淬火变形问题的解决办法

合集下载

解决淬火变形问题的新方法

解决淬火变形问题的新方法

冷却技术解决淬火变形问题的新方法用硬度—冷速曲线分析和解决零件淬火变形问题北京华立精细化工公司(北京昌平102200) 张克俭 生产中的淬火变形一直给工厂带来大量的麻烦和巨大的损失。

热处理行业期待的是能用来分析和解决实际工件淬火变形的系统而实用的方法。

以此为目标,本文发展了一种从钢的端淬曲线出发,分析和解决工件淬火变形问题的方法,以下简称“新方法”,供热处理行业采用并指正。

1 本法的适用范围说工件发生了淬火变形,是指工件上某些部位发生了超过图样公差的变形。

本文把工件上发生变形的部分和与之相关连的部位合称为该工件的参与淬火变形部位。

它需根据实际工件的(变形)情况来确定。

在已发生淬火变形的工件上,参与淬火变形的不同部位的硬度可能基本相同,也可能有明显差异。

硬度差异反应出这些部位的淬火转变产物(即组织)之不同。

由于不同的组织有不同的比容,比容差本身及其在淬火过程中的作用必然对淬火后的变形有直接的影响。

由于这样的原因,本文把最终发生了淬火变形的工件分为两类。

第一类:发生了淬火变形的工件其变形部位的硬度(指从表面测定的硬度,以下同)基本相同。

第二类:工件变形部位的硬度有明显差异。

排除淬火加热中和淬火冷却中因装挂及操作不当而引起的变形,在第一类情况下,由于最终转变产物的比容基本相同,其淬火变形完全是由淬火过程中的热应力和组织转变应力引起的;在第二类情况下,引起变形的原因既有淬火冷却过程中的应力作用,也有转变产物比容差的影响。

本文提出的概念和方法,仅限于用来分析和解决第二类即工件上参与变形部位有明显硬度差或虽无明显硬度差却伴有淬裂的淬火变形问题。

2 淬火变形工件的冷却速度带及减小变形的努力方向作为本方法的基础,先引入淬火变形工件的硬度—冷速曲线、冷却速度带及其跨区等概念。

2.1 硬度—冷速曲线的分区及其与淬火变形的关系图1是有代表性的顶端淬火曲线示意图。

为适应本文的需要,我们将下方的横座标定为冷却速度,并按冷却速度大小和淬火硬度分布,将端淬曲线分成四个区(如图1所示)。

解决淬火变形问题的新方法

解决淬火变形问题的新方法

冷却技术解决淬火变形问题的新方法用硬度—冷速曲线分析和解决零件淬火变形问题北京华立精细化工公司(北京昌平102200) 张克俭 生产中的淬火变形一直给工厂带来大量的麻烦和巨大的损失。

热处理行业期待的是能用来分析和解决实际工件淬火变形的系统而实用的方法。

以此为目标,本文发展了一种从钢的端淬曲线出发,分析和解决工件淬火变形问题的方法,以下简称“新方法”,供热处理行业采用并指正。

1 本法的适用范围说工件发生了淬火变形,是指工件上某些部位发生了超过图样公差的变形。

本文把工件上发生变形的部分和与之相关连的部位合称为该工件的参与淬火变形部位。

它需根据实际工件的(变形)情况来确定。

在已发生淬火变形的工件上,参与淬火变形的不同部位的硬度可能基本相同,也可能有明显差异。

硬度差异反应出这些部位的淬火转变产物(即组织)之不同。

由于不同的组织有不同的比容,比容差本身及其在淬火过程中的作用必然对淬火后的变形有直接的影响。

由于这样的原因,本文把最终发生了淬火变形的工件分为两类。

第一类:发生了淬火变形的工件其变形部位的硬度(指从表面测定的硬度,以下同)基本相同。

第二类:工件变形部位的硬度有明显差异。

排除淬火加热中和淬火冷却中因装挂及操作不当而引起的变形,在第一类情况下,由于最终转变产物的比容基本相同,其淬火变形完全是由淬火过程中的热应力和组织转变应力引起的;在第二类情况下,引起变形的原因既有淬火冷却过程中的应力作用,也有转变产物比容差的影响。

