十堰市2008届高三上学期数学考试试题
高考卷,08,普通高等学校招生全国统一考试数学(湖北卷·文科)(附答案,完全word版)

高考卷,08,普通高等学校招生全国统一考试数学(湖北卷·文科)(附答案,完全word版)2008年普通高等学校招生全国统一考试(湖北卷)数学(文史类)本试卷共4页,满分150分,考试时间120分钟. ★祝考试顺利★注间事项:1. 答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上指定位置 2. 选择题每小题选出答案后,用2B铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,答在试题卷上无效. 3.填空题和解答题用0.5毫米的黑色墨水签字笔答在答题卡上每题对应的答题区域内,答在试题卷上无效. 4.考试结束,请将本试题卷和答题卡一并上交. 一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设A. B.0 C.-3 D.-11 2. 的展开式中常数项是 A.210 B. C.D.-105 3.若集合 A. “”是“”的充分条件但不是必要条件 B. “”是“”的必要条件但不是充分条件 C. “”是“”的充要条件 D. “”既不是“”的充分条件也不是“”的必要条件 4.用与球必距离为1的平面去截面面积为,则球的体积为 A. B. C. D. 5.在平面直角坐标系中,满足不等式组的点的集合用阴影表示为下列图中的 6.已知在R上是奇函数,且 A.-2 B.2 C.-98 D.98 7.将函数的图象F向右平移个单位长度得到图象F′,若F′的一条对称轴是直线则的一个可能取值是 A. B. C. D. 8. 函数的定义域为 A. B. C. D. 9.从5名男生和5名女生中选3人组队参加某集体项目的比赛,其中至少有一名女生入选的组队方案数为A.100 B.110 C.120 D.180 10.如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点P变轨进入以月球球心F为一个焦点的椭圆轨道I绕月飞行,之后卫星在P点第二次变轨进入仍以F为一个焦点的椭圆轨道Ⅱ绕月飞行,最终卫星在P点第三次变轨进入以F为圆形轨道Ⅲ绕月飞行,若用和分别表示椭圆轨道I和Ⅱ的焦距,用和分别表示椭圆轨道I和Ⅱ的长轴的长,给出下列式子:①②③④其中正确式子的序号是 A.①③ B.②③ C.①④ D.②④二、填空题:本大题共5小题,每小题5分,共25分,把答案填在答题卡相应位置上. 11.一个公司共有1 000名员工,下设一些部门,要采用分层抽样方法从全体员工中抽取一个容量为50的样本,已知某部门有200名员工,那么从该部门抽取的工人数是 . 12.在△ABC中,a,b,c分别是角A,B,C所对的边,已知则 A= . 13.方程的实数解的个数为 . 14.明天上午李明要参加奥运志愿者活动,为了准时起床,他用甲、乙两个闹钟叫醒自己,假设甲闹钟准时响的概率是0.80,乙闹钟准时响的概率是0.90,则两个闹钟至少有一准时响的概率是 . 15.圆的圆心坐标为,和圆C关于直线对称的圆C′的普通方程是 . 三、解答题:本大题共6分小题,共75分,解答应写出文字说明,证明过程或演算步骤. 16.(本小题满12分)已知函数(Ⅰ)将函数化简成的形式,并指出的周期;(Ⅱ)求函数上的最大值和最小值 17.(本小题满分12分)已知函数(m为常数,且m>0)有极大值9. (Ⅰ)求m的值;(Ⅱ)若斜率为-5的直线是曲线的切线,求此直线方程. 18.(本小题满分12分)如图,在直三棱柱中,平面侧面(Ⅰ)求证:(Ⅱ)若,直线AC与平面所成的角为,二面角 19.(本不题满分12分)如图,要设计一张矩形广告,该广告含有大小相等的左右两个矩形栏目(即图中阴影部分),这两栏的面积之和为18000cm2,四周空白的宽度为10cm,两栏之间的中缝空白的宽度为5cm,怎样确定广告的高与宽的尺寸(单位:cm),能使矩形广告面积最小? 20(本小题满分13分)已知双曲线的两个焦点为的曲线C上. (Ⅰ)求双曲线C的方程;(Ⅱ)记O为坐标原点,过点Q (0,2)的直线l与双曲线C相交于不同的两点E、F,若△OEF的面积为求直线l的方程 21.(本小题满分14分)已知数列,其中为实数,为正整数. (Ⅰ)证明:当(Ⅱ)设为数列的前n项和,是否存在实数,使得对任意正整数n,都有若存在,求的取值范围;若不存在,说明理由. 2008年普通高等学校招生全国统一考试(湖北卷)数学(文史类)试题参考答案一、选择题:本题考查基础知识和基本运算.第小题5分,满分50分. 1.C 2.B 3.A 4.D 5.C 6.A 7.A 8.D 9.B 10.B 二、填空题:本题考查基础知识和基本运算,第小题5分,满分25分. 11.1012.30°(或)13.2 14.0.98 15.(3,-2),(x+2)2+(y-3)2=16(或x2+y2+4x-6y-3=0)三、解答题:本题共6小题,共75分. 16.本小题主要考查三角函数的恒等变换、周期性、单调性和最值等基本知识和运算能力. (满分12分)解:(Ⅰ)f(x)=sinx+. 故f(x)的周期为2kπ{k∈Z且k≠0}. (Ⅱ)由π≤x≤π,得.因为f(x)=在[]上是减函数,在[]上是增函数. 故当x=时,f(x)有最小值-;而f(π)=-2,f(π)=-<-2,所以当x=π时,f(x)有最大值-2. 17.本小题主要考查应用导数研究函数性质的方法和基本运算能力.(满分12分)解:(Ⅰ) f’(x)=3x2+2mx-m2=(x+m)(3x-m)=0,则x=-m或x=m, 当x变化时,f’(x)与f(x)的变化情况如下表:x (-∞,-m) -m (-m,) (,+∞) f’(x) + 0 - 0 + f (x) 极大值极小值从而可知,当x=-m时,函数f(x)取得极大值9,即f(-m)=-m3+m3+m3+1=9,∴m=2. (Ⅱ)由(Ⅰ)知,f(x)=x3+2x2-4x+1, 依题意知f’(x)=3x2+4x-4=-5,∴x=-1或x=-. 又f(-1)=6,f(-)=,所以切线方程为y-6=-5(x+1),或y-=-5(x+),即5x+y-1=0,或135x+27y -23=0. 18.本小题主要考查线面关系、直线与平面所成角、二面角等有关知识,考查空间想象能力和推理论证能力.(满分12分)(Ⅰ)证明:如右图,过点A在平面A1ABB1内作AD⊥A1B于D,则由平面A1BC ⊥侧面A1ABB1,且平面A1BC∩侧面A1ABB1=A1B,得AD⊥平面 A1BC.又BC平面A1BC 所以AD⊥BC. 因为三棱柱ABC-A1B1C1是直三棱柱, 则AA1⊥底面ABC,所以AA1⊥BC. 又AA1∩AD=A,从而BC⊥侧面A1ABB1, 又AB侧面A1ABB1,故AB⊥BC. (Ⅱ)证法1:连接CD,则由(Ⅰ)知∠ACD就是直线AC与平面A1BC所成的角,∠ABA1就是二面角A1-BC-A的颊角,即∠ACD=θ,∠ABA1=j. 于是在RtΔADC中,sinθ=,在RtΔADA1中,sin∠AA1D=, ∴sinθ=sin∠AA1D,由于θ与∠AA1D都是锐角,所以θ=∠AA1D. 又由RtΔA1AB知,∠AA1D+j =∠AA1B+j=,故θ+j=. 证法2:由(Ⅰ)知,以点B为坐标原点,以BC、BA、BB1所在的直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系. 设AB=c(c<a=,则B(0,0,0),A(0,c,0),C(), A1(0,c,a),于是,=(0,c,a), ,=(0,c,a) 设平面A1BC的一个法向量为n=(x,y,z), 则由可取n=(0,-a,c),于是 n·=ac>0,与n的夹角b为锐角,则b与q互为余角. sinq=cosb=, cosj= 所以sinq=cosj=sin(),又0<q,j<,所以q+j=. 19.本小题主要考查根据实际问题建立数学模型,以及运用函数、不等式等知识解决实际问题的能力.(满分12分)解法1:设矩形栏目的高为a cm,宽为b cm,则ab=9000. ①广告的高为a+20,宽为2b+25,其中a>0,b>0. 广告的面积S=(a+20)(2b+25) =2ab+40b+25a+500=18500+25a+40b ≥18500+2=18500+ 当且仅当25a=40b时等号成立,此时b=,代入①式得a=120,从而b=75. 即当a=120,b=75时,S取得最小值24500. 故广告的高为140 cm,宽为175 cm时,可使广告的面积最小. 解法2:设广告的高为宽分别为x cm,y cm,则每栏的高和宽分别为x-20,其中x >20,y>25 两栏面积之和为2(x-20),由此得y= 广告的面积S=xy=x()=x, 整理得S= 因为x-20>0,所以S≥2 当且仅当时等号成立,此时有(x-20)2=14400(x>20),解得x=140,代入y=+25,得y=175,即当x=140,y=175时,S取得最小值24500,故当广告的高为140 cm,宽为175 cm时,可使广告的面积最小. 20.本小题主要考查双曲线的定义、标准方程、直线和双曲线位置关系等平面解析几何的基础知识,考查待写系数法、不等式的解法以及综合运用数学知识进行推理运算的能力. (满分13分)(Ⅰ)解法1:依题意,由a2+b2=4,得双曲线方程为(0<a2<4=,将点(3,)代入上式,得.解得a2=18(舍去)或a2=2,故所求双曲线方程为解法2:依题意得,双曲线的半焦距c=2. 