精细化工安全管理中微反应技术的应用
微反应器在精细化工领域氧化反应中的应用进展

微反应器在精细化工领域氧化反应中的应用进展
李绪根;王建芝;刘捷;林笑;张程;喻发全
【期刊名称】《化学与生物工程》
【年(卷),期】2022(39)8
【摘要】氧化反应在精细化学品合成过程中占比最大,超过了50%.然而,许多氧化反应中间体的过度氧化难以控制,导致选择性低,反应放热量大,易发生火灾、爆炸、泄漏等安全事故.微反应器具有独特的结构,可实现强化传质、传热,可精确控制反应温度和反应时间.将微反应器应用于氧化反应可提高氧化反应的转化率和选择性,特别是能有效提高生产安全性.对微反应器在精细化工领域氧化反应中的应用进展进行了综述,包括烷烃氧化、烯烃氧化、醇氧化、醛酮氧化、芳香族化合物氧化、胺氧化等,为微反应器的更广泛应用提供了帮助.
【总页数】9页(P1-9)
【作者】李绪根;王建芝;刘捷;林笑;张程;喻发全
【作者单位】武汉工程大学化工与制药学院
【正文语种】中文
【中图分类】TQ05
【相关文献】
1.浅谈精细化工中微反应器的应用
2.精细化工中微反应器的应用初探
3.微反应器技术在精细化工中的应用
4.微反应器技术在精细化工中的应用
5.微反应器技术在精细化工中的应用
因版权原因,仅展示原文概要,查看原文内容请购买。
精密流体控制技术在化工行业的进展

精密流体控制技术在化工行业的进展精密流体控制技术在化工行业中扮演着至关重要的角色,它不仅影响着化学反应的效率与产物质量,还直接关联到生产过程的安全性与环境影响。
随着科技的进步和行业需求的不断提升,这一领域正经历着前所未有的革新。
以下是精密流体控制技术在化工行业进展的六个关键方面。
一、微流控技术的应用拓展微流控技术通过在微观尺度操控流体,实现了对化学反应的精确控制和高度集成化。
在化工领域,微流控芯片能创建微型反应器,使化学反应在极小体积内高效进行,显著提高了反应速度和产物纯度。
这种技术特别适用于高附加值化学品的合成,如药物中间体和精细化学品,同时减少了原料消耗和废物产生,体现了绿色化学的理念。
二、智能传感器与自动化控制系统的集成随着物联网(IoT)和(AI)技术的发展,化工厂中的精密流体控制系统越来越智能化。
智能传感器能够实时监测流体的压力、温度、流量和成分,这些数据被迅速传输至处理单元,通过复杂的算法分析,自动调整阀门开度、泵速等参数,确保流体流动维持在最优状态。
这种即时反馈和动态调整机制,大大提高了生产过程的稳定性和效率,同时减少了人为错误。
三、高精度计量泵与分配系统的创新计量泵是化工生产中实现精准流体添加的关键设备。
近年来,新型计量泵不仅提高了流体输送的准确度,还增强了耐腐蚀性和清洁能力,适用于更多种类的化学介质。
特别是无脉动设计和数字化控制技术的引入,使得泵送过程更加平滑,减少了混合不均和过量添加的风险。
在特殊化学品和高性能材料的制备中,这些进步尤为重要。
四、新型材料在流体控制组件上的应用材料科学的进步为精密流体控制技术带来了新的机遇。
例如,高性能聚合物和陶瓷材料的使用,不仅提高了流体接触部件的耐腐蚀性和耐磨性,还减轻了设备重量,降低了能耗。
此外,形状记忆合金和智能材料的开发,使得阀门等控制元件能够根据流体条件自动调节,进一步提升了系统的灵活性和响应速度。
五、可持续流体管理系统的发展面对日益严格的环保法规和可持续发展目标,化工行业正在转向闭环流体管理系统,这要求对流体的回收、再利用和排放进行精确控制。
微通道反应器的高效精细化工时代

微通道反应器的高效精细化工时代微通道连续流反应器技术基于独特的非金属耐腐材质和卓越的传热-传质性能设计,可有效强化合成反应条件,是对传统化工小试和中试生产装备的重大革新,它打开了新时代高效化学研发和生产的窗口。
让化学反应时间从几小时或几十小时缩短到几十秒到几分钟,同时解决强腐蚀、易爆、高能耗、高溶剂消耗和高污染排放等诸多难题,这正是微通道反应器独有的魅力。
