2015届高考物理第一轮复习第4章 曲线运动 万有引力与航天 章末定时练4
(统考版)高考物理一轮复习 第四章 曲线运动 万有引力与航天 第4讲 万有引力与航天学生用书

第4讲万有引力与航天一、开普勒行星运动定律1.开普勒第一定律——轨道定律所有行星绕太阳运动的轨道都是________,太阳处在椭圆的一个________上.2.开普勒第二定律——面积定律对任意一个行星来说,它与太阳的连线在相等的时间内扫过相等的________.3.开普勒第三定律——周期定律所有行星的轨道的半长轴的三次方跟它的________的二次方的比值都相等.二、万有引力定律1.内容自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量m1和m2的乘积成________、与它们之间距离r的二次方成________.2.表达式F=G m1m2,G为引力常量,其值通常取G=6.67×10-11N·m2/kg2.r23.适用条件(1)公式适用于________间的相互作用,当两个物体间的距离远远大于物体本身的大小时,物体可视为质点.(2)质量分布均匀的球体可视为质点,r是________的距离.三、宇宙速度1.经典时空观(1)在经典力学中,物体的质量是不随________而改变的.(2)在经典力学中,同一物理过程发生的位移和对应时间的测量结果在不同的参考系中是________的.2.相对论时空观(1)在狭义相对论中,同一物理过程发生的位移和对应时间的测量结果在不同的参考系中是________的.(2)光速不变原理:不管在哪个惯性系中,测得的真空中的光速都是________的.,生活情境1.我国的“天链一号”是地球同步卫星,在发射变轨过程中有一椭圆轨道如图所示,A 、B 是“天链一号”运动的远地点和近地点.(1)根据开普勒第一定律,“天链一号”围绕地球运动的轨迹是椭圆,地球处于椭圆的一个焦点上.( )(2)根据开普勒第二定律,“天链一号”在B 点的运动速度比在A 点小.( ) (3)“天链一号”在A 点的加速度小于在B 点的加速度.( )(4)开普勒第三定律a 3T 2=k 中,k 是只与中心天体有关的物理量.( )(5)开普勒根据自己长期观察的实验数据总结出了行星运动的规律,并发现了万有引力定律.( )教材拓展2.[人教版必修2P 48T 3改编]火星的质量和半径分别约为地球的110和12,地球的第一宇宙速度为v ,则火星的第一宇宙速度约为( )A .√55v B .√5v C .√2v D .√22v关键能力·分层突破考点一 万有引力定律与开普勒定律1.万有引力与重力的关系地球对物体的万有引力F 表现为两个效果:一是重力mg ,二是提供物体随地球自转的向心力F 向,如图所示.(1)在赤道处:G MmR 2=mg 1+m ω2R .(2)在两极处:G MmR 2=mg 2.2.星体表面及上空的重力加速度(以地球为例)(1)在地球表面附近的重力加速度g (不考虑地球自转):mg =G Mm R 2,得g =GMR 2.(2)在地球上空距离地球表面h处的重力加速度为g′:mg′=G Mm(R+h)2,得g′=GM(R+h)2,所以gg′=(R+h)2R2.例1. [2021·全国甲卷,18]2021年2月,执行我国火星探测任务的“天问一号”探测器在成功实施三次近火制动后,进入运行周期约为1.8×105s的椭圆形停泊轨道,轨道与火星表面的最近距离约为2.8×105 m.已知火星半径约为3.4×106 m,火星表面处自由落体的加速度大小约为3.7 m/s2,则“天问一号”的停泊轨道与火星表面的最远距离约为( ) A.6×105 m B.6×106 mC.6×107 m D.6×108 m跟进训练1.[2021·山东卷,5]从“玉兔”登月到“祝融”探火,我国星际探测事业实现了由地月系到行星际的跨越.已知火星质量约为月球的9倍,半径约为月球的2倍,“祝融”火星车的质量约为“玉兔”月球车的2倍.在着陆前,“祝融”和“玉兔”都会经历一个由着陆平台支撑的悬停过程.悬停时,“祝融”与“玉兔”所受着陆平台的作用力大小之比为( )A.9∶1 B.9∶2C.36∶1 D.72∶12.如图所示,一颗卫星绕地球沿椭圆轨道运动,运动周期为T,图中虚线为卫星的运行轨道,A、B、C、D是轨道上的四个位置,其中A距离地球最近,C距离地球最远.B和D是弧线ABC和ADC的中点.下列说法正确的是( )A.卫星在C点的速度最大B.卫星在C点的加速度最大C.卫星从A经D到C点的运动时间为T2D .卫星从B 经A 到D 点的运动时间为T2考点二 天体质量和密度的估算1.计算中心天体的质量、密度时的两点区别(1)天体半径和卫星的轨道半径通常把天体看成一个球体,天体的半径指的是球体的半径.卫星的轨道半径指的是卫星围绕天体做圆周运动的圆的半径.卫星的轨道半径大于等于天体的半径.(2)自转周期和公转周期自转周期是指天体绕自身某轴线运动一周所用的时间,公转周期是指卫星绕中心天体做圆周运动一周所用的时间.自转周期与公转周期一般不相等.2.天体质量和密度的估算方法(1)利用天体表面的重力加速度g 和天体半径R .①由G MmR 2=mg 得天体质量M =gR 2G.②天体密度ρ=M V =M 43πR 3=3g4πGR.③GM =gR 2称为黄金代换公式.(2)测出卫星绕天体做匀速圆周运动的周期T 和半径r . ①由GMm r 2=m4π2T 2r 得天体的质量M =4π2r 3GT 2.②若已知天体的半径R ,则天体的密度ρ=M V =M43πR3=3πr 3GT 2R 3. 例2. [2021·广东卷,2]2021年4月,我国自主研发的空间站天和核心舱成功发射并入轨运行.若核心舱绕地球的运行可视为匀速圆周运动,已知引力常量,由下列物理量能计算出地球质量的是( )A .核心舱的质量和绕地半径B .核心舱的质量和绕地周期C .核心舱的绕地角速度和绕地周期D .核心舱的绕地线速度和绕地半径跟进训练 3.如图所示,“嫦娥五号”探测器包括轨道器、返回器、上升器、着陆器四部分.探测器自动完成月面样品采集,并在2020年12月17日凌晨安全着陆回家.若已知月球半径为R ,“嫦娥五号”在距月球表面为R 的圆轨道上飞行,周期为T ,万有引力常量为G ,下列说法正确的是( )A .月球的质量为4π2R 3GT 2B .月球表面的重力加速度为32π2R T 2C .月球的密度为3πGT 2D .月球第一宇宙速度为4πR T4.[2021·全国乙卷,18]科学家对银河系中心附近的恒星S2进行了多年的持续观测,给出1994年到2002年间S2的位置如图所示.科学家认为S2的运动轨迹是半长轴约为1 000 AU(太阳到地球的距离为1 AU)的椭圆,银河系中心可能存在超大质量黑洞.