2a=|PF1|-|PF2|= ∴a2=2,b2=c2-a2=2. ∴双曲线C的方程为 (Ⅱ)解法1:依题意,可设直线l的方程为y=kx+2,代入双曲线C的方程并整理,得(1-k2)x2-4kx-6=0. ∵直线I与双曲线C相交于不同的两点E、F, ∴∴k∈(-)∪(1,). 设E(x1,y1),F(x2,y2),则由①式得x1+x2=于是 |EF|= = 而原点O到直线l的距离d=, ∴SΔOEF= 若SΔOEF=,即解得k=±, 满足②.故满足条件的直线l有两条,其方程分别为y=和解法2:依题意,可设直线l的方程为y=kx+2,代入双曲线C的方程并整理,得(1-k2)x2-4kx -6=0. ①∵直线l与比曲线C相交于不同的两点E、F,∴∴k∈(-)∪(1,). ②设E(x1,y1),F(x2,y2),则由①式得 |x1-x2|=. ③当E、F 在同一支上时(如图1所示), SΔOEF=|SΔOQF-SΔOQE|=;当E、F在不同支上时(如图2所示), SΔOEF=SΔOQF+SΔOQE=综上得SΔOEF=,于是由|OQ|=2及③式,得SΔOEF=. 若SΔOEF=2,即,解得k=±,满足②. 故满足条件的直线l有两条,基方程分别为y=和y= 21.本小题主要考查等比数列的定义、数列示和、不等式等基础知识和基本的运算技能,考查分析问题能力和推理能力.(满分14分)(Ⅰ)证明:假设存在一个实数l,使{an}是等比数列,则有,即()2=2矛盾. 所以{an}不是等比数列. (Ⅱ)证明:∵又由上式知故当数列{bn}是以为首项,为公比的等比数列. (Ⅲ)当由(Ⅱ)得于是当时,,从而上式仍成立. 要使对任意正整数n , 都有即令当n为正奇数时,当n为正偶数时,于是可得综上所述,存在实数,使得对任意正整数,都有的取值范围为高考卷,全国统一高考生物试卷(大纲版)(含解析版)高考卷,全国统一高考生物试卷(新课标Ⅰ)2018年北京市高考数学试卷(理科)「附答案解析」2018高考全国3卷理科数学带答案高考卷,05高考文科数学全国卷Ⅱ试题及答案(黑龙江、吉林、广西、内蒙古、新疆等地区用)。
2008年高考文科数学试题参考答案(湖北卷)

2008年高考文科数学试题参考答案(湖北卷)一、单项选择题(本大题共30小题,1—20小题每小题1分,21—30小题每小题2分,共40分。
在每小题列出的四个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在题后的括号内。
)(一)每小题1分,共20分。
1.设在x=0处连续,则常数a=()A.0 B.1 C.2 D.32.()A.e-2 B.e-1 C.e2 D.e3.()A.B.0 C.1 D.-14.设函数,则()A.0B.1C.2D.35.设则()A.B.0C.D.16.设则dy=()A.B.C.D.7.已知曲线上的点M处的切线平行于直线x+y=1,则M 点的坐标为()A.(0,1)B.(1,0)C.(1,1)D.(0,0)8.在[-1,1]上满足拉格朗日中值定理的条件的函数是()A.B.C.D.9.设,则下列正确的表达式是()A.B.C.D.10.设,则()A.B.C.D.11.()A.-7B.C.21D.9 12.由曲线及x轴所围成的曲边梯形的面积为()A.B.C.D.13.广义积分当()A.p>1时收敛,p≤1时发散B.p≥1时收敛,p<1时发散C.p<1时收敛,p≥1时发散D.p≤1时收敛,p>1时发散14.设函数,则点(0,0)是函数的()A.极小值点B.极大值点C.非驻点D.驻点15.设,则()A.B.C.D.16.设区域()由x轴,y轴和直线所围成,则()A.1B.2C.3D.4 17.微分方程的阶数是()A.1B.2C.3D.4 18.微分方程的通解是()A.B.C.D.19.级数的和S=()A.1B.C.3D.20.设,则级数()A.绝对收敛B.条件收敛C.收敛D.发散(二)每小题2分,共20分。
21.设,则的定义域是()A.B.C.(-2,2)D.[-2,2]22.函数的单调减少区间是()A.B.C.D.(-1,1)23.平面与平面的位置关系是()A.重合B.平行C.垂直D.既不平行也不垂直24.设,则()A.B.C.D.25.设常数,则()A.B.C.D.26.设函数,则=()A.B.C.D.27.幂级数的和函数为()A.B.C.D.28.设则()A.B.C.D.29.在求微分方程的特解时,应设特解为()A.B.C.D.30.设函数在点处具有二阶偏导数且在该点处有,与,则在该点处函数()A.可能取得极值B.取得极大值C.取得极小值D.无极值二、计算题(本大题共7小题,每小题6分,共42分)31.计算32.计算33.求由参数方程所确定的函数的二阶导数34.计算35.计算其中()由及所围成的区域。
2008年高考文科数学试题参考答案(湖北卷)

一、单选10×2=20二、多选5×3=15三、名词解释5×3=151、行政:国家行政机关从事执行与管理活动,还包括国家行政机关的准立法和准司法活动。
2、行政法:行政法,是指行政主体在行使行政职权和接受行政法制监督过程中而与行政相对人、行政法制监督主体之间发生的各种关系,以及行政主体内部发生的各种关系的法律规范的总称。
3、行政许可:是指在法律一般禁止的情况下,行政主体根据行政相对方的申请,经依法审查,通过颁发许可证、执照等形式,赋予或确认行政相对方从事某种活动的法律资格或法律权利的一种具体行政行为4、行政处罚:行政主体对于实施违法行为但尚未构成犯罪的公民、法人或其他组织通过剥脱或限制其一定权利的方法加以惩戒的行为。
5、行政复议:指的是与行政行为具有法律上利害关系人认为行政机关所作出的行政行为侵犯其合法权益,依法向具有法定权限的行政机关申请复议,由复议机关依法对被申请行政行为的合法性和合理性进行审查并作出决定的活动和制度。
6、行政诉讼:法院依公民、法人或其他组织的请求,通过审查行政行为合法性的方式解决特定范围内行政争议的活动。
四、简答题4×5=201,、行政的基本原则有哪些?见笔记2、行政复议有哪些特点?见笔记3、行政复议与行政诉讼的衔接?见笔记4、行政复议与行政诉讼的区别?(1)性质不同。
行政复议是一种行政行为;行政诉讼属于司法行为。
(2)受理机关不同。
行政复议的受理机关是作出具体行政行为的行政机关所属的人民政府或其上一级主管部门。
而受理行政诉讼的机关则是人民法院。
(3)受理范围不同。
人民法院所受理的行政案件,只是行政相对人认为行政机关的具体行政行为侵害其合法权益的案件。
而复议机关所受理的则既有行政违法的案件,也可以有行政不当案件。
凡是能够提起行政诉讼的行政争议,行政相对人都可以向行政机关申请复议,而法律规定行政复议裁决为终局决定的,当事人不得提起行政诉讼。
2008年高考数学(湖北卷理科)(word版)含答案

绝密★启用前2008年普通高等学校招生全国统一考试(湖北卷)数 学(理工农医类)本试卷共4面,满分150分,考试时间120分钟★祝考试顺利★注意事项:1. 答卷前,考生务必将自己的姓名,准考证号填写在试题卷和答题卡上,并将准考证号条形码粘巾在答题卡上指定位置。
2. 选择题每小题选出答案后,用2B 铅笔将答题卡上,对应题目的答案标号涂写,如写改动,用橡皮擦干净后,再选涂其它答案标号,答在试题卷上无效。
3. 非选择题用0.5毫米的黑色墨水签字夂答在答题卡上每题对应的答题区域内,答在试题卷上无效。
4. 考试结束,请将本试题卷和答题卡一并上交。
一、选择题:本次题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 设a =(1,-2),b =(-3,4),c =(3,2),则(a +2b )·c =A.(-15,12)B.0C.-3D.-11 2. 若非空集合A ,B ,C 满足A ∪B=C ,且B 不是A 的子集,则A.“x ∈C ”是“x ∈A ”的充分条件但不是必要条件B. “x ∈C ”是“x ∈A ”的必要条件但不是充分条件C. “x ∈C ”是“x ∈A ”的充分条件D. “x ∈C ”是“x ∈A ”的充分条件也不是“x ∈A ”必要条件3. 用与球心距离为1的平面去截球,所得的截面面积为π,则球的休积为 A.38π B. 328πC.π28D. 332π 4. 函数f (x )=)4323(1122+--++-x x x x n x的定义域为A.(- ∞,-4)[∪2,+ ∞]B.(-4,0) ∪(0,1)C. [-4,0]∪(0,1)]D. [-4,0∪(0,1) 5.将函数y=3sin (x -θ)的图象F 按向量(3π,3)平移得到图象F ′,若F ′的一条对称轴是直线x=4π,则θ的一个可能取值是 A.π125 B. π125- C. π1211 D. π12116.将5名志愿者分配到3个不同的奥运场馆参加接待工作,每个场馆至少分配一名志愿者的方案种数为 A.540 B.300 C.180 D.1507.若f(x)=21ln(2)2x b x -++∞在(-1,+)上是减函数,则b 的取值范围是 A.[-1,+∞] B.(-1,+∞) C.(-∞,-1) D.(-∞,-1)8.已知m ∈N*,a,b ∈R ,若0(1)limm x x ab x→++=,则a ·b = A .-m B .m C .-1 D .1 9.过点A (11,2)作圆22241640x y x y ++--=的弦,其中弦长为整数的共有 A.16条 B.17条 C.32条 D.34条10.