微通道反应器技术已应用于医药、农药和染料中间体合成。
常见的应用领域包括选择性硝化、浆态加氢、重氮偶合、磺化、卤化和氧化等反应,以及在材料和催化剂制备中用于纳米材料合成、特种试剂制备如格氏试剂和过氧化试剂等。
微反应器技术,特别是液相微反应器技术最早于上世纪90年代后期在德国出现。
当时根据原子能技术民用化项目的要求,微型机械加工技术以及微通道结构热交换器被用于处理强放热和高危险化学品。
德国在1997年开发成功微米级高硼硅玻璃微通道反应器用于偶氮偶合反应。
微反应器技术很多年来一直徘徊在研发和科研应用阶段,停留在“微小”的流体通量水平上,主要用于实验室小剂量化学合成路线的研究和筛选。
将微反应器优良的传质和传热效能体现在大规模的产业化装置中,一直是该领域的瓶颈。
但现在已经成为具有生产成本优势的工业化利器。
据统计,在精细化工反应中,大约有20%的反应可以通过采用微流体化工技术,在收率、选择性或安全性等方面得到提高。
微化工技术可用于高效换热、高效混合、强放热反应过程,高附加值精细化学品、剧毒物质、超细/纳米颗粒以及高能炸药的生产过程。
微流体化工技术涉及物理、化学、化工、生物、材料、微电子以及微机械加工等诸多领域,学科交叉性强,其基本原理是通过特殊设计的微结构单元对流经的反应流体进行切割,实现反应流体见以微米时空尺寸,甚至更小进行混合和换热。
与传统化工技术相同,微化工技术也使用反应器、混合器、换热器等单元组件。
但同传统化工工艺相比,微化工工艺微反应工艺实现了对传质传热的真正强化,使化学过程更快的传质传热、更好的时空收率、更安全环保、更经济节能、占地面积小,大大降低投资成本及能耗。
什么是化工本质安全?本质安全详解

化工生产过程通常会涉及多种危险化学品,具有易燃易爆、有毒有害、高温高压、危险源集中等特点,一旦发生安全事故,将给人民生命健康、生态环境、社会稳定等带来严重损害。
当前,数字化变革正在重塑化学品生产、消费模式,工业互联网、大数据、人工智能等新一代信息技术与安全管理深度融合,“工业互联网+安全生产”成为有效提升行业安全治理水平的必然选择。
此外,我国作出“碳达峰、碳中和”的战略部署,未来能源结构将产生重大变革,以氢能、太阳能、风能等为代表的新能源形式将会逐步代替传统的化石能源。
因此,在相当长的时期内传统化石能源将与新能源共存发展,安全风险叠加。
化工生产过程在新时期、新发展阶段面临的安全问题需要通过科技创新、技术进步来解决,安全技术的进步是防范和化解安全生产风险的重要途径,过程强化、风险感知与监测预警、风险管控与处置等一系列技术手段能够有效降低和控制安全风险,实现化工生产过程的本质安全化。
本文将系统介绍化工生产过程本质安全技术的研究进展,并分析未来化工生产过程安全化技术的发展趋势,为化工过程安全生产技术开发提供指导。
一、化工过程本质安全化概述本质安全(i n h e r en t sa f e t y)概念最早由英国的T re vo r K l e tz 于1976年提出,其理念是从工艺源头上永久地消除风险,而不是单独靠控制系统、报警系统、联锁系统的使用来减小事故发生概率和减轻事故后果的严重性。
本质安全是绝对安全的理想状态,生产运行上很难达到,实际中需要通过本质安全化(i n h e r e n t l y s af e r)的一系列技术措施降低过程风险,使化工过程本质上更安全。
化工过程全生命周期的本质安全如图1所示,最小化、替代、缓和、简化这4个本质安全化策略适用于研发、设计、建设、操作、变更和维护等化工过程的整个生命周期。
工艺过程的本质安全化与被动型、主动型和程序型安全防护措施一起构成了化工过程的保护层,其中本质安全化工艺技术在所有保护层中处于最核心的部分,对安全风险控制起到决定性作用。
微反应器应用领域

微反应器,即“微通道反应器”的简称。