这项研究工作获得了2020年诺贝尔物理学奖.若认为S2所受的作用力主要为该大质量黑洞的引力,设太阳的质量为M ,可以推测出该黑洞质量约为( )A .4×104M B .4×106MC .4×108MD .4×1010M考点三 卫星运行规律及特点角度1宇宙速度的理解与计算例3. 我国首次火星探测任务被命名为“天问一号”.已知火星质量约为地球质量的10%,半径约为地球半径的50%,下列说法正确的是( )A .火星探测器的发射速度应大于地球的第二宇宙速度B .火星探测器的发射速度应介于地球的第一和第二宇宙速度之间C .火星的第一宇宙速度大于地球的第一宇宙速度D .火星表面的重力加速度大于地球表面的重力加速度角度2卫星运行参量的比较做匀速圆周运动的卫星所受万有引力完全提供其所需向心力,由GMm r 2=m v 2r =mr ω2=m4π2T 2r =ma 可推导出:v = √GMrω= √GMr 3T = √4π2r 3GM a =G M r 2}⇒当r 增大时{ v 减小ω减小T 增大a 减小例4. [2021·湖南卷,7](多选)2021年4月29日,中国空间站天和核心舱发射升空,准确进入预定轨道.根据任务安排,后续将发射问天实验舱和梦天实验舱,计划2022年完成空间站在轨建造.核心舱绕地球飞行的轨道可视为圆轨道,轨道离地面的高度约为地球半径的116,下列说法正确的是( )A .核心舱进入轨道后所受地球的万有引力大小约为它在地面时的(1617)2B .核心舱在轨道上飞行的速度大于7.9 km/sC .核心舱在轨道上飞行的周期小于24 hD角度3同步卫星问题地球同步卫星的五个“一定”例5. [2022·北京石景山模拟]研究表明,地球自转在逐渐变慢,3亿年前地球自转的周期约为22小时.假设这种趋势会持续下去,地球的其他条件都不变,未来人类发射的地球同步卫星与现在的相比( )A .距地面的高度变大B .向心加速度变大C .线速度变大D .角速度变大角度4卫星变轨问题例6.[2021·天津模拟]2021年5月15日,天问一号探测器着陆火星取得成功,迈出了我国星际探测征程的重要一步,在火星上首次留下中国人的印迹.天问一号探测器成功发射后,顺利被火星捕获,成为我国第一颗人造火星卫星.经过轨道调整,探测器先沿椭圆轨道Ⅰ运行,之后进入称为火星停泊轨道的椭圆轨道Ⅱ运行,如图所示,两轨道相切于近火点P ,则天问一号探测器( )A .在轨道Ⅱ上处于受力平衡状态B .在轨道Ⅰ运行周期比在Ⅱ时短C .从轨道Ⅰ进入Ⅱ在P 处要加速D .沿轨道Ⅰ向P 飞近时速度增大[思维方法]人造卫星问题的解题技巧(1)一个模型卫星的运动可简化为质点的匀速圆周运动模型. (2)两组公式①GMm r 2=m v 2r =m ω2r =m4π2T 2r =ma n .②mg =G MmR 2(g 为星体表面处的重力加速度).(3)a n 、v 、ω、T 均与卫星的质量无关,只由轨道半径和中心天体质量共同决定,所有参量的比较最终归结到半径的比较.跟进训练5.(多选)2021年6月17日,神舟十二号载人飞船采用自主快速交会对接模式成功对接于天和核心舱前向端口,与此前已对接的天舟二号货运飞船一起构成三舱组合体.组合体绕地球飞行的轨道可视为圆轨道,该轨道离地面的高度约为389 km.下列说法正确的是( )A .组合体在轨道上飞行的周期小于24 hB .组合体在轨道上飞行的速度大于7.9 km/sC .若已知地球半径和表面重力加速度,则可算出组合体的角速度D .神舟十二号先到达天和核心舱所在圆轨道,然后加速完成对接6.[2021·浙江6月,10]空间站在地球外层的稀薄大气中绕行,因气体阻力的影响,轨道高度会发生变化.空间站安装有发动机,可对轨道进行修正.图中给出了国际空间站在2020.02~2020.08期间离地高度随时间变化的曲线,则空间站( )A.绕地运行速度约为2.0 km/sB.绕地运行速度约为8.0 km/sC.在4月份绕行的任意两小时内机械能可视为守恒D.在5月份绕行的任意两小时内机械能可视为守恒考点四双星或多星模型素养提升1.双星模型(1)结构图(2)特点:①各自所需向心力由彼此间的万有引力提供,即G m1m2L2=m1ω12r1,G m1m2L2=m2ω22r2.②两颗星运行的周期及角速度相同,即T1=T2,ω1=ω2.③两颗星的运行轨道半径与它们之间的距离关系为r1+r2=L.2.多星系统(1)多星的特征:所研究星体间的万有引力的合力提供其做圆周运动的向心力.除中央星体外,各星体的周期相同.(2)多星的形式(如三星模型)例7. [2022·潍坊模拟](多选)在宇宙中,当一颗恒星靠近黑洞时,黑洞和恒星可以相互绕行,从而组成双星系统.在相互绕行的过程中,质量较大的恒星上的物质会逐渐被吸入到质量较小的黑洞中,从而被吞噬掉,黑洞吞噬恒星的过程也被称之为“潮汐瓦解事件”.天鹅座X 1就是这样一个由黑洞和恒星组成的双星系统,它们以两者连线上的某一点为圆心做匀速圆周运动,如图所示.在刚开始吞噬的较短时间内,恒星和黑洞的距离不变,则在这段时间内,下列说法正确的是( )A .它们间的万有引力大小变大B .它们间的万有引力大小不变C .恒星做圆周运动的线速度变大D .恒星做圆周运动的角速度变大跟进训练7.宇宙中,两颗靠得比较近的恒星,只受到彼此之间的万有引力作用,分别围绕其连线上的某一点做周期相同的匀速圆周运动,称之为双星系统.由恒星A 与恒星B 组成的双星系统绕其连线上的O 点做匀速圆周运动,如图所示.已知它们的运行周期为T ,恒星A 的质量为M ,恒星B 的质量为3M ,引力常量为G ,则下列判断正确的是( )A .两颗恒星相距 √GMT 2π23B .恒星A 与恒星B 的向心力之比为3∶1C .恒星A 与恒星B 的线速度之比为1∶3D .恒星A 与恒星B 的轨道半径之比为√3∶18.宇宙间存在一些离其他恒星较远的三星系统.其中有一种三星系统如图所示,三颗质量均为M 的星位于等边三角形的三个顶点上,任意两颗星的距离均为R ,并绕其中心O 做匀速圆周运动.如果忽略其他星体对它们的引力作用,引力常量为G ,以下对该三星系统的说法中正确的( )A .每颗星做圆周运动的角速度为3√GMR 3B .每颗星做圆周运动的向心加速度与三星的质量无关C .若距离R 和每颗星的质量M 都变为原来的2倍,则角速度变为原来的2倍D .若距离R 和每颗星的质量M 都变为原来的2倍,则线速度大小不变第4讲 万有引力与航天必备知识·自主排查一、1.椭圆 焦点 2.面积 3.公转周期 二、1.正比 反比3.(1)质点 (2)两球心间 三、7.9 匀速圆周 11.2 地球 16.7 太阳 四、1.(1)运动状态 (2)相同 2.(1)不同 (2)不变 生活情境1.