种方法的特点、作用以及它们之间的关系,更好地把它们运用到数学活动中去.5.本章具体的教学目标是:(1)结合已经学过的数学实例和生活中的实例,了解合情推理的含意,能利用归纳和类比等进行简单的推理,体会并认识合情推理在数学发现中的作用.(2)结合已经学过的数学实例和生活中的实例,了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单的推理.(6)通过对实例的介绍(如欧基里德《几何原本》、马克思《资本论》、杰弗逊《独立宣言》、牛顿三定律),体会公理化思想.(7)了解计算机在自动推理领域和数学证明中的作用.教材解读:1.根据对本章教学的基本定位,为了帮助学生对数学思维过程作系统的正面的考察,教材做了如下的工作:(1)教科书为学习活动设置了数学探索发现活动的大背景,大框架.(注意引言的作用),在分别阐述了归纳、类比、演绎等推理方法以后,又专门设置了一节“推理案例赏析”所有这些,都为对思维过程进行系统的考察提供了条件.(2)教科书充分地利用案例,通过案例(这些案例大多是从学生学习过的材料中选取的)提供数学思维活动的素材,把案例当成学习活动的出发点和载体,把案例分析看成是教学活动的主要形式.因为惟有如此,才能使学生进行深刻的思考(反思),对思维活动过程做“正面的”审视.(3)教科书注意对思维活动过程做适度的形式化概括.因为惟有如此,才能把对思维过程分析的成果固定下来,形成数学方法并运用到思维活动中去.以上各点可以从第一节〈合情推理与演绎推理〉的展开框图中看出:2.和其他模块相比,在本章中,案例分析更具有举足轻重的作用.因为除了案例分析,我们实在找不到更好的方法为学生提供“数学活动过程”,让学生参与到数学活动中来体验数学方法发现的过程,看到活生生的数学方法.因此,案例分析应该成为本模块教学的出发点和载体,为考察和分析数学活动过程提供素材和讨论的平台,同时,案例分析也应该是教学活动的主要手段.教学方法与教学建议:1.在教学中不仅要重视对推理方法和证明方法的特点进行(静态)分析,更要重视这些方法被抽象出来的过程,通过对数学活动过程的分析来认识它们的特点和作用(即对它们做动态的考察).从而正确地理解和运用这些方法,达到从整体上提高数学思维能力的目的.2.本章所学习的大部分内容如:合情推理、演绎推理、证明方法(包括反证法)都是学生熟悉的,他们早就在自觉或不自觉地把这些方法运用于学习与生活当中了.在教学中要注意从学生已学过的数学实例和生活中的实例出发,唤起学生的经验,找到知识的生长点,这是学生学习和理解本章内容的基础.3.在教学中,要通过对学生真实的思维过程和数学发现活动的典型案例的分析,让学生形成反思的意识,养成反思的良好习惯.4.教学的重点应该是对基本的数学方法的理解和运用.首先是对“推理”和“证明”在数学发现活动中的作用.这就要求学生从整体上认识本章所介绍的数学方法.如在“合情推理和演绎推理”的教学中,应通过实例,引导学生运用合情推理去探索、猜测一些数学结论,并用演绎推理确认所得结论的正确性,或者用反例推翻错误的猜想.教学的重点在于通过具体实例理解合情推理与演绎推理(它们的作用、特点、关系),理解数学发现过程,而不必追求对概念的抽象表述.在证明方法的教学中,应通过实例,引导学生认识各种证明方法的特点,掌握这些方法的思考过程,体会证明的必要性,而对证明的技巧性不宜作过高的要求.5.数学的推理方法和证明方法,不仅运用在数学中,而且在生活中的其它领域都有广泛的应用.在教学中要引用生活中和其它学科中的例子,让学生体会数学和生活的联系,体会数学应用的广泛性,认识数学的文化价值.6.公理化思想和机器证明体现了数学的文化价值.在教学中要让学生体会公理化思想中蕴涵的理性精神,和机器化证明中的算法思想.下面是具体的教学建议,供参考.引言1.华罗庚教授“摸球”的例子,为推理与证明的学习提供了一个大的背景.它具有丰富的教学意义.在教学中不仅应该让学生体会到,“推理”与“证明”是构成探索活动的两个最基本的环节,让学生体会到,探索活动是一个不断的“提出猜想——验证猜想——再提出猜想——再验证猜想”的过程,而且应当让学生体会到永不休止的探索精神正是理性精神的表现!