顾名思义,微反应器是一种反应物质在微小通道内连续流动、发生反应、同时实现换热的装备。
然而,随着精细化工行业对微反应器用于化学品一定规模工业化生产的需求,微反应器通道的不断优化与改进,微反应通道尺寸早已达到毫米级。
而我们可以使用它进行很多复杂且危险的实验了,并且成功解决了很多之前使用传统反应器所造成的弊端。
而在医药制造领域这个成效是非常显而易见的。
下面我们就为大家详细介绍一下。
一、在化工产品生产中的应用由于香精挥发性高、留香时间短影响终产品的品质,所以香精香料的缓释和控释技术是目前国内外研究的热点和难点。
微胶囊香精技术是香精香料的缓释和控释技术中非常重要的一种,主要是指制造固体香精的技术。
它是指选择某些特殊材料以物理结合或化学结合与香精分子之间形成一定的包覆关系,从而减缓或控制香精香料在应用中的挥发性,延长香精香料的留香时间。
目前商品化的微胶囊香精基本上由三聚氰胺-甲醛的界面聚合反应制得,但是该工艺中存在不少问题——使用了大型反应器、反应时间长、以环境不友好的化合物为原料,而且微胶囊强度不理想导致其储存稳定性不高。
二、微反应技术在化工安全中的应用特别地,在精细化工领域,微反应技术所具有的优势能极大地提高精细化工过程的本质安全性: 极大的传热系数,能让反应接近等温条件下进行,没有热点的聚集,对于放热量巨大的快速化学反应,控制过程失控具有重大意义; 通过控制通道尺寸小于易燃易爆物质的临界直径,能有效地阻断自由基的链式反应,从而使爆炸无从发生; 多反应单元线性组合可以保证即使有毒有害物质发生泄漏,泄漏量也非常小,对周围环境和人体健康造成的危害有限,且能在其他单元继续生产的同时予以更换。
有研究统计,现阶段微反应技术可应用在20% ~30%的精细化工反应中,提升反应安全性,由于精细化工面宽量多,这已经是一个相当大的应用规模。
另外随着基础研究和设备制造的进步,该应用比例还会进一步提高。
浅析微化工技术在化学反应中的应用进展

技术应用与研究Chenmical Intermediate当代化工研究2016·0233浅析微化工技术在化学反应中的应用进展OO彭OOO川(四川晨光工程设计院OO四川成都OO610041)摘要:微化工技术是现代化学项目范围的研究前沿和热点。
由于特点尺度的微型化,增强表面作用,传递功能相对常规尺度的设备提升了2~3个数量级。
展开微化工技术研究旨在加强化工过程安全性、推动过程加强与化工体系小型化,提升能源、资源运用效率,达到节能降耗之目的;其顺利开发和运用将对化学化工区域形成重大影响。
关键词:微化工技术;微反应器;微通道中图分类号:T 文献标识码:ABrief Analysis on the Application Development of Microchemical Technologyin Chemical ReactionPeng chuan(Szechwan Morning Engineering Design Institute, Sichuan Cheng d u 610041)Abstract :Microchemical technology is the research front and hotspot in modern chemistry. As for the micromation of chararacter andscale,increasing surface function and transmission function have increased by 2-3 levels comparing to the conventional scale. The aim of taking microchemical technology research is to increase chemical process safety,promote the process