如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点P轨进入以月球球心F 为一个焦点的椭圆轨道I 绕月飞行,之后卫星在P 点第二次变轨进入仍以F 为一个焦点的椭圆轨道Ⅱ绕月飞行,最终卫星在P 点第三次变轨进入以F 为圆心的圆形轨道Ⅲ绕月飞行,若用2c 1和2c 2分别表示椭轨道Ⅰ和Ⅱ的焦距,用2a 1和2a 2分别表示椭圆轨道Ⅰ和Ⅱ的长轴的长,给出下列式子:①a 1+c 1=a 2+c 2;②a 1-c 1=a 2-c 2;③c 1a 2>a 1c 1;④31c c <22c a . 其中正确式子的序号是A.①③B.②③C.①④D.②④二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡相应位置上. 11.设z 1=z 1-z 1(其中z 1表示z 1的共轭复数),已知z 2的实部是-1,则z 2的虚部为 .12.在△ABC 中,三个角A ,B ,C 的对边边长分别为a=3,b=4,c=6,则bc cosA+ca cosB+ab cosC 的值为 . 13.已知函数f(x)=x 2+2x+a,f(bx)=9x-6x +2,其中x ∈R ,a ,b 为常数,则方程f (ax+b )=0的解集为 .14.已知函数f(x)=2x ,等差数列{a x }的公差为2.若f(a 2+a 4+a b +a 2+a 1)=4,则 Log 2[f(a 1)·f(a 2)·f(a)·…·f(a 10)]= . 15.观察下列等式:2122213222111,22111,326111,424ni ni n i i n n i n n n i n n n ====+=++=++∑∑∑ 444311111,52330ni i n n n n ==++-∑ 24,(1)(321),3n n n n a n b a n +-=--+ ……………………………………212112101,nkk k k k k k k k i ia n a n a n a n a n a +--+--==++++⋅⋅⋅++∑可以推测,当x ≥2(k ∈N*)时,1111,,12k k k a a a k +-===+ a k -2= .三、解答题:本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤. 16.(本小题满分12分) 已知函数f (t17()cos (sin )sin (cos ),(,).12g x x f x x f x x ππ=+∈ (Ⅰ)将函数g(x )化简成Asin(ωx +φ)+B (A >0,ω>0,φ∈[0,2π])的形式;(Ⅱ)求函数g(x )的值域. 17.(本小题满分12分)袋中有20个大小相同的球,其中记上0号的有10个,记上n 号的有n 个(n =1,2,3,4).现从袋中任取一球.ξ表示所取球的标号.(Ⅰ)求ξ的分布列,期望和方差;(Ⅱ)若η=a ξ-b ,E η=1,D η=11,试求a,b 的值.18.(本小题满分12分)如图,在直三棱柱ABC-A 1B 1C 1中,平面ABC ⊥侧面A 1ABB 1.(Ⅰ)求证:AB ⊥BC ;(Ⅱ)若直线AC 与平面A 1BC 所成的角为θ,二面角A 1-BC-A 的大小为φ的大小关系,并予以证明. 19.(本小题满分13分) 如图,在以点O 为圆心,|AB|=4为直径的半圆ADB 中,OD ⊥AB ,P 是半圆弧上一点,∠POB=30°,曲线C 是满足||MA|-|MB||为定值的动点M 的轨迹,且曲线C 过点P.(Ⅰ)建立适当的平面直角坐标系,求曲线C 的方程; (Ⅱ)设过点D 的直线l 与曲线C 相交于不同的两点E 、F. 若△OEF 的面积不小于...l 斜率的取值范围.20.(本小题满分12分)水库的蓄水量随时间而变化,现用t 表示时间,以月为单位,年初为起点,根据历年数据,某水库的蓄水量(单位:亿立方米)关于t 的近似函数关系式为V (t )=12(1440)50,010,4(10)(341)50,1012.x t t e t t t t ⎧⎪-+-+≤⎨⎪--+≤⎩(Ⅰ)该水库的蓄求量小于50的时期称为枯水期.以i-1<t <t 表示第1月份(i=1,2,…,12),同一年内哪几个月份是枯水期?(Ⅱ)求一年内该水库的最大蓄水量(取e=2.7计算). 21.(本小题满分14分)已知数列{a n }和{b n }满足:a 1=λ,a n+1=24,(1)(321),3n n n n a n b a n +-=--+其中λ为实数,n 为正整数. (Ⅰ)对任意实数λ,证明数列{a n }不是等比数列;(Ⅱ)试判断数列{b n }是否为等比数列,并证明你的结论;(Ⅲ)设0<a <b ,S n 为数列{b n }的前n 项和.是否存在实数λ,使得对任意正整数n ,都有 a <S n <b ?若存在,求λ的取值范围;若不存在,说明理由.2008年普通高等学校招生全国统一考试(湖北卷)数学(理工农医类)试题参考答案一、选择题:本题考查基础知识和基本运算.每小题5分,满分50分.1.C2.B3.B4.D5.A6.D7.C8.A9.C 10.B二、填空题:本题考查基础知识和基本运算,每小题5分,满分25分.11.1 12.61213. 14.-615.12k,0三、解答题:本大题共6小题,共75分.16.本小题主要考查函数的定义域、值域和三角函数的性质等基本知识,考查三角恒等变换、代数式的化简变形和运算能力.(满分12分)解:(Ⅰ)1sin 1cos ()cos sin 1sin 1cos x xg x xxx x--=+++ 2222(1sin )(1cos )cos sin cos sin x x x x x x--=+ 1sin 1cos cos sin .cos sin x xxx x x--=+17,,cos cos ,sin sin ,12x x x x x π⎛⎤∈π∴=-=- ⎥⎝⎦1sin 1cos ()cos sin cos sin x x g x x x x x --∴=+--sin cos 2x x =+-2.4x π⎛⎫+- ⎪⎝⎭(Ⅱ)由1712x ππ≤<,得55.443x πππ+≤< sin t 在53,42ππ⎛⎤ ⎥⎝⎦上为减函数,在35,23ππ⎛⎤⎥⎝⎦上为增函数,又5535sinsin ,sin sin()sin 34244x πππππ∴≤+<<(当17,2x π⎛⎤∈π ⎥⎝⎦),即1sin()2)2344x x ππ-≤+≤+--<<,故g (x )的值域为)2,3.⎡-⎣17.本小题主要考查概率、随机变量的分布列、期望和方差等概念,以及基本的运算能力.(满分12分) 解:(Ⅰ)ξ的分布列为:∴01234 1.5.22010205E ξ=⨯+⨯+⨯+⨯+⨯= 2222211131(0 1.5)(1 1.5)(2 1.5)(3 1.5)(4 1.5) 2.75.22010205ξ=-⨯+-⨯+-⨯+-⨯+-⨯=(Ⅱ)由D a D η=ξ2,得a 2×2.75=11,即 2.a =±又,E aEb η=ξ+所以 当a =2时,由1=2×1.5+b ,得b =-2;当a =-2时,由1=-2×1.5+b ,得b =4.∴2,2a b =⎧⎨=-⎩或2,4a b =-⎧⎨=⎩即为所求.18.本小题主要考查直棱柱、直线与平面所成角、二面角和线面关系等有关知识,同时考查空间想象能力和推理能力.(满分12分) (Ⅰ)证明:如右图,过点A 在平面A 1ABB 1内作 AD ⊥A 1B 于D ,则A 1ABB 1=A 1B ,得由平面A 1BC ⊥侧面A 1ABB 1,且平面A 1BC 侧面AD ⊥平面A 1BC ,又BC ⊂平面A 1BC , 所以AD ⊥BC .因为三棱柱ABC —A 1B 1C 1是直三棱柱, 则AA 1⊥底面ABC , 所以AA 1⊥BC. 又AA 1AD =A ,从而BC ⊥侧面A 1ABB 1,又AB ⊂侧面A 1ABB 1,故AB ⊥BC .(Ⅱ)解法1:连接CD ,则由(Ⅰ)知ACD ∠是直线AC 与平面A 1BC 所成的角,1ABA ∠是二面角A 1—BC —A 的平面角,即1,,ACD ABA ∠=θ∠=ϕ于是在Rt △ADC 中,sin ,AD AC θ=在Rt △ADB 中,sin ,ADABϕ= 由AB <AC ,得sin sin θϕ<,又02πθϕ<,<,所以θϕ<,解法2:由(Ⅰ)知,以点B 为坐标原点,以BC 、BA 、BB 1所在的直线分 别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,设AA 1=a ,AC =b , AB =c ,则B (0,0,0),A (0,c ,0),1(0,,),C A c a 于是221(,0,0),(0,,),BC b c BA c a =-= 221(,,0),(0,0,).AC b c c AA a =--=设平面A 1BC 的一个法向量为n =(x ,y ,z ),则由10,0,n BAn BC ⎧=⎪⎨=⎪⎩得0,0,cy az +=⎧=可取n =(0,-a ,c ),于是0n AC ac AC =>,与n 的夹角β为锐角,则β与θ互为余角.sin cos n AC n AC b a θ-β==11cos BA BABA BAa ϕ==所以sinϕ=于是由c <b即sin sin ,θϕ<又0,2πθϕ<,<所以,θϕ<19.本小题主要考查直线、圆和双曲线等平面解析几何的基础知识,考查轨迹方程的求法、不等式的解法以及综合解题能力.(满分13分)(Ⅰ)解法1:以O 为原点,AB 、OD 所在直线分别为x 轴、y 轴,建立平面直角坐标系,则A (-2,0),B (2,0),D (0,2),P (1,3),依题意得|MA |-|MB |=|PA |-|PB |=221321)32(2222=)(+--++<|AB |=4.