而数学家就是通过不断地提出猜想、证明猜想来进行探索活动的!2.引言中提出的两个问题(我们怎样进行推理?我们怎样验证(证明)结论?)是本大节的中心问题.本节的教学内容就是依据它展开的.2.1 合情推理与演绎推理1.合情推理和演绎推理是数学活动中常用的两种推理形式,它们具有不同的形式、特点和作用.本节先分别研究它们的特点和作用,然后再通过对具体的数学发现过程的分析,进一步体会它们之间的联系,在具体的数学思维过程中感受它们的作用.2.演绎、归纳、类比是学生熟悉的推理方式.教材列举了3个例子,开始了对这些推理形式的考察.教学中可以让学生举出更多的例子.3.通过揭示三个推理案例的共同点概括出“推理”的概念.并根据它们在结构上的不同特点,进行分类研究,这个过程虽然简单,却体现了案例分析是本章教学的主要形式的特点.2.1.1 合情推理1.合情推理是由G·波利亚提出的概念.他通过对数学发现活动的分析注意到数学活动是由“猜想”和“论证”两个环节构成的,相应地在这两个不同的环节里使用着不同的思维方法,即合情推理与论证推理(教科书中称为演绎推理).G·波利亚并没有为合情推理下定义.实际上,在教学中,只要让学生把合情推理看成是提出猜想的推理而演绎推理是可以给出证明的推理就行了.据此,教科书按照G·波利亚的思路,编写了引言,突出了对探索活动的分析,突出了“猜想”和“证明”两个重要的思维环节,而对合情推理的定义作淡化处理(只在阅读材料中提了一下)(《课程标准》给合情推理作了如下定义:合情推理是根据已有的事实和正确的结论(包括定义、公理、定理等)、实验和实践的结果,以及个人的经验和直觉等推测某地结果的推理过程.)2.归纳、类比是合情推理的两种常用的形式,除此以外,合情推理还有其他的多种形式,如:联想、想象、直觉等等.2.1.1.1 归纳推理1.归纳推理是学生熟悉的推理方式.和过去不同,在本节中,我们专注于推理的形式,而不关注推理的内容,即专门对推理的形式进行考察,考察的重点则是归纳推理的特点和它的作用.2.归纳推理的一般模式为:S具有P,1S具有P,2……S n具有P(S,S2,…,S n是A类事物的对象)1——————————————————————————所以,A类事物具有P.教学中可以介绍给学生.3.“思考”要求列举更多的有关归纳推理的例子,下面的例子可供参考.(1)观察:1 = 12,1 + 3 = 22,1 + 3 + 5 = 32,1 + 3 + 5 +7 = 42,由此猜想:1 + 3 + 5 + 7 + …+ (2n1) = n2.(2)1640年,费马在给友人的信中谈到:220+ 1 = 3,221+ 1 = 5,222+ 1 = 17,223+ 1 = 257,224+ 1 = 65 537都是素数,由此,他猜想:任何形如22n+ 1(n N)的数(通常称为费马数,记作F n)都是素数.此后,一直未有人怀疑过这个结论.直到1732年,欧拉发现F= 225+ 1 = 4 294 967 297 = 641 6 700 417并不是素数,才推翻费马的猜5想.此例还说明,在归纳推理中,根据同一个前提,可以推出不同的结论:当n > 1时,F n的末位数字是7(猜想).2.要让学生体会到归纳不仅是一种方法,而且体现了一种态度.欧拉说:把归纳看成是一种机会,“以便证明它或推翻它”,这就是我们对待归纳的态度,而归纳的价值就在于“在这两种情况之中我们都会学到一些有用的东西.”可以看出,归纳的态度就是探索的态度,这一点在华罗庚的“摸球”游戏中也得到了充分的体现.要让学生体会到,探索活动是在猜想的推动下进行的,没有猜想就没有探索!而归纳的价值就在于它是提出猜想的一种方法!3.在归纳推理中,根据同一个的前提,往往可以推出不同的结论.例如从例4中的推理前提出发,也可以得到当n>1时,F n的末位数字是7的结论(猜想).4.完全归纳法(和数学归纳法类似)实质上是一种演绎推理,它是一种必然性推理,是数学证明的工具,因此它不属于合情推理.2.1.1.2 类比推理1.类比推理是学生熟悉的推理方式.和过去不同,在本节中,我们专注于推理的形式,而不关注推理的内容,即专门对推理的形式进行考察.2.