(1)√ (2)× (3)√ (4)√ (5)× 教材拓展 2.答案:A关键能力·分层突破例1 解析:设火星的半径为R 1、表面的重力加速度为g 1,质量为m 1的物体绕火星表面飞行的周期为T 1,则有m 14π2T 12 R 1=m 1g 1,设椭圆停泊轨道与火星表面的最近、最远距离分别为h 1、h 2,停泊轨道周期为T 2,根据开普勒第三定律有R 13 T 12 =(ℎ1+2R 1+ℎ22)3T 22 ,代入数据解得h 2=√2g 1R 12T 22 π23-2R 1-h 1≈6×107m ,故选项A 、B 、D 错误,选项C 正确.答案:C1.解析:悬停时二力平衡,即F =G Mm R 2∝MmR 2,得F 祝F 兔=M 火M 月×m 祝m 兔×(R 月R 火)2=91×21×(12)2=92,B 项正确. 答案:B2.解析:卫星绕地球沿椭圆轨道运动,类似于行星绕太阳运转,根据开普勒第二定律:行星与太阳的连线在相等时间内扫过的面积相等,则知卫星与地球的连线在相等时间内扫过的面积相等,所以卫星在距离地球最近的A 点速度最大,在距离地球最远的C 点速度最小,故A 错误;在椭圆的各个点上都是引力产生加速度,有a =GMr 2,因卫星在A 点与地球的距离最小,则卫星在A 点的加速度最大,故B 错误;根据对称性可知t ADC =t CBA =T2,故C 正确;卫星在近地点A 附近速度较大,在远地点C 附近速度较小,则t BAD <T2,t DCB >T 2,故D 错误.答案:C例2 解析:根据万有引力提供核心舱绕地球做匀速圆周运动的向心力得GMm r 2=m v 2r ,解得M =v 2r G,D 正确;由于核心舱质量在运算中被约掉,故无法通过核心舱质量求解地球质量,A 、B 错误;已知核心舱的绕地角速度,由GMm r 2=m ω2r 得M =ω2·r 3G,且ω=2πT,r 约不掉,故还需要知道核心舱的绕地半径,才能求得地球质量,C 错误. 答案:D 3.解析:“嫦娥五号”探测器在距月球表面为R 的轨道上运行,万有引力提供向心力,有G Mm (2R )2=m 4π2T 22R ,得月球质量为M =32π2R 3GT 2,A 错误;月球密度ρ=M V=M43πR3=24πGT 2,C 错误;对月球表面的物体m ′,有G Mm ′R 2=m ′g ,得月球表面的重力加速度g =GM R 2=32π2R T 2,B 正确;设月球第一宇宙速度为v ,则G MmR 2=m v 2R ,得v = √GM R=4√2πR T,D 错误.答案:B4.解析:由1994年到2002年间恒星S2的观测位置图可知,恒星S2绕黑洞运动的周期大约为T 2=16年,半长轴为a =1 000 AU ,设黑洞的质量为M 黑,恒星S2质量为m 2,由万有引力提供向心力可得GM 黑m 2a 2=m 2a (2πT 2)2;设地球质量为m 1,地球绕太阳运动的轨道半径为r=1 AU ,周期T 1=1年,由万有引力提供向心力可得GMm 1r 2=m 1r (2πT 1)2,联立解得黑洞质量M 黑≈4×106M ,选项B 正确.答案:B例 3 解析:当发射速度大于第二宇宙速度时,探测器将脱离地球的引力在太阳系的范围内运动,火星在太阳系内,所以火星探测器的发射速度应大于第二宇宙速度,故A 正确;第二宇宙速度是探测器脱离地球的引力到太阳系中的临界条件,当发射速度介于地球的第一和第二宇宙速度之间时,探测器将围绕地球运动,故B 错误;万有引力提供向心力,则有GMm R 2=mv 12 R,解得第一宇宙速度为v 1= √GM R,所以火星的第一宇宙速度为v 火= √10%50%v 地= √55v 地,所以火星的第一宇宙速度小于地球的第一宇宙速度,故C 错误;万有引力近似等于重力,则有GMm R 2=mg ,解得火星表面的重力加速度g 火=GM 火R 火2=10%(50%)2g 地=25g 地,所以火星表面的重力加速度小于地球表面的重力加速度,故D 错误.故选A.答案:A例4 解析:根据万有引力公式F =GMm r 2可知,核心舱进入轨道后所受地球的万有引力大小与轨道半径的平方成反比,则核心舱进入轨道后所受地球的万有引力与它在地面时所受地球的万有引力之比F ′F 地=R 2(R+R 16)2,解得F ′=(1617)2F 地,A 正确;根据GMm R 2=mv 2R可得,v = √GM R=7.9 km/s ,而核心舱轨道半径r 大于地球半径R ,所以核心舱在轨道上飞行的速度一定小于7.9 km/s ,B 错误;由GMm r 2=m4π2T 2r 得绕地球做圆周运动的周期T 与√r 3成正比,核心舱的轨道半径比同步卫星的小,故核心舱在轨道上飞行的周期小于24 h ,C 正确;根据G Mmr 2=m v 2r 可知空间站的轨道半径与空间站的质量无关,故后续加挂实验舱后,轨道半径不变,D 错误.答案:AC例5 解析:同步卫星的周期等于地球的自转周期,根据GMm r 2=m (2πT)2r 可知,卫星的周期越大,轨道半径越大,所以地球自转变慢后,同步卫星需要在更高的轨道上运行,A 正确;又由GMm r 2=m v 2r=m ω2r =ma 可知:r 增大,则v 减小、ω变小、a 变小,故B 、C 、D 均错误.答案:A例6 解析:天问一号探测器在轨道Ⅱ上做变速运动,受力不平衡,故A 错误.轨道Ⅰ的半长轴大于轨道Ⅱ的半长轴,根据开普勒第三定律可知,天问一号探测器在轨道Ⅰ的运行周期比在Ⅱ时长,故B 错误.天问一号探测器从较高轨道Ⅰ向较低轨道Ⅱ变轨时,需要在P 点点火减速,故C 错误.天问一号探测器沿轨道Ⅰ向P 飞近时,万有引力做正功,动能增大,速度增大,故D 正确.答案:D5.解析:组合体的轨道半径小于同步卫星的轨道半径,由开普勒第三定律可知其周期小于24 h ,A 项正确;环绕地球表面做圆周运动的近地卫星的速度为7.9 km/s ,组合体的轨道半径大于近地卫星的轨道半径,由v = √GM r可知组合体的速度小于7.9 km/s ,B 项错;若已知地球半径和表面重力加速度,则有GM =gR 2,对组合体则有G Mm(R+h )2=m ω2(R +h ),两式联立可得出组合体的角速度,C 项正确;若神舟十二号先到达天和核心舱所在圆轨道再加速,则做离心运动,不能完成对接,D 项错.答案:AC6.解析:设空间站离地面高度为h ,空间站在运行过程中万有引力提供其做圆周运动的向心力,有G Mm (R+h )2=m v 2(R+h ),则运行速度v =√GMR+h ,由题图可知卫星绕地球做离地高约420 km左右的近地轨道运动,故环绕速度略小于第一宇宙速度7.9 km/s ,A 、B 错误;4月份中某时刻轨道高度突然减小,是由于受到了外层大气稀薄空气的影响,机械能减小,C 错误;5月中轨道半径基本不变,故机械能可视为守恒,D 正确.