∴曲线C 是以原点为中心,A 、B 为焦点的双曲线. 设实平轴长为a ,虚半轴长为b ,半焦距为c , 则c =2,2a =22,∴a 2=2,b 2=c 2-a 2=2.∴曲线C 的方程为12222=-y x . 解法2:同解法1建立平面直角坐标系,则依题意可得|MA |-|MB |=|PA |-|PB |<|AB |=4.∴曲线C 是以原点为中心,A 、B 为焦点的双曲线.设双曲线的方程为a by a x (12222=->0,b >0).则由 .4,11)3(222222=+=-b a ba 解得a 2=b 2=2,∴曲线C 的方程为.12222=-y x(Ⅱ)解法1:依题意,可设直线l 的方程为y =kx +2,代入双曲线C 的方程并整理得(1-K 2)x 2-4kx-6=0. ∵直线l 与双曲线C 相交于不同的两点E 、F , ∴,0)1(64)4(,01222>-⨯+-=∆≠-k k k ⇔.33,1<<-±≠k k∴k ∈(-3,-1)∪(-1,1)∪(1,3). 设E (x ,y ),F (x 2,y 2),则由①式得x 1+x 2=k x x k k --=-16,14212,于是 |EF |=2212221221))(1()()(x x k x y x x -+=++-=.132214)(1222212212kk k x x x x k --⋅+=-+⋅+而原点O 到直线l 的距离d =212k+,∴S △DEF =.132213221122121222222kk k k k k EF d --=--⋅+⋅+⋅=⋅ 若△OEF 面积不小于22,即S △OEF 22≥,则有 解得.22,022********2≤≤-≤--⇔≥--k k k k k ③综合②、③知,直线l 的斜率的取值范围为[-2,-1]∪(1-,1) ∪(1, 2).解法2:依题意,可设直线l 的方程为y =kx +2,代入双曲线C 的方程并整理,得(1-K 2)x 2-4kx -6=0.∵直线l 与双曲线C 相交于不同的两点E 、F , ∴.0)1(64)4(,01222>-⨯+-=∆≠-k k k ⇔33,1<<-±≠k k .∴k ∈(-3,-1)∪(-1,1)∪(1,3). 设E (x 1,y 1),F (x 2,y 2),则由①式得 |x 1-x 2|=.132214)(22221221kk kx x x x --=-∆=-+ ③当E 、F 在同一去上时(如图1所示), S △OEF =;21212121x x OD x x OD S S ODE ODF -⋅=-⋅=-∆∆ 当E 、F 在不同支上时(如图2所示).+=∆∆O D F O EF S S S △ODE =.21)(212121x x OD x x OD -⋅=+⋅ 综上得S △OEF =,2121x x OD -⋅于是 由|OD |=2及③式,得S △OEF =.132222kk --若△OEF 面积不小于2则有即,22,2≥∆O EF S.22,022*******2≤≤-≤-⇔≥--k k k k k 解得 ④综合②、④知,直线l 的斜率的取值范围为[-2,-1]∪(-1,1)∪(1,2).20.本小题主要考查函数、导数和不等式等基本知识,考查用导数求最值和综合运用数学知识解决实际问题能力.(满分12分)解:(Ⅰ)①当0<t ≤10时,V (t )=(-t 2+14t -40),5050441<+e化简得t 2-14t +40>0,解得t <4,或t >10,又0<t ≤10,故0<t <4.②当10<t ≤12时,V (t )=4(t -10)(3t -41)+50<50, 化简得(t -10)(3t -41)<0, 解得10<t <341,又10<t ≤12,故 10<t ≤12. 综合得0<t <4,或10<t 12,故知枯水期为1月,2月,,3月,4月,11月,12月共6个月. (Ⅱ)(Ⅰ)知:V (t )的最大值只能在(4,10)内达到.由V ′(t )=),8)(2(41)42341(41241-+-=++-t t c t t c tt令V ′(t )=0,解得t=8(t=-2舍去).由上表,V (t )在t =8时取得最大值V (8)=8e +50-108.52(亿立方米). 故知一年内该水库的最大蓄水量是108.32亿立方米21.本小题主要考查等比数列的定义、数列求和、不等式等基础知识和分类讨论的思想,考查综合分析问题的能力和推理认证能力,(满分14分)(Ⅰ)证明:假设存在一个实数λ,使{a n }是等比数列,则有a 22=a 1a 3,即,094949494)494()332(222=⇔-=+-⇔-=-λλλλλλλ矛盾. 所以{a n }不是等比数列.(Ⅱ)解:因为b n +1=(-1)n +1[a n +1-3(n -1)+21]=(-1)n +1(32a n -2n +14) =32(-1)n ·(a n -3n +21)=-32b n 又b 1x -(λ+18),所以当λ=-18,b n =0(n ∈N +),此时{b n }不是等比数列: 当λ≠-18时,b 1=(λ+18) ≠0,由上可知b n ≠0,∴321-=+n a b b (n ∈N +). 故当λ≠-18时,数列{b n }是以-(λ+18)为首项,-32为公比的等比数列. (Ⅲ)由(Ⅱ)知,当λ=-18,b n =0,S n =0,不满足题目要求. ∴λ≠-18,故知b n = -(λ+18)·(-32)n -1,于是可得 S n =-.321·)18(53⎥⎦⎤⎢⎣⎡+n )-(- λ 要使a <S n <b 对任意正整数n 成立, 即a <-53(λ+18)·[1-(-32)n ]〈b(n ∈N +) ,则令 得)2(1)()32(1)18(53)32(1--=--<+-<--n f b a nnλ ①当n 为正奇数时,1<f (n ),1)(95;35<≤≤n f n 为正偶数时,当 ∴f (n )的最大值为f (1)=35,f (n )的最小值为f (2)= 95,于是,由①式得95a <-53(λ+18),<.1831853--<<--⇔a b b λ当a <b ≤3a 时,由-b -18≥=-3a -18,不存在实数满足题目要求;当b >3a 存在实数λ,使得对任意正整数n ,都有a <S n <b ,且λ的取值范围是(-b -18,-3a -18).。
2008年高考数学试卷(湖北.文)含详解

绝密★启用前2008年普通高等学校招生全国统一考试(湖北卷)数 学(文史类)本试卷共4页,满分150分,考试时间120分钟.★祝考试顺利★注间事项:1. 答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上指定位置2. 选择题每小题选出答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,答在试题卷上无效.3.填空题和解答题用0.5毫米的黑色墨水签字笔答在答题卡上每题对应的答题区域内,答在试题卷上无效.4.考试结束,请将本试题卷和答题卡一并上交.一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设(1,2),(3,4),(3,2),(2)a b c a b c =-=-=+=则A.(15,12)-B.0C.-3D.-112. 321(2)2x x-的展开式中常数项是 A.210 B.1052 C.14D.-1053.若集合{1,2,3,4},{05,},P Q x x x R ==<<∈则 A. “x R ∈”是“x Q ∈”的充分条件但不是必要条件 B. “x R ∈”是“x Q ∈”的必要条件但不是充分条件 C. “x R ∈”是“x Q ∈”的充要条件D. “x R ∈”既不是“x Q ∈”的充分条件也不是“x Q ∈”的必要条件 4.用与球必距离为1的平面去截面面积为π,则球的体积为 A.323πB.83πC.D. 35.在平面直角坐标系xOy 中,满足不等式组,1x y x ⎧≤⎪⎨⎪⎩的点(,)x y 的集合用阴影表示为下列图中的6.已知()f x 在R 上是奇函数,且2(4)(),(0,2)()2,(7)f x f x x f x x f +=∈==当时,则 A.-2 B.2 C.-98 D.98 7.将函数sin()y x θ=-的图象F 向右平移3π个单位长度得到图象F ′,若F ′的一条对称轴是直线,1x π=则θ的一个可能取值是A.512π B.512π- C.1112π D.1112π-8. 函数221()1(32)34f x n x x x x x=-++--+的定义域为A.(,4][2,)-∞-+∞B. (4,0)(0,1)-⋃C.[4,0)(0,1]-D.[4,0)(0,1]-⋃9.从5名男生和5名女生中选3人组队参加某集体项目的比赛,其中至少有一名女生入选的组队方案数为A.100B.110C.120D.180 10.如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点P 变轨进入以月球球心F 为一个焦点的椭圆轨道I 绕月飞行,之后卫星在P 点第二次变轨进入仍以F 为一个焦点的椭圆轨道Ⅱ绕月飞行,最终卫星在P 点第三次变轨进入以F 为圆形轨道Ⅲ绕月飞行,若用12c 和22c 分别表示椭圆轨道I 和Ⅱ的焦距,用12a 和22a 分别表示椭圆轨道I 和Ⅱ的长轴的长,给出下列式子: ①1122;a c a c +=+②1122;a c a c -=-③1212;c a a c >④1212.c c a a <其中正确式子的序号是 A.①③ B.②③ C.①④ D.