类比推理的一般模式为:A类事物具有性质a,b,c,d,B类事物具有性质a',b',c',(a,b,c与a',b',c'相似或相同)————————————————所以,B类事物可能具有性质d'.教学中可以介绍给学生.3.例1是根据等式的性质类比不等式的性质.4.例2可以看成是系统间的类比.用现代数学的角度来看,类比就是两个具有同构关系的模型间的推理.数学(科学)发现活动中的类比绝大多数都是这类类比.在教学中要注意对类比过程的分析.5.类比可以看成是从已知的相似性,推断未知的相似性的推理.在教学中要引导学生对类比的过程进行分析,弄清在推理中究竟是从哪些已知的“相似性”推出什么样的未知的“相似性”的.6.在运用类比推理时,首先要找出两类对象之间可以确切表述的相似性(或一致性);然后,再用一类对象的性质去推测另一类对象的性质,从而得出一个猜想;最后,检验这个猜想.在教学中不要满足于对对象相似性的模糊认识,要坚持把它们的相似性用语言确切地表述出来.只有这样,才能把类比和“比喻”区别开来.2.1.2 演绎推理1.演绎推理是一种重要的推理形式,通过数学学习,学生已经在广泛地使用它,在教学中,要让学生体会到演绎推理是严格按照逻辑法则进行的推理,是必然性推理的特点.2.三段论是演绎推理的主要形式.三段论有多种格式,教科书介绍了其中常用的一种,其用意在于让学生体会到演绎推理是一种形式化程度相当高的推理,而不是正面讲“三段论”,因此,在教学中不必拓展补充.3.除了三段论以外,演绎推理还有直接推理,关系推理、联言推理、假言推理、选言推理等多种形式.4.三段论也有多种形式,三段论的依据是不言自明的三段论公理:一类事物的全部是什么或不是什么,那么这类事物的部分也是什么或不是什么.对此教科书中用集合论的语言和图形作了说明,其目的是帮助学生理解三段论.(教学中不必提出三段论公理)5.三段论推理在数学中有重要的应用,特别是在理论初建或概念性质运用的初期.但是数学推理过程不全是三段论组合,直接用三段论推理的并不多,有些数学证明过程(如教科书中例2),虽然可以归结为三段论的组合,但却太为繁琐了,所以并不实用.6.数学并不等同于逻辑,它已独自发展几千年,尤其是它的符号系统,使得它有自身的一套简单的推理形式或规则,尽管它能用三段论解释,但大可不必去追溯它的三段论本源.因而在数学中,直接选定了若干演绎推理的规则.如:“如果q P ⇒,P 真,则q 真”、“如果b c ,,a b ⇒⇒,则c a ⇒”(三段论的“数学形式”)等等.(如课本中例2的证明就使用了这些规则)应该告诉学生,数学中的运算也是演绎推理的一种形式.7.在数学中学习演绎推理,并不等同于学习形式逻辑或数理逻辑,课程标准规定,本小节的学习目标是,“体会演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单的推理”,相信注意到这些,就可以理解教科书的编写意图,并掌握教学的分寸了.8.在叙述演绎推理的特点时,要和归纳、类比的特点对照,让学生理解它们是两类不同的推理.9.教科书中说“演绎推理是一种收敛性的思维方法,它较少创造性”,这并不是说,演绎推理就完全没有发现功能,更不是说演绎推理在数学发现活动中没有作用.为了让学生全面认识演绎推理在发现活动中的作用,教科书提供了阅读材料:“海王星的发现和探索性演绎法”,这个材料对全面准确地理解演绎推理在探索活动中的作用是很有帮助的.2.1.3 推理案例赏析1.《推理案例赏析》是推理方法的综合应用,是对推理方法更深层次的考察.这样,教科书就为推理的教学提供了一个“总——分——总”的结构,而本小节正是后一个“总”.它引导学生在前面学习的基础上,对各种推理方法做综合的动态的考察,帮助学生体会不同推理方法的特点和联系,感受它们在数学思维过程中的作用.2.在教学中,要注意对思维过程的分析.课本中提供的思维过程只是几种典型的解决问题的思路.面对着这些问题,学生可能会有更多的想法,应该鼓励学生谈谈自己的想法,并对课本中的思考过程做出评价.3.关于例1的教学.(1)“提出问题”是数学发现活动中重要的环节.教学中要注意分析提出问题的过程.在例1和例2中,都是通过类比提出研究课题的.