and chemical system miniaturization,increase energy and resources operation efficiency and achieve the aim of energy-saving and cost-reducing. This technology’s success exploitation and application will bring great good influence on chemistry area.Key words: microchemical technology ;microreactor ;microchannels一、微反应器和常规釜式反应器1.常规釜式反应器在传统化工工业中,很多在间歇或半间歇釜式反应器内实施制药、精细化学品与化工中间体的合成,具备灵活操作、容易适应不一样的条件操作,一般适用于批量小、类别多的产品,在精细化学品和生物工程产品的生产中有较强的优势。
常州大学环境与安全工程学院院长张跃微反应开启化工高效精细化新时代

l\\<>\ATI\(-TAU'.N'I'I倉:1新达人常州大学环境与安全工程学院院长张跃:微反应开启化工高效精细化新时代■文/杜浩钧李伟宁微通道反应器是新型的反应器,其高效的传热传质接近理论值。
近年来,微通道反应器已经在多家化工行业应用,打破了国外公司的技术垄断,标志着化工界技术上取得了重大突破。
在该项目国产化研究的过程中,常州大学环境与安全工程学院院长张跃功不可没。
他带领团队勇于向新事物发起挑战,并以自主研发的技术为企业带来了丰厚的经济效益,获得了业内专业人士的肯定和认可。
张跃主持的项目《新型微通道反应器系统关键技术开发及产业化应用》获得了2019年中国化工学会技术奖二等奖。
敢闯天下先的技术团队微反应技术起源于20世纪90年代初的欧洲,美国康宁公司在2008年将微反应器技术推广到工业化应用阶段。
对传统化工装备而言,微通道反应器是一项革命性的创新技术,为化工产业开启了崭新的高效精细化时代,为行业转型升级、提升创新能力、实现绿色发展提供了有效的技术手段。
但在当时,无论是理论研究还是实际应用,国内还是一片空白。
张跃在采访中说,不可否认,近年来,微通道反应器在国内快速推广,美国康宁公司起到了一定的促进作用。
10年前,常州大学与该公司成立了联合实验室,但后来康宁公司因故撤走。
是继续做?还是放弃?摆在张跃及其同事面前的是一个前途未卜的选择。
但后来的事实证明,张跃答对了这道题,但解题的过程却是异常艰辛。
张跃向记者介绍说,微通道(连续流)反应器是一种依靠微加工技术,在特定的固体基质上蚀刻出固定形态的通道,并具有一定化学反应适用性的化工设备。
与常规釜式反应器相比,其内部通道直径非常细小,通常为10-500Pm,却拥有极大的比表面积,比釜式反应器的比表面积要大上几百倍张跃发表获奖感言甚至上千倍,因而有效地提升了换热效率和传质效率,并且能够精确控制反应温度,确保反应物料瞬间混合,有助于提高化学反应收率、选择性、安全性和产品质量。
绿色化工技术在精细化工中的应用研究

绿色化工技术在精细化工中的应用研究随着人们对环境保护意识的不断增强以及资源的有限性,绿色化工技术在工业生产中的应用越来越受到重视。
精细化工作为化工产业中的一个重要分支,其产品具有高附加值、高技术含量和高新技术密集度的特点,在现代化工企业中占据着重要的地位。
强调绿色化工技术在精细化工中的应用研究显得尤为重要。
一、绿色化工技术的概念和意义绿色化工技术是指在化工生产过程中,尽可能减少对环境的污染,减少能源消耗,提高资源利用率,遵循可持续发展的原则,从而实现对环境友好和经济效益的双重目标。
与传统的化工技术相比,绿色化工技术更加注重环保和可持续性,体现了人与自然和谐相处的理念。
绿色化工技术在精细化工中的应用意义重大。