②④二、填空题:本大题共5小题,每小题5分,共25分,把答案填在答题卡相应位置上.11.一个公司共有1 000名员工,下设一些部门,要采用分层抽样方法从全体员工中抽取一个容量为50的样本,已知某部门有200名员工,那么从该部门抽取的工人数是 . 12.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,已知3,3,30,a b c ===︒则A = . 13.方程223xx -+=的实数解的个数为 .14.明天上午李明要参加奥运志愿者活动,为了准时起床,他用甲、乙两个闹钟叫醒自己,假设甲闹钟准时响的概率是0.80,乙闹钟准时响的概率是0.90,则两个闹钟至少有一准时响的概率是 . 15.圆34cos ,()24sin x C y θθθ=+⎧⎨=-+⎩为参数的圆心坐标为 ,和圆C 关于直线0x y -=对称的圆C ′的普通方程是 .三、解答题:本大题共6分小题,共75分,解答应写出文字说明,证明过程或演算步骤.16.(本小题满12分) 已知函数2()sincos cos 2.222x x xf x =+- (Ⅰ)将函数()f x 化简成sin()(0,0,[0,2))A x B A ωϕϕϕπ++>>∈的形式,并指出()f x 的周期;(Ⅱ)求函数17()[,]12f x ππ在上的最大值和最小值 17.(本小题满分12分)已知函数322()1f x x mx m x =+-+(m 为常数,且m >0)有极大值9. (Ⅰ)求m 的值;(Ⅱ)若斜率为-5的直线是曲线()y f x =的切线,求此直线方程. 18.(本小题满分12分)如图,在直三棱柱111ABC A B C -中,平面1A BC ⊥侧面11.A ABB (Ⅰ)求证: ;AB BC ⊥(Ⅱ)若1AA AC a ==,直线AC 与平面1A BC 所成的角为θ,二面角1,.2A BC A πϕθϕ--+=的大小为求证:19.(本不题满分12分)如图,要设计一张矩形广告,该广告含有大小相等的左右两个矩形栏目(即图中阴影部分),这两栏的面积之和为18000cm 2,四周空白的宽度为10cm ,两栏之间的中缝空白的宽度为5cm ,怎样确定广告的高与宽的尺寸(单位:cm ),能使矩形广告面积最小?20(本小题满分13分)已知双同线2222:1(0,0)x y C a b a b-->>的两个焦点为:(2,0),:(2,0),(3,7)F F P -点的曲线C 上.(Ⅰ)求双曲线C 的方程;(Ⅱ)记O 为坐标原点,过点Q (0,2)的直线l 与双曲线C 相交于不同的两点E 、F ,若△OEF 的面积为22,求直线l 的方程 21.(本小题满分14分)已知数列12{}{},13n n x a b a an a λ=+=和满足:4,(1)(321)n n n n n b a n +-=--+,其中λ为实数,n 为正整数.(Ⅰ)证明:当18{}n b λ≠-时,数列是等比数列;(Ⅱ)设n S 为数列{}n b 的前n 项和,是否存在实数λ,使得对任意正整数n ,都有 12?n S >-若存在,求λ的取值范围;若不存在,说明理由.2008年普通高等学校招生全国统一考试(湖北卷)数学(文史类)试题参考答案一、选择题:本题考查基础知识和基本运算.第小题5分,满分50分. 1.C 2.B 3.A 4.D 5.C 6.A 7.A 8.D 9.B 10.B二、填空题:本题考查基础知识和基本运算,第小题5分,满分25分. 11.1012.30°(或6π) 13.2 14.0.9815.(3,-2),(x +2)2+(y -3)2=16(或x 2+y 2+4x -6y -3=0)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设(1,2),(3,4),(3,2),(2)a b c a b c =-=-=+=则A.(15,12)-B.0C.3-D.11- 解:2(1,2)2(3,4)(5,6)a b +=-+-=-,(2)(5,6)(3,2)3a b c +=-⋅=-,选C2. 31021(2)2x x -的展开式中常数项是 A.210 B.1052 C.14 D.-105解:31010320211010211(2)()2()22r r r r rr r r r T C x C x x ---++=-=-,令32020r r -+=得4r =所以常数项为4410451011052()22T C -=-=3.若集合{1,2,3,4},{05,},P Q x x x R ==<<∈则 A. “x R ∈”是“x Q ∈”的充分条件但不是必要条件 B. “x R ∈”是“x Q ∈”的必要条件但不是充分条件 C. “x R ∈”是“x Q ∈”的充要条件D. “x R ∈”既不是“x Q ∈”的充分条件也不是“x Q ∈”的必要条件 解:x P x Q ∈⇒∈反之不然故选A4.用与球心距离为1的平面去截面面积为π,则球的体积为A.323πB.83πC.D. 3解:截面面积为π⇒截面圆半径为1,又与球心距离为1⇒,所以根据球的体积公式知348233R V ππ==,故D 为正确答案. 5.在平面直角坐标系xOy 中,满足不等式组,1x y x ⎧≤⎪⎨<⎪⎩的点(,)x y 的集合用阴影表示为下列图中的解:在坐标系里画出图象,C 为正确答案。
2008高考湖北数学理科试题附答案(word)

2008年普通高等学校招生全国统一考试(湖北卷)数学(理工农医类)一、选择题:本次题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设(1,2)a =-,(3,4)b =-,则(2)a b c +=A.(15,12)-B.0C.3-D.11- 2. 若非空集合,,A B C 满足AB C =,且B 不是A 的子集,则A. “x C ∈”是“x A ∈”的充分条件但不是必要条件B. “x C ∈”是“x A ∈”的必要条件但不是充分条件C. “x C ∈”是“x A ∈”的充要条件D. “x C ∈”既不是“x A ∈”的充分条件也不是“x A ∈”必要条件 3. 用与球心距离为1的平面去截球,所得的截面面积为π,则球的体积为A.38π B. 328πC. π28D. 332π4. 函数1()f x x=的定义域为 A. (,4][2,)-∞-+∞ B. (4,0)(0.1)-C. [-4,0)(0,1D. [4,0)(0,1)- 5.将函数3sin()y x θ=-的图象F 按向量(,3)3π平移得到图象F ',若F '的一条对称轴是直线4x π=,则θ的一个可能取值是A.π125 B. π125- C. π1211 D. 1112π-6.将5名志愿者分配到3个不同的奥运场馆参加接待工作,每个场馆至少分配一名志愿者的方案种数为A. 540B. 300C. 180D. 150 7.若21()ln(2)2f x x b x =-++∞在(-1,+)上是减函数,则b 的取值范围是 A. [1,)-+∞ B. (1,)-+∞ C. (,1]-∞- D. (,1)-∞-8.已知*m N ∈,,a b R ∈,若0(1)limm x x ab x→++=,则a b ⋅= A .m - B .m C .1- D .19.过点(11,2)A 作圆22241640x y x y ++--=的弦,其中弦长为整数的共有 A. 16条 B. 17条 C. 32条 D. 34条 10.如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点P 轨进入以月球球心F 为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P 点第二次变轨进入仍以F 为一个焦点的椭圆轨道Ⅱ绕月飞行,最终卫星在P 点第三次变轨进入以F 为圆心的圆形轨道Ⅲ绕月飞行,若用12c 和22c 分别表示椭轨道Ⅰ和Ⅱ的焦距,用12a 和22a 分别表示椭圆轨道Ⅰ和Ⅱ的长轴的长,给出下列式子: ①1122a c a c +=+; ②1122a c a c -=-; ③1212c a a c >; ④11c a <22c a . 其中正确式子的序号是A. ①③B. ②③C. ①④D. ②④二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡相应位置上. 11.设211z z iz =-(其中1z 表示z 1的共轭复数),已知z 2的实部是1-,则z 2的虚部为 . 12.在△ABC 中,三个角,,A B C 的对边边长分别为3,4,6a b c ===,则cos cos cos bc A ca B ab C ++的值为 .13.已知函数2()2f x x x a =++,2()962f bx x x =-+,其中x R ∈,,a b 为常数,则方程()0f ax b +=的解集为 .14.已知函数()2xf x =,等差数列{}x a 的公差为2.若246810()4f a a a a a ++++=,则212310log [()()()()]f a f a f a f a ⋅⋅⋅= .15.观察下列等式:2111,22ni i n n ==+∑ 2321111,326ni i n n n ==++∑ 34321111,424n i i n n n ==++∑ 454311111,52330n i i n n n n ==++-∑ 5654211151,621212ni in n n n ==++-∑ 67653111111,722642ni i n n n n n ==++-+∑ ……………………………………212112101,nkk k k k k k k k i ia n a n a n a n a n a +--+--==++++⋅⋅⋅++∑可以推测,当x ≥2(*k N ∈)时,1111,,12k k k a a a k +-===+ 2k a -= .