(2)课本中的思路1是“归纳的方案”,总的说,它是通过归纳提出猜想的.但是应该注意到,作为归纳基础的“表”中的每个数据都是由运算提供的,也就是说,演绎提供了归纳的基础.所以说:在数学发现活动中,演绎起到了类似“实验”的作用,在这里演绎为归纳提供了前提.(3)在“归纳的方案”中,解题者原本希望从表2-1-5中归纳出一般结论,可是却失败了,但是正是失败引导他尝试计算S1(n)和S2(n)的比,找到了通向成功的路.要让学生体会到发现活动都是具有尝试的性质的,失败是经常会遇到的,所以常说“失败是成功之母”.通过教学要让学生体会到,对思维过程进行调控的重要性.对此,在“思路2”和例2中,都有体现.教学中,要让学生体会到发现过程是一个曲折的艰苦的过程,认识到思维调控的重要性.(4)尝试计算S1(n)和S2(n)的比,是导致发现的关键,这个念头是由“联想”激发的.联想也是合情推理的一种方法.(5)思路2是一个“演绎的方案”,但这并不是说,在这个方案中没有使用合情推理的方法,相反地,应该说合情推理在这个方案中同样起了关键的作用.比如,这个方案中的“初始念头”——“尝试用直接相加的方法求出自然数的平方和”就是由合情推理提供的.(6)在思路2的教学中,设置了“(2)从失败中汲取有用的信息,进行新的尝试”的环节,是为了让学生体会到思维调控的重要性,注意对思维过程的分析,进而养成反思的习惯.(7)“既然能用上面的方法求出S1(n),那么我们也应该可以用类似的方法求出S2(n)”,这也是一个猜想,它是由类比得到的.4.关于例2的教学.(1)例2通过具体的问题对类比推理的方法做了更深入的介绍.类比在数学发现活动中具有十分重要的作用,应该让学生学会自觉地科学地把类比方法运用到发现活动中去.(2)把棱台和梯形类比,开始只是模糊的念头,通过分析,清晰地认识到它们之间的“相似性”,这时才会有科学的“类比推理”.因此,“确定类比对象”和“对类比对象的进一步分析”都是重要的思维环节,是进行类比推理的前提.学生在使用类比时,经常忽略这些环节.(3)验证猜想的过程也是对猜想做调整的过程.在这个过程中,合情推理仍然发挥着重要的作用.教学中请注意合情推理在“验证猜想”中的作用.(4)从美感出发做出的判断,可以称为审美推断.本例在“验证猜想”的环节中,使用了这种方法.审美推断也是一种合情推理的方法,在科学发现活动中具有重要的价值.通过案例的分析,应该让学生体会到审美在发现活动中的作用.(5)在公式(猜想)的调整过程中,实际上使用的是“探索性演绎法”(即在猜想的基础上进行的演绎推理),这可以让学生更好地体会到“演绎推理”在数学发现活动中所具有的类似于“实验”的功能.5.关于实习作业.学生可以通过查找资料来完成实习作业.例如可以引用本书提到的数学史中的例子:如欧拉公式、哥德巴赫猜想等,也可以从教科书中选取案例如:“正弦定理的发现”、“余弦定理的发现”、“和差化积公式的推导”等等.通过反思,对自己的思维活动进行分析(如你是怎样解决某个问题的).6.在思考以及实习作业中,教材反复提出了相同的问题,其用意是希望为学生分析思维活动时提供一个反思的框架.2.2 直接证明与间接证明教学的重点是让学生了解直接证法与间接证法的特点,知道证明的一般步骤,能使用它们证明问题,在教学中不要拘泥于“概念”,在“概念”上下功夫.2.1 直接证明1.课本中选用的两个例子都是学生熟知的,在《数学(必修5)》的基本不等式中就采用了这两个证明.现在教科书把它用作讨论综合法和分析法的素材,是为了让学生能集中精力关注这两种证明方法形式结构上的特点和区别,进而展开对证明方法的研究.2.一般地,分析法和综合法是两种常见的思维方法,人们利用它们来寻求证明问题的思路.在教科书中是把它们看成两种证明方法的(指呈现出来的证明过程).思维方法和证明方法当然有微妙的差别,但是如果把“证明”看成是思维过程,这样做也就没有什么不可以.3.综合法,从条件出发,“由因导果”,分析法,紧抓证题目标,“执果索因”.在实际的解题活动中,总是把两者结合起来使用的.2.2 间接证明1.反证法是一种重要的间接证法(同一法也是一种重要的间接证法).