本文提出的概念和方法,仅限于用来分析和解决第二类即工件上参与变形部位有明显硬度差或虽无明显硬度差却伴有淬裂的淬火变形问题。

2 淬火变形工件的冷却速度带及减小变形的努力方向作为本方法的基础,先引入淬火变形工件的硬度—冷速曲线、冷却速度带及其跨区等概念。

2.1 硬度—冷速曲线的分区及其与淬火变形的关系图1是有代表性的顶端淬火曲线示意图。

为适应本文的需要,我们将下方的横座标定为冷却速度,并按冷却速度大小和淬火硬度分布,将端淬曲线分成四个区(如图1所示)。

机车从动齿轮渗碳淬火变形问题的分析与预防

机车从动齿轮渗碳淬火变形问题的分析与预防

机车从动齿轮渗碳淬火变形问题的分析与预防摘要齿圈类机车从动齿轮,因为尺寸较大的薄板形结构,渗碳淬火后不可避免地要发生变形。

这样既影响从动齿轮的精度,也严重影响齿轮的使用性能。

本文从材料、热处理等影响齿轮热处理变形的几个主要因素入手,分析其产生的原因,并通过适当的选材以及热处理工序等相应措施,减少齿轮热处理变形,从而提高齿轮加工精度。

关键词齿轮热处理变形因素变形控制1 前言目前,在铁路跨越式发展理念的引导下,各个主机厂都以“客运高速、货运重载”为目标,应用新材料、研究新工艺、开发新产品。

牵引从动齿轮是机车驱动装置上的关键零部件,它的好坏直接影响到机车是否能够高速重载。

由于大功率机车从动齿轮因为尺寸较大,渗碳淬火后易产生变形,已经成为制约产品质量和使用性能的瓶颈,所以对机车从动齿轮渗碳淬火的研究有重要的现实意义。

2 齿轮热处理变形的影响因素2.1齿轮材料对齿轮变形的影响由于同一牌号的钢材,其淬透性曲线会在一定范围内变化,导致了淬透性带宽的不同,渗碳淬火后的组织就会出现差异,变形也就不一样,如果淬透性带宽过宽,必然会导致齿轮热处理变形无规律。

实验表明,钢的淬透性越高,热处理后齿轮的变形就越大。

当心部硬度高于HRC40时,变形就会明显增大。

目前,使用与从动齿轮强度相匹配的窄淬透性带宽的渗碳钢已经成为齿轮行业选材的共识。

2.2 预备热处理对齿轮变形的影响齿轮预备热处理组织的均匀性和稳定性对齿轮最终热处理变形的影响很大,因为齿轮各部分的原始组织不同,其比热就不同,在热处理过程中产生的尺寸变化也就不同。

齿轮经高温锻造后,由于其组织粗大不利于随后的渗碳处理,所以一般高温锻造后的齿轮需要经过正火处理,以达到细化晶粒和改善显微组织的目的。

但是,往往正火硬度过高,出现大量索氏体或魏氏体组织,它们的存在都会使内孔变形增大,所以必须引起足够的重视。

2.3 渗碳工艺对齿轮的影响2.3.1 温度的均匀性对齿轮的影响温度的均匀性是造成热处理变形的因素之一。

淬火变形及控制

淬火变形及控制

65科技资讯科技资讯S I N &T NOLOGY I NFORM TI ON 2008N O.09SCI ENC E &TEC HNO LO GY I N FO RM A TI ON 工程技术1淬火变形分为两种:形状变形和体积变形。