三、解答题:本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤. 16.(本小题满分12分)已知函数17()()cos (sin )sin (cos ),(,).12f tg x x f x x f x x ππ==⋅+⋅∈ (Ⅰ)将函数()g x 化简成sin()A x B ωϕ++(0A >,0ω>,[0,2)ϕπ∈)的形式; (Ⅱ)求函数()g x 的值域.袋中有20个大小相同的球,其中记上0号的有10个,记上n 号的有n 个(n =1,2,3,4).现从袋中任取一球.ξ表示所取球的标号. (Ⅰ)求ξ的分布列,期望和方差;(Ⅱ)若a b ηξ=+, 1E η=,11D η=,试求a,b 的值.18.(本小题满分12分)如图,在直三棱柱111ABC A B C -中,平面ABC ⊥侧面11A ABB . (Ⅰ)求证:AB BC ⊥;(Ⅱ)若直线AC 与平面1A B C 所成的角为θ,二面角1A B C A --的大小为ϕ,试判断θ与ϕ的大小关系,并予以证明.如图,在以点O 为圆心,||4AB =为直径的半圆ADB 中,OD AB ⊥,P 是半圆弧上一点,30POB ∠=︒,曲线C 是满足||||||MA MB -为定值的动点M 的轨迹,且曲线C 过点P .(Ⅰ)建立适当的平面直角坐标系,求曲线C 的方程; (Ⅱ)设过点D 的直线l 与曲线C 相交于不同的两点E 、F . 若△OEF 的面积不小于...l 斜率的取值范围.20.(本小题满分12分)水库的蓄水量随时间而变化,现用t 表示时间,以月为单位,年初为起点,根据历年数据,某水库的蓄水量(单位:亿立方米)关于t 的近似函数关系式为124(1440)50,010,()4(10)(341)50,1012.x t t e t V t t t t ⎧⎪-+-+<≤=⎨⎪--+<≤⎩ (Ⅰ)该水库的蓄求量小于50的时期称为枯水期.以1i t i -<<表示第1月份(1,2,,12i =),同一年内哪几个月份是枯水期?(Ⅱ)求一年内该水库的最大蓄水量(取 2.7e =计算).已知数列{}n a 和{}n b 满足:1a λ=,124,(1)(321),3n n n n n a a n b a n +=+-=--+其中λ为实数,n 为正整数.(Ⅰ)对任意实数λ,证明数列{}n a 不是等比数列; (Ⅱ)试判断数列{}n b 是否为等比数列,并证明你的结论;(Ⅲ)设0a b <<,n S 为数列{}n b 的前n 项和.是否存在实数λ,使得对任意正整数n ,都有n a S b <<?若存在,求λ的取值范围;若不存在,说明理由.2008年普通高等学校招生全国统一考试(湖北卷)数学(理工农医类)试题参考答案一、选择题:本题考查基础知识和基本运算.每小题5分,满分50分. 1.C 2.B 3.B 4.D 5.A 6.D 7.C 8.A 9.C 10.B二、填空题:本题考查基础知识和基本运算,每小题5分,满分25分. 11.1 12.612 13.∅ 14.-6 15. 12k,0 三、解答题:本大题共6小题,共75分.16.本小题主要考查函数的定义域、值域和三角函数的性质等基本知识,考查三角恒等变换、代数式的化简变形和运算能力.(满分12分) 解:(Ⅰ)1sin 1cos ()cos sin 1sin 1cos x xg x xxx x--=+++ 2222(1sin )(1cos )cos sin cos sin x x xxx x--=+1sin 1cos cos sin .cos sin x xxx x x--=+17,,cos cos ,sin sin ,12x x x x x π⎛⎤∈π∴=-=- ⎥⎝⎦1sin 1cos ()cos sin cos sin x x g x x x x x --∴=+-- sin cos 2x x =+-2.4x π⎛⎫+- ⎪⎝⎭(Ⅱ)由1712x ππ≤<,得55.443x πππ+≤< sin t 在53,42ππ⎛⎤ ⎥⎝⎦上为减函数,在35,23ππ⎛⎤⎥⎝⎦上为增函数,又5535sinsin ,sin sin()sin 34244x πππππ∴≤+<<(当17,2x π⎛⎤∈π ⎥⎝⎦),即1sin()2)23424x x ππ-≤+-≤+--<<,故g (x )的值域为)2,3.⎡-⎣17.本小题主要考查概率、随机变量的分布列、期望和方差等概念,以及基本的运算能力.(满分12分)解:(Ⅰ)ξ的分布列为:∴01234 1.5.22010205E ξ=⨯+⨯+⨯+⨯+⨯= 2222211131(0 1.5)(1 1.5)(2 1.5)(3 1.5)(4 1.5) 2.75.22010205ξ=-⨯+-⨯+-⨯+-⨯+-⨯=(Ⅱ)由D a D η=ξ2,得a 2×2.75=11,即 2.a =±又,E aE b η=ξ+所以 当a =2时,由1=2×1.5+b ,得b =-2; 当a =-2时,由1=-2×1.5+b ,得b =4.∴2,2a b =⎧⎨=-⎩或2,4a b =-⎧⎨=⎩即为所求.18.本小题主要考查直棱柱、直线与平面所成角、二面角和线面关系等有关知识,同时考查空间想象能力和推理能力.(满分12分) (Ⅰ)证明:如右图,过点A 在平面A 1ABB 1内作 AD ⊥A 1B 于D ,则由平面A 1BC ⊥侧面A 1ABB 1,且平面A 1BC 侧面A 1ABB 1=A 1B ,得AD ⊥平面A 1BC ,又BC ⊂平面A 1BC , 所以AD ⊥BC .因为三棱柱ABC —A 1B 1C 1是直三棱柱, 则AA 1⊥底面ABC , 所以AA 1⊥BC. 又AA 1AD =A ,从而BC ⊥侧面A 1ABB 1,又AB ⊂侧面A 1ABB 1,故AB ⊥BC .(Ⅱ)解法1:连接CD ,则由(Ⅰ)知ACD ∠是直线AC 与平面A 1BC 所成的角,1ABA ∠是二面角A 1—BC —A 的平面角,即1,,ACD ABA ∠=θ∠=ϕ于是在Rt △ADC 中,sin ,AD AC θ=在Rt △ADB 中,sin ,ADABϕ= 由AB <AC ,得sin sin θϕ<,又02πθϕ<,<,所以θϕ<,解法2:由(Ⅰ)知,以点B 为坐标原点,以BC 、BA 、BB 1所在的直线分 别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,设AA 1=a ,AC =b , AB =c ,则B (0,0,0),A (0,c,0),1(0,,),C A c a 于是 221(,0,0),(0,,),BC b c BA c a =-= 221(,,0),(0,0,).AC b c c AA a =--=设平面A 1BC 的一个法向量为n =(x ,y ,z ),则由10,0,n BAn BC ⎧=⎪⎨=⎪⎩得0,0,cy az +=⎧=可取n =(0,-a ,c ),于是0n AC ac AC =>,与n 的夹角β为锐角,则β与θ互为余角.sin cos n AC n AC b a θ-β==11cos BA BABA BAa ϕ==所以sinϕ=于是由c <b即sin sin ,θϕ<又0,2πθϕ<,<所以,θϕ<19.本小题主要考查直线、圆和双曲线等平面解析几何的基础知识,考查轨迹方程的求法、不等式的解法以及综合解题能力.(满分13分)(Ⅰ)解法1:以O 为原点,AB 、OD 所在直线分别为x 轴、y 轴,建立平面直角坐标系,则A (-2,0),B (2,0),D (0,2),P (1,3),依题意得|MA |-|MB |=|PA |-|PB |=221321)32(2222=)(+--++<|AB |=4.∴曲线C 是以原点为中心,A 、B 为焦点的双曲线.设实平轴长为a ,虚半轴长为b ,半焦距为c , 则c =2,2a =22,∴a 2=2,b 2=c 2-a 2=2.∴曲线C 的方程为12222=-y x . 解法2:同解法1建立平面直角坐标系,则依题意可得|MA |-|MB |=|PA |-|PB |< |AB |=4.∴曲线C 是以原点为中心,A 、B 为焦点的双曲线.设双曲线的方程为a b y a x (12222=->0,b >0).则由.4,11)3(222222=+=-b a ba 解得a 2=b 2=2, ∴曲线C 的方程为.12222=-y x(Ⅱ)解法1:依题意,可设直线l 的方程为y =kx +2,代入双曲线C 的方程并整理得(1-K 2)x 2-4kx-6=0. ∵直线l 与双曲线C 相交于不同的两点E 、F , ∴,0)1(64)4(,01222>-⨯+-=∆≠-k k k ⇔.33,1<<-±≠k k∴k ∈(-3,-1)∪(-1,1)∪(1,3). 设E (x ,y ),F (x 2,y 2),则由①式得x 1+x 2=k x x k k --=-16,14212,于是 |EF |=2212221221))(1()()(x x k x y x x -+=++-=.132214)(1222212212kk k x x x x k --⋅+=-+⋅+而原点O 到直线l 的距离d =212k+,∴S △DEF =.132213221122121222222kk k k k k EF d --=--⋅+⋅+⋅=⋅ 若△OEF 面积不小于22,即S △OEF 22≥,则有 解得.22,022********2≤≤-≤--⇔≥--k k k k k ③综合②、③知,直线l 的斜率的取值范围为[-2,-1]∪(1-,1) ∪(1, 2).