在教学中应先让学生弄清直接证明和间接证明的区别,然后再转入反证法.2.学生在学习立体几何初步时,已经使用反证法,因此他们是有经验的,但当时并没有正面介绍反证法.3.反证法的逻辑依据是矛盾律和排中律.反证法的实质在于:若肯定定理的假设而否定其结论,就会导致矛盾.具体地说,反证法不直接证明命题“若p则q”,而是从原题的反论题“既p又┐q”入手,由p与┐q合乎逻辑地推出一个矛盾结果;根据矛盾律,两个互相矛盾的判断,不能同真,必有一假,断定反论题“既p又┐q”为假;进而再根据排中律,两个互相矛盾的判断,不能同假,必有一真.由此肯定命题“若p则q”为真.虽然学生没有学过排中律和矛盾律,但是由于这两个定律的“准公理性”,学生还是能理解反证法的思想的,因而在教学中没有必要提出排中律和矛盾律.2.3 公理化思想1.公理化思想体现了数学中的理性精神和求真意识.为了确保命题真实性,数学对命题提出了演绎证明的要求,这种要求直接导致公理化产生.教学中要让学生体会到这一点.2.公理是“公认正确而不需证明的命题”,是“证明其它一切命题的基础”,是“选定”和“设置”的,都体现了现代公理法的思想,在教学中不要过多地强调公理是“经过长期的实践证明的”说法.3.可以建议有兴趣的学生阅读《数学史初步》中有关非欧几何的材料.教学案例:归纳推理执教:高建国(扬州大学附属中学)点评:张乃达(江苏省扬州中学)1.概念、技能、能力、态度我们可以从不同的层面来看归纳.第一种是把它看成一个概念,这要弄清什么是推理?什么是归纳推理?这是从知识层面来看归纳的;第二种是把归纳看成是一种方法,这就要弄清怎样进行归纳?归纳有哪几步?第一步怎么做?第二步又怎么做?等等,这是从技能层面来看归纳的.第三种是把归纳看成是一种能力,提高学生的归纳能力——归纳的能力实质上就是分析,分析到位了,思维能力提高了,归纳才能得到有价值的东西.这是从能力的层面看归纳的.长期以来,我们的教师大都习惯于从上面三个层次看归纳,并以此确定本节课的教学内容和重点,这正是习惯于从知识与能力的层面看待数学教育的体现!其实,如果从文化的视角来分析,就可以看到归纳还可以被看成是一种态度,一种对待事物的态度.归纳的态度实际上就是探究的态度,它总是用探究者的眼光来看世界——看到某些现象,总想从中归纳出某种规律!促使哥德巴赫提出那个著名的猜想的正是这种态度,向中学生介绍哥德巴赫猜想的目的也正是让他们学习这种态度!这种态度正是理性精神的表现!也是这节课中最有教育价值的东西!通过上面的分析,对这节课应该怎么上就清楚了.通过这节课当然应该让学生知道什么是推理?什么是归纳?怎样进行归纳?但是这并不是重点,其实学生早就在使用归纳的方法了,现在只要正面的小结一下就可以了!提高归纳的能力也不是这节课能够实现的目标,归纳的能力,是思维能力的体现,它不能独立于思维能力之外,也不是通过这节课就能实现的目标!这节课的重点应该是归纳态度的培养和探究精神的激发!在本节课中,执教老师对课的定位是比较准确的,较好地处理了概念、技能、能力和态度的关系.渗透了归纳态度的培养,探求欲望的激发,让学生体会到,在我们的周围,到处都存在着值得探索的问题,到处都可以运用归纳的方法来提出猜想,进而展开探索的活动,这对学生理性精神的形成是很有意义的.2.用数学(家)的眼光看世界。
湖南省邵阳市隆回县万和实验学校高中数学教案选修2-2第二章2.1合情推理与演绎推理1
教学过程:一、新课引入:1. 哥德巴赫猜想:观察4=2+2, 6=3+3, 8=5+3, 10=5+5, 12=5+7, 12=7+7, 16=13+3, 18=11+7, 20=13+7, ……, 50=13+37, ……, 100=3+97,猜测:任一偶数(除去2,它本身是一素数)可以表示成两个素数之和. 1742年写信提出,欧拉及以后的数学家无人能解,成为数学史上举世闻名的猜想. 1973年,我国数学家陈景润,证明了充分大的偶数可表示为一个素数与至多两个素数乘积之和,数学上把它称为“1+2”.2. 费马猜想:法国业余数学家之王—费马(1601-1665)在1640年通过对,,,,的观察,发现其结果都是素数,于是提出猜想:对所有的自然数,任何形如的数都是素数. 