答案:D例7 解析:设质量较大的恒星为M 1,质量较小的黑洞为M 2,则两者之间的万有引力为F =GM 1M 2L 2,由数学知识可知,当M 1=M 2时,M 1·M 2有最大值,根据题意可知质量较小的黑洞M 2吞噬质量较大的恒星M 1,因此万有引力变大,故A 正确,B 错误;对于两天体,万有引力提供向心力,即G M 1M 2L 2=M 1ω2R 1=M 14π2T 2R 1,GM 1M 2L 2=M 2ω2R 2=M 24π2R T 2R 2,解得两天体质量表达式为M 1=ω2L 2GR 2=4π2L 2GT 2R 2,M 2=ω2L 2GR 1=4π2L 2GT 2R 1,两天体总质量表达式为M 1+M 2=ω2L 3G=4π2L 3GT 2,两天体的总质量不变,两天体之间的距离L 不变,因此天体的周期T 和角速度ω也不变,质量较小的黑洞M 2的质量增大,因此恒星的圆周运动半径增大,根据v =2πR 2T可知,恒星的线速度增大.故C 正确,D 错误.答案:AC7.解析:两颗恒星做匀速圆周运动的向心力来源于恒星之间的万有引力,所以向心力大小相等,即M4π2T 2r A =3M4π2T 2r B ,解得恒星A 与恒星B 的轨道半径之比为r A ∶r B =3∶1,选项B 、D 错误;设两恒星相距为L ,即r A +r B =L ,则有M 4π2T 2r A =G 3M 2L 2,解得L = √GMT 2π23,选项A 正确;由v =2πTr 可得恒星A 与恒星B 的线速度之比为3∶1,选项C 错误.答案:A8.解析:任意两星之间的万有引力为F 0=G MM R 2,则任意一星所受合力为F =2F 0cos 30°=2×GMM R 2×√32=√3G MM R2,任意一星运动的轨道半径r =23R cos 30°=23×R ×√32=√33R ,万有引力提供向心力,有F =√3G MMR 2=M ω2r ,解得每颗星做圆周运动的角速度ω= √√3GM·√33R =√3GM R 3,A 错误;万有引力提供向心力,有F =√3GMM R2=Ma ,解得a =√3GMR 2,则每颗星做圆周运动的向心加速度与三星的质量有关,B 错误;根据题意可知ω′= √3G·2M(2R )3=12 √3GM R 3=12ω,C 错误;根据线速度与角速度的关系可知变化前线速度为v =ωr = √3GM R 3·√33R = √GM R,则变化后为v ′= √2GM 2R=v ,D 正确.答案:D。
高考物理一轮复习讲义第四章_曲线运动万有引力与航天_曲线运动万有引力与航天_章末_word版有答案

第四章章末检测1.一辆静止在水平地面上的汽车里有一个小球从高处自由下落,下落一半高度时汽车突然向右匀加速运动,站在车厢里的人观测到小球的运动轨迹是图中的()解析开始时小球相对观察者是做自由落体运动,当车突然加速时,等效成小球相对汽车向左突然加速,刚开始加速时,水平方向的相对速度较小,随着时间的延长,水平方向的相对速度逐渐增大,故观察者看到的小球的运动轨迹应该是C图。
答案C2.中国女排享誉世界排坛,曾经取得辉煌的成就.如图1所示,在某次比赛中,我国女排名将冯坤将排球从底线A点的正上方以某一速度水平发出,排球正好擦着球网落在对方底线的B点上,且AB平行于边界CD.已知网高为h,球场的长度为s,不计空气阻力且排球可看成质点,则排球被发出时,击球点的高度H和水平初速度v分别为().图1A.H=43h B.H=32hC.v=s3h3gh D.v=s4h6gh解析由平抛知识可知12gt2=H,H-h=12g⎝⎛⎭⎪⎫t22得H=43h,A正确、B错误.由v t=s,得v=s4h6gh,D正确、C错误.答案AD3.“飞车走壁”杂技表演比较受青少年的喜爱,这项运动由杂技演员驾驶摩托车,简化后的模型如图2所示,表演者沿表演台的侧壁做匀速圆周运动.若表演时杂技演员和摩托车的总质量不变,摩托车与侧壁间沿侧壁倾斜方向的摩擦力恰好为零,轨道平面离地面的高度为H,侧壁倾斜角度α不变,则下列说法中正确的是().图2A.摩托车做圆周运动的H越高,向心力越大B.摩托车做圆周运动的H越高,线速度越大C.摩托车做圆周运动的H越高,向心力做功越多D.摩托车对侧壁的压力随高度H变大而减小解析经分析可知摩托车做匀速圆周运动的向心力由重力及侧壁对摩托车弹力的合力提供,由力的合成知其大小不随H的变化而变化,A错误;因摩托车和演员整体做匀速圆周运动,所受合外力提供向心力,即F合=mv2r,随H的增高,r增大,线速度增大,B正确;向心力与速度方向一直垂直,不做功,C错误;由力的合成与分解知识知摩托车对侧壁的压力恒定不变,D错误.答案 B4.如图所示,一小钢球从平台上的A处以速度v0水平飞出.经t0时间落在山坡上B处,此时速度方向恰好沿斜坡向下,接着小钢球从B处沿直线自由滑下,又经t0时间到达坡上的C处.斜坡BC与水平面夹角为30°,不计摩擦阻力和空气阻力,则小钢球从A到C的过程中水平、竖直两方向的分速度v x、v y随时间变化的图像是()解析小钢球从A到C的过程中水平方向的分速度vx,先是匀速直线运动,后是匀加速直线运动,A、B错误;小钢球从A到C的过程中竖直方向的分速度vy,显示加速度为g的匀加速直线运动,后是加速度为g/4的匀加速直线运动,C错误、D正确。
【优化探究】2015届高三物理总复习配套课件:第4章 曲线运动·万有引力与航天4章末专题突破

书
(3)速度是联系前后两个过程的关键物理量,前一个过程的末速
业 有
度是后一个过程的初速度.
限 公
司
菜 单 隐藏
高考总复习 物理(AH)
【典例1】 (2014年珠海模拟)如图所示,在圆柱形房屋天花板
中心O点悬挂一根长为L的细绳,绳的下端挂一个质量为m的小球,已
知绳能承受的最大拉力为2mg,小球在水平面内做圆周运动,当速度
解析:(1)选手下摆的过程由动能定理
得:mgl(1-cos α)=12mv2
山 东
选手在最低点由牛顿第二定律得:
金 太
F′-mg=mvl2
阳 书 业
解得:F′=(3-2cos α)mg=1 080 N
有
限
由牛顿第三定律得选手对绳的拉力:
公
司
F=F′=1 080 N
菜 单 隐藏
(2)由动能定理得:
高考总复习 物理(AH)
(1)求选手摆到最低点时对绳拉力的大小F; 山 东 金 太 阳 书 业 有 限 公 司
菜 单 隐藏
高考总复习 物理(AH)
(2)若绳长l=2 m,选手摆到最高点时松手落入水中.设水对选手 的平均浮力f1=800 N,平均阻力f2=700 N,求选手落入水中的深度d;
(3)若选手摆到最低点时松手,小明认为绳越长,在浮台上的落 点距岸边越远;小阳认为绳越短,落点距岸边越远,请通过推算说明 你的观点.