精细化工产品通常是高附加值的产品,其生产所需要的设备、原料和能源成本相对较高。
采用绿色化工技术可以有效减少生产成本,提高企业的竞争力。
精细化工产品多用于制药、精细化工、化妆品等高端领域,对产品纯度、质量和环境要求较高。
采用绿色化工技术可以确保产品质量,避免环境污染和安全事故。
精细化工产品通常具有较高的技术含量,对工艺和设备要求较高,采用绿色化工技术可以提高生产效率,降低生产事故和质量问题发生的概率。
1. 微反应技术微反应技术是一种在微型反应器中进行化学反应的技术,其具有反应速度快、热量传递效率高、产品分离纯度高等优点。
在精细化工生产中,微反应技术可以有效减少原料、溶剂和能耗,减少废弃物排放,提高产品收率和纯度。
在制药行业中,采用微反应技术可以缩短反应时间,减少不必要的中间体和副产物的产生,提高产品的纯度和产率,降低生产成本。
2. 超临界流体技术超临界流体是介于气体和液体之间的态势,具有密度小、黏度小、扩散系数大等特点。
在精细化工生产中,超临界流体可以作为溶剂用于反应物的溶解和分离,其反应速度快、溶解度高、无毒害和无残留等特点使其成为一种绿色溶剂。
超临界二氧化碳可以取代传统的有机溶剂用于天然产物的提取和精制,在提高产品纯度的同时降低了生产成本和环境污染。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精细化工安全管理中微反应技术的应用
摘要:阐述了微反应技术的应用特点。
根据精细化工领域中常用的危害反应类型,选取有代表性的研究资料和案例,阐述了微反应技术在提高精细化工安全领域中的广泛应用情况,并说明在产业化中使用微反应技术时所遇到的困难与创新方法。
关键词:微反应技术;微反应器;精细化工;危险;安全
引言
从目前来看,中国精细化工产业还面临着多方面的问题,相关政府部门也必须投入巨大人力和物资才能更好地解决以上的各种问题。
起火和爆炸的发生,是精细化工中最普遍的二个发生类别。
而这种类别是指精细化学品和特种材料。
二是在化学反应中能量的传递,微反应技术开展得特别早,始于十九世纪初,现如今,化学科学工作者已经开始重点研究上述所提出的二个问题。
而未来在制药和精细化工等产业中,这种技术的发展有着相当大的增长空间。
一、微反应技术的特点
微反应技术的使用范围非常广泛,它的基础是微反应器,唯有改善微反应器的特性才能确保微反应技术得以起到更高的效果,而微反应技术的优势得以无穷扩大,它通过增加微反应单元以进行更大规模的制造流程,其特性所带来的优越性尤为突出,它通过增加或移除部分微反应单体,以便于更好的满足整个制造过程的需要,因此必须要及时改善生产管道的连通方式。
二、微反应技术对精细化工安全性的提升
在微观化学中,微观反应技术可以显著提高在室温下进行的微观化学过程的安全性,而不会产生热量。
控制通道的不同大小使得在发生化学反应时能够自发地阻断自由基连锁反应,从而使危险事件不会发生。
这是为了防止那些即使是少量的也会损害身体各个器官的有害物质泄漏出来,对周围环境造成损害,不仅如
此,还为了确保生产根据任何时候的情况顺利进行。
这项研究的结果清楚地表明,微反应技术可以应用于各个行业,各种情况下都涉及到精密化学,基础设备的研
究已经在进行中,未来还需要很多实验来逐步增加其应用,提高其在各个行业的
安全性。
1.硝化反应
三角内的交叉趾柱型单管道化学反应器,通常是在低温度(25℃)条件下完成,
但是如果不加入惰性介质或者含有氮化合物的稳定剂。
化学反应的停滞持续时间
就能够大大提高,而且,在常规化学反应器的1/210的区域,王水异氰酸酯的产量
也相当高,甚至能够做到100%以上。
实验结果显示,想要降低能量的耗费,并且改
善副产物的产生效率,就必须进一步提高化学反应的稳定性。
有实验表明,在T型
微化学反应器中的硝化作用影响很大,反应速度主要是受其内在动力学的影响而
确定。