解法2:依题意,可设直线l 的方程为y =kx +2,代入双曲线C 的方程并整理, 得(1-K 2)x 2-4kx -6=0.∵直线l 与双曲线C 相交于不同的两点E 、F , ∴.0)1(64)4(,01222>-⨯+-=∆≠-k k k ⇔33,1<<-±≠k k .∴k ∈(-3,-1)∪(-1,1)∪(1,3). 设E (x 1,y 1),F (x 2,y 2),则由①式得 |x 1-x 2|=.132214)(22221221kk kx x x x --=-∆=-+ ③当E 、F 在同一去上时(如图1所示), S △OEF =;21212121x x OD x x OD S S ODE ODF -⋅=-⋅=-∆∆ 当E 、F 在不同支上时(如图2所示).+=∆∆O D F O EF S S S △ODE =.21)(212121x x OD x x OD -⋅=+⋅ 综上得S △OEF =,2121x x OD -⋅于是 由|OD |=2及③式,得S △OEF =.132222kk --若△OEF 面积不小于2则有即,22,2≥∆O EF S.22,022*******2≤≤-≤-⇔≥--k k k k k 解得 ④综合②、④知,直线l 的斜率的取值范围为[-2,-1]∪(-1,1)∪(1,2).20.本小题主要考查函数、导数和不等式等基本知识,考查用导数求最值和综合运用数学知识解决实际问题能力.(满分12分)解:(Ⅰ)①当0<t ≤10时,V (t )=(-t 2+14t -40),5050441<+e化简得t 2-14t +40>0,解得t <4,或t >10,又0<t ≤10,故0<t <4.②当10<t ≤12时,V (t )=4(t -10)(3t -41)+50<50, 化简得(t -10)(3t -41)<0, 解得10<t <341,又10<t ≤12,故 10<t ≤12. 综合得0<t <4,或10<t 12,故知枯水期为1月,2月,,3月,4月,11月,12月共6个月. (Ⅱ)(Ⅰ)知:V (t )的最大值只能在(4,10)内达到.由V ′(t )=),8)(2(41)42341(41241-+-=++-t t c t t c tt令V ′(t )=0,解得t=8(t=-2舍去).当t 变化时,V ′(t ) 与V (t )的变化情况如下表:由上表,V (t )在t =8时取得最大值V (8)=8e 2+50-108.52(亿立方米). 故知一年内该水库的最大蓄水量是108.32亿立方米21.本小题主要考查等比数列的定义、数列求和、不等式等基础知识和分类讨论的思想,考查综合分析问题的能力和推理认证能力,(满分14分)(Ⅰ)证明:假设存在一个实数λ,使{a n }是等比数列,则有a 22=a 1a 3,即,094949494)494()332(222=⇔-=+-⇔-=-λλλλλλλ矛盾. 所以{a n }不是等比数列.(Ⅱ)解:因为b n +1=(-1)n +1[a n +1-3(n -1)+21]=(-1)n +1(32a n -2n +14) =32(-1)n ·(a n -3n +21)=-32b n 又b 1x -(λ+18),所以当λ=-18,b n =0(n ∈N +),此时{b n }不是等比数列: 当λ≠-18时,b 1=(λ+18) ≠0,由上可知b n ≠0,∴321-=+n a b b (n ∈N +). 故当λ≠-18时,数列{b n }是以-(λ+18)为首项,-32为公比的等比数列. (Ⅲ)由(Ⅱ)知,当λ=-18,b n =0,S n =0,不满足题目要求. ∴λ≠-18,故知b n = -(λ+18)·(-32)n -1,于是可得 S n =-.321·)18(53⎥⎦⎤⎢⎣⎡+n )-(- λ 要使a <S n <b 对任意正整数n 成立, 即a <-53(λ+18)·[1-(-32)n ]〈b(n ∈N +) ,则令 得)2(1)()32(1)18(53)32(1--=--<+-<--n f b a nnλ ①当n 为正奇数时,1<f (n ),1)(95;35<≤≤n f n 为正偶数时,当 ∴f (n )的最大值为f (1)=35,f (n )的最小值为f (2)= 95,于是,由①式得95a <-53(λ+18),<.1831853--<<--⇔a b b λ当a <b ≤3a 时,由-b -18≥=-3a -18,不存在实数满足题目要求;当b >3a 存在实数λ,使得对任意正整数n ,都有a <S n <b ,且λ的取值范围是(-b -18,-3a -18).。
2008年高考数学试卷

2008年高考数学试卷一、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1. 函数y = √(1 - x)+√(x)的定义域为()A. {xx ≤ 1}B. {xx ≥ 0}C. {x0 ≤ x ≤ 1}D. {xx ≥ 1或x ≤ 0}2. 汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s看作时间t的函数,其图像可能是()(此处可简单画四个图像选项,因格式问题无法准确画出,以下用文字描述图像大概形状)A. 是一条直线上升(不符合有加速减速过程)B. 先上升较缓(启动),然后上升变快(加速),接着是直线上升(匀速),最后上升变缓(减速)到停止。
C. 先上升变快(启动加速在一起了),然后直线下降(不符合实际行驶情况)D. 先上升变快(启动加速),然后直线上升(匀速),最后突然下降(不符合减速停车的过程)3. 在ABC中,cos A=(3)/(5),cos B = (5)/(13),则cos C=()A. -(33)/(65)B. (33)/(65)C. -(63)/(65)D. (63)/(65)4. 设a ∈ R,且(a + i)^2i为正实数,则a=()A. 2B. 1C. 0D. -15. 已知等差数列{a_n}满足a_2+a_4=4,a_3+a_5=10,则它的前10项的和S_10=()A. 138B. 135C. 95D. 236. 若函数y = f(x)的图象与函数y = ln√(x)+1的图象关于直线y = x对称,则f(x)=()A. e^2x - 2B. e^2xC. e^2x+1D. e^2x+27. 设曲线y=(x + 1)/(x - 1)在点(3,2)处的切线与直线ax + y+1 = 0垂直,则a=()A. 2B. (1)/(2)C. -(1)/(2)D. -28. 为得到函数y=cos<=ft(2x+(π)/(3))的图象,只需将函数y = sin 2x的图象()A. 向左平移(5π)/(12)个长度单位。
2008年江苏省高考数学试卷及部分答案

绝密★启用前2008年普通高等学校招生全国统一考试(江苏卷)数 学参考公式:样本数据1x ,2x ,,n x 的标准差锥体体积公式222121[()()()]n s x x x x x x n=-+-++-13V Sh =其中x 为样本平均数 其中S 为底面面积、h 为高柱体体积公式 球的表面积、体积公式V Sh =24πS R =,34π3V R =其中S 为底面面积,h 为高 其中R 为球的半径一、填空题:本大题共1小题,每小题5分,共70分. 1.)6cos()(πω-=x x f 最小正周期为5π,其中0>ω,则=ω 2.一个骰子连续投2次,点数和为4的概率3.),(11R b a bi a ii∈+-+表示为,则b a += 4.{}73)1(2-<-=x x x A ,则A Z 的元素的个数 5.b a ,的夹角为120,,3,1==b a 则=-b a 56在平面直角坐标系xoy 中,设D 是横坐标与纵坐标的绝对值均大于2的点构成的区域,E 是到原点的距离不大于1的点构成的区域,向D 中随机投一点,则落入E 中的概率7. 某地区为了解70~80岁老人的日平均睡眠时间(单位:h ), 随机选择了50位老人进行调查。
下表是这50位老人日睡眠时间的 频率分布表。
序号 (i ) 分组 (睡眠时间) 组中值(i G ) 频数 (人数) 频率 (i F )1 [4,5) 4.5 6 0.12 2 [5,6) 5.5 10 0.203 [6,7) 6.5 20 0.404 [7,8) 7.5 10 0.20 5 [8,9) 8.5 4 0.08在上述统计数据的分析中,一部分计算算法流程图,则输出的S 的值是 。
8.直线b x y +=21是曲线)0(ln >=x x y 的一条切线,则实数b= ▲ 9.在平面直角坐标系中,设三角形ABC 的顶点分别为)0,(),0,(),,0(c C b B a A ,点P (0,p )在线段AO 上(异于端点),设p c b a ,,,均为非零实数,直线CP BP ,分别交AB AC ,于点F E ,,一同学已正确算的OE 的方程:01111=⎪⎪⎭⎫ ⎝⎛-+⎪⎭⎫⎝⎛-y a p x c b ,请你求OF 的方程: 10.将全体正整数排成一个三角形数阵:1 2 3 4 5 6 7 8 9 10。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2010年湖北省八市高三三月联考
理科数学
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页.全卷满分150分,考试时间120分钟. 注意事项:
1.考生在答题前,请务必将自己的姓名、准考证号等信息填在答题卡上.