直固定的圆轨道,最后物块经轨道最低点A抛出后落到B点,若物块与
水平轨道间的动摩擦因数μ=0.5,R=1.6 m,P到Q的长度l=3.1 m,A
到B的竖直高度h=1.25 m,取g=10 m/s2. 山
(1)求物块到达Q点时的速度大小;
2015年高考物理一轮复习 第4章 曲线运动、万有引力与航天 第4讲 万有引力与航天

梳理深化 强基固本
多维课堂 热点突破
思维建模 素养提升
A.王跃在火星表面受的万有引力是在地球表面受万有引 4 力的 9 2 B.火星表面的重力加速度是 g 3 2 C.火星第一宇宙速度是地球第一宇宙速度的 3 D.王跃以相同的初速度在火星上起跳时,可跳的最大高 3 度是 h 2
梳理深化 强基固本
多维课堂 热点突破
4.第一宇宙速度的计算方法. GM 2 v Mm R . (1)由 G 2 =m R 得 v=_______ R v2 gR . (2)由 mg=m R 得 v=______
梳理深化 强基固本 多维课堂 热点突破 思维建模 素养提升
第二宇宙速度和第三宇宙速度 (考纲要求 Ⅰ )
11.2 km/s,使物体挣脱 1.第二宇宙速度(脱离速度):v2=_____
答案 AC
梳理深化 强基固本
多维课堂 热点突破
思维建模 素养提升
【跟踪短训】 1.有一星球的密度跟地球密度相同,但它表面处的重力加速 度是地球表面处重力加速度的 4 倍,则该星球的质量将是 地球质量的(忽略其自转影响) 1 A. 4 C.16 倍 B. 4 倍 ( ).
D.64 倍 GM 3M 解析 天体表面的重力加速度:g= 2 ,又知 ρ= , R 4πR3
思维建模 素养提升
5.(单选)随着“神舟十号”与“天宫一号”成功“牵手”及 “嫦娥”系列月球卫星技术的成熟,我国将于2020年前发
射月球登陆器,采集月球表面的一些样本后返回地球,为
中国人登陆月球积累实验数据.月球登陆器返回时,先由 月球表面发射后绕月球在近月圆轨道上飞行,经轨道调整 后与停留在较高轨道的轨道舱对接,对接完成后再经加速 脱离月球飞回地球,下列关于此过程的描述中正确的是
2015高三复习:第4单元-曲线运动 万有引力与航天-物理-新课标·教育科学版-四川省专用(逐字编辑)

第7讲
运动的合成与分解
考 向 互 动 探 究
3.轨迹特征:曲线运动的轨迹始终夹在合外力的 方向与速度的方向之间,而且向合外力的一侧弯曲,或 者说合外力的方向总指向曲线的“凹”侧. 4.能量特征:如果物体所受的合外力方向始终和 物体速度方向垂直,则合外力对物体不做功,物体的动 能不变;若合外力方向不与物体速度方向垂直,则合外 力对物体做功,物体的动能发生变化.
返回目录
第7讲
知 识 自 主 梳 理
运动的合成与分解
C [解析] 撤去两个力后,物体受到其余三力的合力保 持不变,所以物体一定做匀变速运动,由于合力的方向与速 度方向的关系不确定,所以物体运动轨迹不确定,5 N≤F 合 ≤25 N,由牛顿第二定律得:2.5 m/s2≤a≤12.5 m/s2,只有选 项C正确.
返回目录
第7讲
知 识 自 主 梳 理
运动的合成与分解
二、合运动与分运动 1.合运动与分运动的关系 (1)运动的独立性原理:各分运动都可以看作各自独立进 行,它们之间__________ 互不干扰 . 相同时间 (2)运动的等时性原理:合运动和分运动是在 __________ 内进行的,它们具有等时性. 2 .速度、位移、加速度的合成和分解遵循平行四边形 定则.
返回目录
知 识 自 主 梳 理 考 向 互 动 探 究 随 堂 巩 固 检 测
返回目录
第7讲 运动的合成与分解
第7讲
知 识 自 主 梳 理
运动的合成与分解
一、运动的性质和轨迹 合外力 以 1 .运动的性质:运动的性质由物体受到的 ________ 合外力 与速度之间的方向关系决定. 及________ 2.运动的轨迹:运动轨迹是直线还是曲线取决于物体 的合速度和合外力方向是否________ 共线 . 3.常见的运动类型 匀速直线 运动或静止状态. (1)加速度a=0:物体处于__________ (2)加速度a恒定:物体做匀变速运动,可分为三类: 匀加速直线 运动; 第一类:速度v与a同向,为________________ 匀减速直线 运动; 第二类:速度v与a反向,为________________
高考物理一轮总复习 必修部分 第4章 曲线运动 万有引

第4讲 万有引力与航天1.[2015·广东高考](多选)在星球表面发射探测器,当发射速度为v 时,探测器可绕星球表面做匀速圆周运动;当发射速度达到2v 时,可摆脱星球引力束缚脱离该星球。
已知地球、火星两星球的质量比约为10∶1,半径比约为2∶1。
下列说法正确的有( )A .探测器的质量越大,脱离星球所需要的发射速度越大B .探测器在地球表面受到的引力比在火星表面的大C .探测器分别脱离两星球所需要的发射速度相等D .探测器脱离星球的过程中,势能逐渐增大 答案 BD解析 由G Mm R 2=m v 2R 得,v =GMR,则有2v =2GMR,由此可知探测器脱离星球所需要的发射速度与探测器的质量无关,A 项错误;由F =GMmR 2及地球、火星的质量、半径之比可知,探测器在地球表面受到的引力比在火星表面的大,B 项正确;由2v =2GMR可知,探测器脱离两星球所需的发射速度不同,C 项错误;探测器在脱离两星球的过程中,引力做负功,引力势能是逐渐增大的,D 项正确。
2.[2015·重庆高考]宇航员王亚平在“天宫1号”飞船内进行了我国首次太空授课,演示了一些完全失重状态下的物理现象。
若飞船质量为m ,距地面高度为h ,地球质量为M ,半径为R ,引力常量为G ,则飞船所在处的重力加速度大小为( )A .0 B.GMR +h2C.GMm R +h2D.GM h 2答案 B解析 对飞船进行受力分析,可得,GMm R +h2=mg 得,g =GM R +h2,B 项正确。
3.[2015·江苏高考]过去几千年来,人类对行星的认识与研究仅限于太阳系内,行星“51 peg b”的发现拉开了研究太阳系外行星的序幕。
“51 peg b”绕其中心恒星做匀速圆周运动,周期约为4天,轨道半径约为地球绕太阳运动半径的120。
该中心恒星与太阳的质量比约为( )A.110 B .1 C .5 D .10答案 B解析 行星绕恒星做匀速圆周运动,万有引力提供向心力,由G Mm r 2=mr ⎝ ⎛⎭⎪⎫2πT 2,得M =4π2r3GT 2,则该中心恒星的质量与太阳的质量之比M M 日=r 3r 3日·T 2日T 2=⎝ ⎛⎭⎪⎫1203×365242=1.04,B 项正确。