此外,如果没有探测到副产物也能够很有效的影响整个反应过程。
从2000
年起,一直到现在,人们已经探索了微型反应器中的连续硝化过程。
由于科学技术
的不断发展,微型反应器内的环境温度变化日益显著,明显可以超过的湿度,由于
反应时间的不断减少,最小可降到零点五s以内,上述一系列的数字足以说明微型
化学反应工艺正在不断的变化。
2.氧化及过氧化反应
生产中经过大量应用了过氧化氢,我们已开始采用各种技术加以研究,将氧与
氢融合到-.起,转变为过氧化氢。
在过去的十几年中,外国专家已进行了深入研究,微反应器也已能够进行合成过氧化氢,而霍尼韦尔等人现已刚刚开始进行研发,并
已提出了大量的产品方案。
吴巍等人正在研发石英毛细管的微反应器,也正在研
发的进程中,-.通常可以选择在60~80℃进行。
从产品的安全性角度加以考量,也
为过氧乙酸的工业生产提出了必需的理论依据。
郑亚峰研究表明,在载体的表面
上涂覆a-AI203,并负载银催化剂后。
在毛细管微反应器中,就可以进行乙烯氧化
反应速度,而环氧乙醇的收率也可以到达60%以上,持续时间可以达到5000h-1,化
学反应可以在比较安全的环境条件中完成。
而余锡孟等人研究了由乙酰丙嗪、环
已烷等在微反应器中进行的液象学氧化反应,在整个化学反应的过程中,都可以随
时检测工艺的操作情况,不仅如此,麻省理工学院的Slingivasan研究了一个集成
加热器,这是一个集电流与温度控制于一身的综合传感器。
但国外对这方面的研究工作并没有什么开展,主要问题就在于氧化反应中加入了很多可能性,很多氧化反应要求金属催化剂,而且还充分考虑了微反应器的体积大小和金属催化剂的回收率。
3.其他危险反应
克拉里安特有限公司能够在微反映器中开展大量的化学实验,在实验的整个过程中,必须要科学合理地调节工艺技术参数,包括时间和温度,以确保它们都能够在合适地范围内,并且还能够获得优质的偶氮着色剂。
在一般情况下,只需要约0.5s的时候,就能够在微反映器中能够完成不同的生化反应速度,当然,这样也能够缩短了毒堇留在反映器中的持续时间,从而降低了毒堇产生泄漏的可能性。
美国杜邦公司就利用多晶体银颗粒微反映器中开展-.系列实验,在生化实验的整个过程中,对与氧化物反映所产生的异氰酸甲酯开展了深入研究,微反映器中能够抑制危害产物的制备。
而日本旭硝子公司也已研制出了能够投入工业生产的氟化设备,该设备能够减少潜在的危险性。
经过大量科学研究证实,微反应技术的广泛使用很可能增加了在微化工领域的安全性。
结束语
由上面的研究结论可以得知,在目前看来,如果想要进一步提升我国的精细化工领域的总体技术水平,仍然需要发展完善的关键工艺,当然,微反应技术也还是有待大力推广与探索的。
不过,当前的微反应技术还存在着二种极端。
一些人甚至夸大了其在化工领域中的重要意义。
个人甚至觉得如果不能同时在实验室开展这二项技术研究。
真正的产业化也是不可能的。
第一,并不能够有效改善精细化工领域的稳定性,原因主要在于精细化工领域反应速度快,离子辐射大,操作简单,且材料本身很容易自燃与爆炸。
如毒药反应。
因此虽然采用了微反应技术,但是由于这种反应并没有办法从根本上解决风险,所以还是有需要加强人们对反应风险的充分认识与管控。
其次,可以确定的是,微反应技术为应用程序的发展提供了很大的机遇。
参考文献:
[1]余锡孟,沈忠权,杜锡勇,等.微通道反应器中环己烷液相氧化反应工艺的研究[D].2017
[2]孙冰,朱红伟,姜杰,等.微混合与微反应技术在提升化工安全中的应用
[D].2017
[3]刘建华.微通道反应器在硝化反应中的应用[D].2016
[4]赵健,吉鹏飞,白海斌.精细化工安全管理中存在的问题及对策[D].2021
[5]钱宇宁.精细化工安全管理中存在的问题及对策[D].2020
[6]王天庆.微反应器技术在降低高危化工装置环境安全风险的可行性研究
[D].2021。