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,答在试卷上无效.
3.填空题和解答题用0.5毫米黑色墨水签字笔答在答题卡上每题对应的答题区域内.答在试题卷上无效.
第Ⅰ卷(选择题,共50分)
一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合
题目要求的.
1.设全集为U ,用集合B A 、的交集、并集、补集分别表示右边韦恩图中
Ⅰ、Ⅱ、Ⅲ、Ⅳ四个部分为:Ⅰ部分:B A ⋂,Ⅱ部分:B C A U ⋂,Ⅲ部分:)(B A C B U ⋂⋂,Ⅳ部分:)()(B C A C U U ⋃,其中表示错误的是A .Ⅰ部分 B .Ⅱ部分 C .Ⅲ部分 D .Ⅳ部分 2.函数)0(cos 3sin )(>+=ωωωx x x f 的最小正周期为π,则该函数的图像 A .关于点)0,6(π对称 B .关于直线6π
-=x 对称
C .关于点)0,6
(π
-
对称 D .关于直线3
π
=
x 对称
3.δγβα、、、表示平面,l 为直线,下列命题中为真命题的是
A .βαγβγα//,⇒⊥⊥
B .γαγββα⊥⇒⊥⊥,
C .γβαγβγα⊥⇒=⋂⊥⊥l l ,,
D .δγβαδβγα//,//,//⇒⊥
4.已知{}n a 为等比数列,0>n a ,且2010200912=a a ,则=+⋅⋅⋅++200923212log log log a a a A .2
1004 B .2
1005 C .2
1006 D .10051004⨯
5.设函数⎪⎩⎪⎨⎧≥+<-=)
0)(1lg()0()21(2)(x x x x f x
,若1)(0<x f ,则0x 的取值范围是 A .)9,(-∞ B .(]()+∞⋃-∞-,91, C .[)0,1- D .[)9,1- 6.设抛物线x y 42
=的准线与x 轴交于1F ,焦点为2F ,以1F ,2F 为焦点,离心率为
2
1
的椭圆的 两条准线之间的距离为
A .4
B . 6
C .8
D .10
7.3个要好的同学同时考上了同一所高中,假设这所学校的高一年级共有10个班,那么至少有2人分
在同一班级的概率为
A .257
B . 187
C .14429
D .200
29
8.设变量y x ,满足约束条件⎪⎩⎪⎨
⎧≥-+≤-≤03230332
y x y x y ,则目标函数2
2y x u +=的最大值M 与最小值N 的比
N
M = A .
3
3
4 B .3316 C .34 D .316
9.设),2(*N n n a n ∈≥是n x )3(-的展开式中x 的一次项的系数,则=+⋅⋅⋅++∞→)333(lim 332
2n n
n a a a
A .16
B .17
C .18
D .19
10.方程8ln 82
=-x e x (e 为自然对数的底数)的实根个数为
A .2个
B .4个
C .6个
D .8个
第Ⅱ卷(非选择题,共100分)
二、填空题:本大题共5小题,每小题5分,共25分.请将答案填在答题卡中相应的位置.
11.i 是虚数单位,R x ∈,若i i
x i
x =+-,则=x .
12.假设某市今年高考考生成绩X 服从正态分布)100,500(2N ,现有2500名考生,据往年录取率可推测今年约有1000名高考考生考上一类大学,估计今年一类大学的录取分数线为 分.(其中
5987.0)25.0(,6026.0)26.0(≈≈φφ)
13.如右图,C B A ,,是直线l 上不同的三个点,点P 不在直线l 上,y
x ,为实数,则使y x +=成立的充分必要条件是 .
14.顶点在同一球面上的正四棱锥ABCD S -中,
22,1+==SA AB ,则C A ,两点间的球面距离为 .
15.已知二元函数),(y x f 满足下列关系:
①x x x f =),( ②),(),(y x kf ky kx f =(k 为非零常数) ③),(),(),(21212211y y x x f y x f y x f ++=+ ④)3
2,
(),(y
x y f y x f += 则),(y x f 关于y x ,的解析式为=),(y x f .
三、解答题:本大题共6个小题,共75分.解答应写出文字说明,证明过程或演算步骤. 16.(本小题满分12分)在直角坐标平面内,已知点)sin ,(cos ),3,0(),0,3(θθC B A ,
A
B
C
P
l
其中)2
3,2(ππθ∈.
=,求角θ的弧度数;
(Ⅱ)若1-=⋅,求θ
θ
θtan 12sin sin 22+-的值.
17.(本小题满分12分)甲、乙两篮球运动员进行定点投篮,每人各投4个球,甲投篮命中的概率为
2
1
,乙投篮命中的概率为
3
2. (Ⅰ)求甲至多命中2个且乙至少命中2个的概率;
(Ⅱ)若规定每投蓝一次命中得3分,未命中得-1分,求乙所得分数η的概率分布和数学期望.
18.(本小题满分12分)如图,在正三棱柱111C B A ABC -中,
G E D 、、分别是11AC BB AB 、、的中点,21==BB AB .
(Ⅰ)在棱11C B 上是否存在点F 使DE GF //?如果存在,
试确定它的位置;如果不存在,请说明理由;
(Ⅱ)求截面DEG 与底面ABC 所成锐二面角的正切值; (Ⅲ)求点1B 到截面DEG 的距离.
19.(本小题满分12分)如图,用一块形状为半椭圆14
2
2
=+y x )0(≥y 的铁皮截取一个以短轴BC 为底的等腰梯形ABCD ,问:怎样截
才能使所得等腰梯形ABCD 的面积最大?
20.(本小题满分13分)已知两定点)0,2(),0,2(21F F -,平面上动点P 满足221=-PF PF . (Ⅰ)求动点P 的轨迹c 的方程;
(Ⅱ)过点)1,0(M 的直线l 与c 交于B A 、两点,且λ=,当
2
1
31≤≤λ时,求直线l 的斜率k 的取值范围.
21.(本小题满分14分)下图是一个三角形数阵.从第二行起每一个数都等于它肩上两个数的和,第k 行的
第
一
个
数
为
)
,2,1(*N n k n n k a k ∈≥≤≤、.
(Ⅰ)写出k a 与1-k a 的递推关系, 并求n a ;
第1行 1 2 3 4 5 … 1-n n 第2行 3 5 7 9 … 12-n
第3行 8 12 16 …
… … … 第k 行 k a … … 第n 行 n a
1A
A
1B
B
1C
C
D
E
G ·
x
(Ⅱ)求第k 行所有数的和k T ; (Ⅲ)求数阵中所有数的和
n n T T T S +⋅⋅⋅++=21;
并证明:当2≥n 时,n n a S 2≥.。