高三物理一轮复习 第四章 曲线运动 万有引力与航天 第4节 万有引力定律及其应用课件

2.“借助外援”法(T-r) 测出卫星绕天体做匀速圆周运动的周期 T 和半径 r。 (1)由 GMr2m=m4Tπ22r得天体的质量 M=4GπT2r23。 (2)若已知天体的半径 R,则天体的密度 ρ=MV =43πMR3=GT3π2rR3 3。 (3)若卫星绕天体表面运行时,可认为轨道半径 r 等于天体半径 R,则天体密度 ρ=G3Tπ2,可见,只要测出卫星环绕天体表面运动的 周期 T,就可估算出中心天体的密度。
重力是由于物体受到地球的万有引力而产生的,严格说 重力只是万有引力的一个分力,另一个分力提供物体随地球 自转做圆周运动的向心力,但由于向心力很小,一般情况下 认为重力约等于万有引力,即 mg=GRM2m,这样重力加速度 就与行星质量、半径联系在一起,高考也多次在此命题。
[多维探究]
(一)求天体表面某高度处的重力加速度
[典例 1] (2015·重庆高考)宇航员王亚平在“天宫 1
号”飞船内进行了我国首次太空授课,演示了一些完全失重
状态下的物理现象。若飞船质量为 m,距地面高度为 h,地
球质量为 M,半径为 R,引力常量为 G,则飞船所在处的重
力加速度大小为
()
A.0
B.RG+Mh2
C.RG+Mhm2
D.GhM2
解析
成是同一平面内的同方向绕行的匀速圆周运动,已知火
星的轨道半径 r1=2.3×1011 m,地球的轨道半径为 r2= 1.5×1011 m,根据你所掌握的物理和天文知识,估算出
高考物理一轮复习 第四章 曲线运动 万有引力定律(第4课时)课时作业(含解析)-人教版高三全册物理试

课时作业【根底练习】一、天体质量的估算1.(多项选择)我国将于2017年11月发射“嫦娥五号〞探测器,假设“嫦娥五号〞到达月球后,先绕月球外表做匀速圆周运动,然后择机释放登陆器登陆月球.“嫦娥五号〞绕月球飞行的过程中,在较短时间t 内运动的弧长为s ,月球半径为R ,引力常量为G ,如此如下说法正确的答案是( )A .“嫦娥五号〞绕月球运行一周的时间是πRtsB .“嫦娥五号〞的质量为s 2R Gt2C .“嫦娥五号〞绕月球运行的向心加速度为s 2t 2RD .月球的平均密度为3s24πGR 2t2CD 解析:因绕月球外表做匀速圆周运动的“嫦娥五号〞在较短时间t 内运动的弧长为s ,可知其线速度为v =st,所以其运行一周的时间为T =2πRts,选项A 错误;天体运动中只能估算中心天体质量而无法估算环绕天体质量,选项B 错误;由a =v 2R 知a =s 2t 2R,选项C 正确;根据万有引力提供向心力有G Mm R 2=m v 2R ,再结合M =ρ·43πR 3可得ρ=3s24πGR 2t2,选项D 正确. 2.(2018漯河二模)宇航员站在某一星球外表h 高处,以初速度v 0沿水平方向抛出一个小球,经过时间t 后小球落到星球外表,该星球的半径为R ,引力常量为G ,如此该星球的质量为( )A.2hR2Gt 2B.2hR2GtC.2hRGt2D.Gt 22hR2 A 解析:设该星球的质量为M 、外表的重力加速度为g ,在星球外表有mg =GMmR 2,小球在星球外表做平抛运动,如此h =12gt 2.由此得该星球的质量为M =2hR2Gt2.二、卫星运行参量的分析与计算3.(2015山东理综)如图,拉格朗日点L 1位于地球和月球连线上,处在该点的物体在地球和月球引力的共同作用下,可与月球一起以一样的周期绕地球运动.据此,科学家设想在拉格朗日点L 1建立空间站,使其与月球同周期绕地球运动.以a 1,a 2分别表示该空间站和月球向心加速度的大小,a 3表示地球同步卫星向心加速度的大小.以下判断正确的答案是( )A .a 2>a 3>a 1B .a 2>a 1>a 3C .a 3>a 1>a 2D .a 3>a 2>a 1D 解析:地球同步卫星受月球引力可以忽略不计,地球同步卫星轨道半径r 3、空间站轨道半径r 1、月球轨道半径r 2之间的关系为r 2>r 1>r 3,由GMm r 2=ma 知,a 3=GM r 23,a 2=GMr 22,所以a 3>a 2;由题意知空间站与月球周期相等,由a =(2πT)2r ,得a 2>a 1.因此a 3>a 2>a 1,D 正确.4.(2014浙江理综)长期以来“卡戎星(Charon)〞被认为是冥王星唯一的卫星,它的公转轨道半径r 1=19 600 km ,公转周期T 1=6.39天.2006年3月,天文学家新发现两颗冥王星的小卫星,其中一颗的公转轨道半径r 2=48 000 km ,如此它的公转周期T 2最接近于( )A .15天B .25天C .35天D .45天B 解析:由开普勒第三定律可知r 31T 21=r 32T 22,得出T 2=r 32T 21r 31=〔4.8×107〕3×6.392〔1.96×107〕3天≈25天,应当选项B 正确.5.(2017广东华南三校联考,19)(多项选择)石墨烯是目前世界上的强度最高的材料,它的发现使“太空电梯〞的制造成为可能,人类将有望通过“太空电梯〞进入太空.设想在地球赤道平面内有一垂直于地面延伸到太空的轻质电梯,电梯顶端可超过地球的同步卫星A 的高度延伸到太空深处,这种所谓的太空电梯可用于降低本钱发射绕地人造卫星.如下列图,假设某物体B 乘坐太空电梯到达了图示的位置并停在此处,与同高度运行的卫星C 相比拟( )A .B 的线速度大于C 的线速度 B .B 的线速度小于C 的线速度C .假设B 突然脱离电梯,B 将做离心运动D .假设B 突然脱离电梯,B 将做近心运动BD 解析:A 和C 两卫星相比,ωC >ωA ,而ωB =ωA ,如此ωC >ωB ,又据v =ωr ,r C=r B ,得v C >v B ,故B 项正确,A 项错误.对C 星有GMm C r 2C =m C ω2C r C ,又ωC >ωB ,对B 星有G Mm B r 2B>m B ω2B r B ,假设B 突然脱离电梯,B 将做近心运动,D 项正确,C 项错误.6.(2014江苏卷,2)地球的质量约为火星质量的10倍,地球的半径约为火星半径的2倍,如此航天器在火星外表附近绕火星做匀速圆周运动的速率约为( )A .3.5 km/sB .5.0 km/sC .17.7 km/sD .35.2 km/sA 解析:由万有引力提供向心力可得:G Mm r 2=m v 2r,在行星外表运行时有r =R ,如此得v=GMR ∝M R ,因此v 火v 地=M 火M 地×R 地R 火 =110×2=55,又由v 地=7.9 km/s ,故v 火≈3.5 km/s ,应当选A 正确.