后来瑞士数学家欧拉,发现不是素数,推翻费马猜想.3. 四色猜想:1852年,毕业于英国伦敦大学的弗南西斯.格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“每幅地图都可以用四种颜色着色,使得有共同边界的国家着上不同的颜色.”,四色猜想成了世界数学界关注的问题.1976年,美国数学家阿佩尔与哈肯在美国伊利诺斯大学的两台不同的电子计算机上,用1200个小时,作了100亿逻辑判断,完成证明.二、讲授新课:1. 教学概念:①概念:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理,称为归纳推理. 简言之,归纳推理是由部分到整体、由个别到一般的推理.②归纳练习:(i)由铜、铁、铝、金、银能导电,能归纳出什么结论?(ii)由直角三角形、等腰三角形、等边三角形内角和180度,能归纳出什么结论?(iii)观察等式:,能得出怎样的结论?③讨论:(i)统计学中,从总体中抽取样本,然后用样本估计总体,是否属归纳推理?(ii)归纳推理有何作用?(发现新事实,获得新结论,是做出科学发现的重要手段)(iii)归纳推理的结果是否正确?(不一定)2. 教学例题:①出示例题:已知数列的第1项,且,试归纳出通项公式.(分析思路:试值n=1,2,3,4 →猜想→如何证明:将递推公式变形,再构造新数列)②思考:证得某命题在n=n时成立;又假设在n=k时命题成立,再证明n=k+1时命题也成立. 由这两步,可以归纳出什么结论?(目的:渗透数学归纳法原理,即基础、递推关系)③练习:已知,推测的表达式.3. 小结:①归纳推理的药店:由部分到整体、由个别到一般;②典型例子:哥德巴赫猜想的提出;数列通项公式的归纳.三、巩固练习:1. 练习:教材P871、2题.2. 作业:教材P93习题A组1、2、3题.第二课时 2.1.1 合情推理(二)教学要求:结合已学过的数学实例,了解合情推理的含义,能利用归纳和类比等进行简单的推理,体会并认识合情推理在数学发现中的作用.教学重点:了解合情推理的含义,能利用归纳和类比等进行简单的推理.教学难点:用归纳和类比进行推理,作出猜想.教学过程:一、复习准备:1. 练习:已知,考察下列式子:;;. 我们可以归纳出,对也成立的类似不等式为 .2. 猜想数列的通项公式是 .3. 导入:鲁班由带齿的草发明锯;人类仿照鱼类外形及沉浮原理,发明潜水艇;地球上有生命,火星与地球有许多相似点,如都是绕太阳运行、扰轴自转的行星,有大气层,也有季节变更,温度也适合生物生存,科学家猜测:火星上有生命存在. 以上都是类比思维,即类比推理.二、讲授新课:1. 教学概念:①概念:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理. 简言之,类比推理是由特殊到特殊的推理.②类比练习:(i)圆有切线,切线与圆只交于一点,切点到圆心的距离等于半径. 由此结论如何类比到球体?(ii)平面内不共线的三点确定一个圆,由此结论如何类比得到空间的结论?(iii)由圆的一些特征,类比得到球体的相应特征. (教材P81 探究填表)小结:平面→空间,圆→球,线→面.③讨论:以平面向量为基础学习空间向量,试举例其中的一些类比思维.2. 教学例题:①出示例1:类比实数的加法和乘法,列出它们相似的运算性质. (得到如下表格).思维:直角三角形中,,3条边的长度,2条直角边和1条斜边;→3个面两两垂直的四面体中,,4个面的面积和3个“直角面”和1个“斜面”. →拓展:三角形到四面体的类比.3. 小结:归纳推理和类比推理都是根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理,统称为合情推理.三、巩固练习:1. 练习:教材P873题. 2. 探究:教材P84例4 3.作业:P934、5题.第三课时 2.1.2 演绎推理教学要求:结合已学过的数学实例和生活中的实例,体会演绎推理的重要性,掌握演绎推理的基本方法,并能运用它们进行一些简单的推理。
湖南省邵阳市隆回二中高中数学 2.2.2 椭圆及其简单几何性质(1)导学案 理 新人教A版选修21