三、卫星变轨问题分析7.(2017湖南长沙三月模拟,20)(多项选择)暗物质是二十一世纪物理学之谜,对该问题的研究可能带来一场物理学的革命.为了探测暗物质,我国在2015年12月17日成功发射了一颗被命名为“悟空〞的暗物质探测卫星.“悟空〞在低于同步卫星的轨道上绕地球做匀速圆周运动,经过时间t (t 小于其运动周期),运动的弧长为s ,与地球中心连线扫过的角度为β(弧度),引力常量为G ,如此如下说法中正确的答案是( )A .“悟空〞的线速度大于第一宇宙速度B .“悟空〞的向心加速度大于地球同步卫星的向心加速度C .“悟空〞的环绕周期为2πtβD. “悟空〞的质量为s 3Gt 2βBC 解析:“悟空〞的线速度小于第一宇宙速度,A 错误.向心加速度a =GM r2,因r 悟空<r同,如此a 悟空>a 同,B 正确.由ω=βt =2πT ,得“悟空〞的环绕周期T =2πtβ,C 项正确.由题给条件不能求出悟空的质量,D 错误.关键点拨 第一宇宙速度是卫星最小的发射速度,是最大的环绕速度.卫星做匀速圆周运动时ω=2πT =βt.8.(2019哈尔滨师范大学附中)卫星 信号需要通过地球同步卫星传送,地球半径为r ,无线电信号传播速度为c ,月球绕地球运动的轨道半径为60r ,运行周期为27天。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
章末定时练四(时间:60分钟)一、选择题(本题共9小题,在每小题给出的四个选项中,只有一项符合题目要求.) 1.(2013·黄山七校联考)如图1所示,P是水平地面上的一点,A、B、C、D在同一条竖直线上,且AB=BC=CD.从A、B、C三点分别水平抛出一个物体,这三个物体都落在水平地面上的P点.则三个物体抛出时的速度大小之比v A∶v B∶v C为().图1A.2∶3∶ 6 B.1∶2∶ 3C.1∶2∶3 D.1∶1∶1解析由平抛运动的规律可知竖直方向上:h=12gt2,水平方向上:x=vt,两式联立解得v0=x g2h,由于h A=3h,h B=2h,h C=h,代入上式可知选项A正确.答案 A2.在光滑水平面上,一根原长为l的轻质弹簧的一端与竖直轴O连接,另一端与质量为m的小球连接,如图2所示.当小球以O为圆心做匀速圆周运动的速率为v1时,弹簧的长度为1.5l;当它以O为圆心做匀速圆周运动的速率为v2时,弹簧的长度为2.0l,则v1与v2的比值为().图2A .3∶ 2B .2∶ 3C .3∶2 2D .22∶ 3解析 设弹簧的劲度系数为k ,当小球以v 1做匀速圆周运动时有:k (1.5l -l )=m v 211.5l当小球以v 2做匀速圆周运动时有:k (2.0l -l )=m v 222.0l两式之比得:v 1∶v 2=3∶22. 故只有选项C 正确. 答案 C3.(2013·日照模拟)如图3所示,半径为R 的光滑圆环轨道竖直放置,一质量为m 的小球恰能在此圆轨道内做圆周运动,则小球在轨道最低点处对轨道的压力大小为( ).图3A .3mgB .4mgC .5mgD .6mg解析 设小球的质量为m ,经过最低点时速度大小为v 1,小球恰好能通过圆环的最高点,则在最高点时,小球对圆环的压力为零,由重力提供向心力,即mg =m v 2R ,由最高点运动到最低点,根据机械能守恒定律得mg ·2R +12m v 2=12m v 21,在最低点,根据牛顿第二定律得F N -mg =m v 21R,联立以上各式解得F N =6mg ,根据牛顿第三定律可知,小球在轨道最低点处对轨道的压力大小为6mg ,选项D 正确. 答案 D4.(2013·安徽合肥联考,4)如图4所示,一物体自P 点以初速度10 m/s 做平抛运动,恰好垂直打到倾角为45°的斜面上的θ点(g =10 m/s 2),则P 、Q 两点间的距离为 ( ).图4A .5 mB .10 mC .5 5 mD .条件不足,无法求解解析 垂直打到斜面上,则速度的偏向角为45°,由tan 45°=gtv 0得t =1 s ,所以x =v 0t =10 m ,y =12gt 2=5 m ,P 、Q 两点间的距离为x 2+y 2=5 5 m ,选项C 正确. 答案 C5.质量m =4 kg 的质点静止在光滑水平面上的直角坐标系的原点O ,先用沿+x 轴方向的力F 1=8 N 作用了2 s ,然后撤去F 1;再用沿+y 轴方向的力F 2=24 N 作用了1 s ,则质点在这3 s 内的轨迹为( ).解析 质点在F 1的作用下由静止开始从坐标系的原点O 沿+x 轴方向加速运动,加速度a 1=F 1m =2 m/s 2,速度为v 1=a 1t 1=4 m/s ,对应位移x 1=12a 1t 21=4 m ,到2 s 末撤去F 1再受到沿+y 轴方向的力F 2的作用,质点在+x 轴方向做匀速运动,x 2=v 1t 2=4 m ,在+y 轴方向做加速运动,+y 轴方向的加速度a 2=F 2m =6 m/s 2,对应的位移y =12a 2t 22=3 m ,物体做曲线运动,且合外力指向运动轨迹凹侧,A 、B 、C 项错误,D 项正确. 答案 D6.(2013·重庆九校联合诊断)2011年11月3日,“神州八号”飞船与“天宫一号”目标飞行器成功实施了首次交会对接.任务完成后“天宫一号”经变轨升到更高的轨道,等待与“神州九号”第二次交会对接.变轨前和变轨完成后“天宫一号”的运行轨道均可视为圆轨道,对应的轨道半径分别为R1、R2,对应的角速度和向心加速度分别为ω1、ω2和a1、a2,则有().A.ω1ω2=R31R32B.a1a2=R22R21C.变轨后的“天宫一号”比变轨前动能增大了,机械能增加了D.在正常运行的“天宫一号”内,体重计、弹簧测力计、天平都不能使用了解析由GMmr2=mω2r得ω=GMr3,A项错,由GMmr2=ma,得a=GMr2知B项正确;由GMmr2=m v2r和E k=12m v2得Ek=GMm2r,r增大,动能减小,C项错,在天宫一号内,弹簧测力计可以使用,D项错.答案 B7.(2013·重庆双桥中学月考)如图5所示,足够长的斜面上A点,以水平速度v0抛出一个小球,不计空气阻力,它落到斜面上所用的时间为t1;若将此球改用2v0水平速度抛出,落到斜面上所用时间为t2,则t1∶t2为().