【学习目标】1.根据椭圆的方程研究曲线的几何性质,并正确地画出它的图形;2.根据几何条件求出曲线方程,并利用曲线的方程研究它的性质,画图.【自主学习】(认真自学课本P43-P46)问题1:椭圆的标准方程22221x ya b+=(0)a b>>,它有哪些几何性质呢?图形:范围:x:y:对称性:椭圆关于轴、轴和都对称;顶点:(),(),(),();长轴,其长为;短轴,其长为;离心率:刻画椭圆程度.椭圆的焦距与长轴长的比ca称为离心率,记cea=,且01e<<.问题2:类比问题1,回答椭圆221169y x+=的几何性质。
【合作探究】例1.(教材P46例4)求椭圆221625400x y+=的长轴和短轴的长、离心率、焦点和顶点的坐标.变式:若椭圆是22981x y+=呢?小结:①先化为标准方程,找出,a b,求出c;②注意焦点所在坐标轴.【目标检测】1.求适合下列条件的椭圆的标准方程:⑴焦点在x 轴上,6a =,13e =; ⑵焦点在y 轴上,3c =,35e =; ⑶经过点(3,0)P -,(0,2)Q -;⑷长轴长等到于20,离心率等于35.2.若椭圆2215x y m+=的离心率105e =,则m 的值是 ( ). A .3 B .3或253C .15D .15或5153.短轴长为5,离心率23e =的椭圆两焦点为12,F F ,过1F 作直线交椭圆于,A B 两点,则2ABF ∆的周长为 ( ). A .3 B .6 C .12 D .24【作业布置】 任课教师自定学习反思:本节课我学到了什么?本节课我的学习效率如何?本节课还有哪些我没学懂?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、复习准备:
1. 讨论:三枚正面朝上的硬币,每次翻转2枚,你能使三枚反面都朝上吗?(原因:偶次)
2. 提出问题:平面几何中,我们知道这样一个命题:“过在同一直线上的三点A、B、C不能作圆”.讨论如何证明这个命题?
3. 给出证法:先假设可以作一个⊙O过A、B、C三点,
则O在AB的中垂线l上,O又在B C的中垂线m上,
即O是l与m的交点。
但∵A、B、C共线,∴l∥m(矛盾)
∴过在同一直线上的三点A、B、C不能作圆.
二、讲授新课:
1. 教学反证法概念及步骤:
①练习:仿照以上方法,证明:如果a>b>0,那么
②提出反证法:一般地,假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立.
证明基本步骤:假设原命题的结论不成立→从假设出发,经推理论证得到矛盾→矛盾的原因是假设不成立,从而原命题的结论成立
应用关键:在正确的推理下得出矛盾(与已知条件矛盾,或与假设矛盾,或与定义、公理、定理、事实矛盾等).
方法实质:反证法是利用互为逆否的命题具有等价性来进行证明的,即由一个命题与其逆否命题同真假,通过证明一个命题的逆否命题的正确,从而肯定原命题真实.
注:结合准备题分析以上知识.
2. 教学例题:
①出示例1:求证圆的两条不是直径的相交弦不能互相平分.
分析:如何否定结论?→如何从假设出发进行推理?→得到怎样的矛盾?
与教材不同的证法:反设AB、CD被P平分,∵P不是圆心,连结O P,
则由垂径定理:O P⊥AB,O P⊥CD,则过P有两条直线与OP垂直(矛盾),∴不被P平分.
②出示例2:求证是无理数. (同上分析→板演证明,提示:有理数可表示为)
证:假设是有理数,则不妨设(m,n为互质正整数),
从而:,,可见m是3的倍数.
设m=3p(p是正整数),则,可见n也是3的倍数.
这样,m, n就不是互质的正整数(矛盾). ∴不可能,∴是无理数.
③练习:如果为无理数,求证是无理数.
提示:假设为有理数,则可表示为(为整数),即.
由,则也是有理数,这与已知矛盾. ∴是无理数.
3. 小结:反证法是从否定结论入手,经过一系列的逻辑推理,导出矛盾,从而说明原结论正确. 注意证明步骤和适应范围(“至多”、“至少”、“均是”、“不都”、“任何”、“唯一”等特征的问题)
三、巩固练习:1. 练习:教材P541、2题 2. 作业:教材P54A组3题.。