图5A.1∶1 B.1∶2C.1∶3 D.1∶4解析根据平抛运动分运动特点,水平方向x=v0t,竖直方向有y=12gt2,tan θ=yx=gt2v0,t=2v0tan θg,θ为斜面的倾角,所以当初速度增大为原来的2倍时,时间也增大为原来的2倍,B对.答案 B8.如图6所示,a为赤道上的物体,随地球自转做匀速圆周运动,b为沿地球表面附近做匀速圆周运动的人造卫星,c为地球同步卫星,以下关于a、b、c的说法中正确的是().图6A.它们的向心加速度都与轨道半径成正比B.b和c的向心加速度都与轨道半径的二次方成反比C.a和c的运转周期不相同D.a和b的运转周期相同解析同步卫星c与赤道上物体a的周期相等,均为地球自转周期,即24 h,而其他卫星的周期T=4π2r3GM,故选项C、D错误;a和c的角速度ω相等,向心加速度a=rω2,a∝r;b和c都是由万有引力提供向心力,a=GMr2,a∝1r2,故选项A错误、B正确.答案 B9.(2013·重庆双桥中学月考)在四川汶川的抗震救灾中,我国自主研制的“北斗一号”卫星导航系统,在抗震救灾中发挥了巨大作用.北斗导航系统又被称为“双星定位系统”,具有导航、定位等功能.“北斗”系统中两颗工作卫星均绕地心O做匀速圆周运动,轨道半径为r,某时刻两颗工作卫星分别位于轨道上的A、B两位置(如图7所示).若卫星均按顺时针运行,地球表面处的重力加速度为g,地球半径为R.不计卫星间的相互作用力.则以下判断中正确的是().图7A .这两颗卫星的加速度大小相等,均为Rgr B .卫星1向后喷气就一定能追上卫星2C .卫星1由位置A 运动到位置B 所需的时间为πr3R r gD .卫星1中质量为m 的物体的动能为12mgr解析 由GMm r 2=ma 、GMm 0R 2=m 0g ,得a =gR 2r 2,A 错误.卫星1向后喷气时速度增大,所需的向心力增大,万有引力不足以提供其所需的向心力而做离心运动,与卫星2不再处于同一轨道上了,B 错误.由t =θ360°T =16T 、GMm r 2=mr ⎝ ⎛⎭⎪⎫2πT 2、GMm 0R 2=m 0g 可得t =πr 3Rr g ,C 正确.由GMm r 2=m v 2r 、GMm 0R 2=m 0g 、E k =12m v2可得E k =mgR 22r ,D 错误. 答案 C 二、非选择题10.(2013·郑州模拟)如图8所示,斜面体ABC 固定在地面上,小球p 从A 点由静止下滑,当小球p 开始下滑时,另一小球q 从A 点正上方的D 点水平抛出,两球同时到达斜面底端的B 处.已知斜面AB 光滑,长度l =2.5 m ,斜面倾角θ=30°,不计空气阻力,g 取10 m/s 2.求:图8(1)小球p 从A 点滑到B 点的时间; (2)小球q 抛出时初速度的大小.解析 (1)小球p 从斜面上下滑的加速度为a ,由牛顿第二定律得:a =mg sin θm =g sin θ①下滑所需时间为t 1,根据运动学公式得:l =12at 21 ② 由①②得:t 1= 2lg sin θ③解得:t 1=1 s(2)小球q 做平抛运动,设抛出速度为v 0,则: x =v 0t 2④ x =l cos 30°⑤ 依题意得:t 2=t 1⑥由④⑤⑥得:v 0=l cos 30°t 1=534 m/s . 答案 (1)1 s (2)534 m/s11.(2014·重庆市巴蜀中学高三月考)“嫦娥一号”的成功发射,为实现中华民族几千年的奔月梦想迈出了重要的一步,如图9所示,“嫦娥一号”先进入绕月飞行的椭圆轨道,然后在椭圆轨道近月点A 变轨进入绕月飞行圆轨道;已知“嫦娥一号”绕月飞行的椭圆轨道远月点B 距月球表面高为H ;又已知“嫦娥一号”沿绕月圆轨道飞行时,距月球表面的高度为h ,飞行周期为T ,月球的半径为R ,万有引力常量为G ;再后,假设宇航员在飞船上,操控飞船在月球表面附近竖直平面内俯冲,在最低点附近作半径为r 的圆周运动,宇航员质量是m ,飞船经过最低点时的速度是v ;求:图9(1)月球的质量M 是多大?(2)“嫦娥一号”经绕月飞行的椭圆轨道远月点B 时的加速度多大?“嫦娥一号”经绕月飞行的椭圆轨道近月点A 时欲变轨进入如图圆轨道,应该向前还是向后喷气?(3)操控飞船在月球表面附近竖直平面内俯冲经过最低点时,座位对宇航员的作用力F 是多大?解析 (1)设“嫦娥一号”的质量是m 1,则G Mm 1(R +h )2=m 1⎝ ⎛⎭⎪⎫2πT 2(R +h ) ① M =4π2(R +h )3GT 2②(2)B 点,对m 1,牛顿第二定律: G Mm 1(R +H )2=m 1a .③由②③得,a =4π2(R +h )3T 2(R +H )2近月点A 时欲变轨进入如图圆轨道,应该向前喷气. (3)设月球表面的重力加速度为g ,则G MmR 2=mg ④ F -mg =m v 2r⑤由②④⑤得 F =m 4π2(R +h )3R 2T 2+m v 2r 答案 见解析12.(2013·重庆市九校联合高三诊断)如图10所示,一小球从A 点以某一水平向右的初速度出发,沿水平直线轨道运动到B 点后,进入半径R =10 cm 的光滑竖直圆形轨道,圆形轨道间不相互重叠,即小球离开圆形轨道后可继续向C 点运动,C 点右侧有一壕沟,C 、D 两点的竖直高度h =0.8 m ,水平距离s =1.2 m ,水平轨道AB 长为L 1=1 m ,BC 长为L 2=3 m ,小球与水平轨道间的动摩擦因数μ=0.2,重力加速度g =10 m/s 2,图10求:(1)若小球恰能通过圆形轨道的最高点,求小球在A 点的初速度; (2)若小球既能通过圆形轨道的最高点,又不掉进壕沟,求小球在A 点的初速度的范围是多少.解析 (1)小球恰能通过最高点mg =m v 2R由B 到最高点由动能定理得12m v 2B =12m v 2+mg (2R ) 由A →B 由动能定理得 -μmgL 1=12m v 2B -12m v 2A 解得:在A 点的初速度v A =3 m/s(2)若小球刚好停在C 处,则有-μmg (L 1+L 2) =0-12m v ′2A解得在A 点的初速度v A ′=4 m/s 若小球停在BC 段,则有3 m/s ≤v A ≤4 m/s 若小球能通过C 点,并越过壕沟,则有h =12gt 2 s =v C t-μmg (L 1+L 2)=12m v 2C-12m v 2A 则有:v A =5 m/s初速度范围是:3 m/s ≤v A ≤4 m/s 和v A ≥5 m/s 答案 见解析。