主要由两方面引起:一是高温到低温快冷却过程中温度差导致热应力及组织转变引起的组织应力。

二是组织转变时组织的比容差所致2影响淬火变形的因素2.1成分影响低碳钢淬火前后比容变化较小,所以淬火变形以热应力变形为主。

中碳钢由于淬透性较高,淬火前后比容变化较大,尺寸较小时以组织应力为主,尺寸较大时会过渡到以热应力为主。

高碳钢一般表现为热应力变形,因为其M S 点较低,奥氏体的屈服强度较高,组织应力引起变形较困难。

合金元素降低钢的导热性并提高了在较高温度下奥氏体的屈服强度和淬透性,因此合金钢在大多数情况下淬火后呈组织应力。

钢中含碳量增加,导致淬火马氏体比容增加同时又使奥氏体屈服强度升高,从而增加了体积膨胀和组织应力。

但含碳量过高,淬火后残余奥氏体数量增加,残余奥氏体会使体积减小,因此淬火变形并非依含碳量增加而一直体积膨胀。

控制钢中马氏体含碳量、获得下贝氏体组织和控制钢中残余奥氏体数量均可达到减小淬火变形的目的。

2.2零件尺寸与形状的影响零件截面越大,加热和冷却过程中截面温度差越大。

随着零件截面增大残余应力也随之增大。

同时零件的形状及厚度的均匀性对淬火应力也有相当显著影响。

为了减小淬火应力,在设计时应尽量减小各部位截面尺寸差异和避免尖角、盲孔的出现。

2.3工件的装挂方式工件的装挂方式将影响工件之间的散热条件、介质流动情况和介质液温度的分布,从而使工件不同部位的冷却情况各异。

和单件淬火相比,多件同时淬火时工件冷却速度减慢也有可能引起较大的淬火变形。

如:某厂对直径600m 马氏体的20Cr 2N i 4A 奥氏体钢大型齿轮做齿面渗碳淬火。

开始时两齿轮端面挨很近,夹缝中淬火油流动不畅,造成齿面淬火硬度偏低过大,同时引起最大1.4m m 端平面度变化。

切片刀淬火变形的原因及改善工艺

切片刀淬火变形的原因及改善工艺

长薄型切片刀淬火后出现两端翘曲变形的原因及改进措施李宁(中国矿业大学徐海学院材料08-1班22080012)摘要:本文针对材料为T12钢的长薄型切片刀热处理淬火翘曲变形大的质量问题。

分析了工件热处理变形机理。

分析工件内部应力,因为应力值超过了钢材在该状态下的拉伸屈服极限或压缩屈服极限后,能产生翘曲形式的塑性变形。

分析淬火介质对变形的影响,并设计了合理的改进措施。

该工件的工艺路线:下料→锻造→正火→机械加工→热处理→磨加工。

关键词: 长薄型切片刀翘曲变形热应力淬火介质热处理1 前言伴随着科技的发展,各种高性能的工具的设计和质量也要提高。

刀具淬火变形的现象普遍存在,普通淬火工艺不能很好的解决这个问题。

但是为了满足各种各样的要求,提出发现提高工具的质量的工艺方法时非常有重要意义的。

淬火变形影响因素非常复杂,导致对淬火后的变形控制十分困难。

如果采用校直办法纠正变形或通过加大磨削加工余量,会有效果,但是成本会增加。

因此研究钢件淬火热处理变形的影响因素,提出防止变形的措施是提高产品质量、延长零部件使用寿命、提高经济效益的重要课题。

切片刀是一种切削工具刀,因此需要良好的硬度和平直的外形。

多年来一直采用常规热处理淬火工艺规范,热后端面翘曲变形大,不良品率特别高,经磨削加工后仍达不到图纸技术要求。

所以找出变形原因并改进淬火工艺非常重要。

2 切片刀淬火变形原因分析2.1 热应力引起的变形通过对变形产生分析后认为,工件在加热时随加热温度升高,其屈服强度降低。

在于工件内部已存残余应力(冷变形应力、机加工应力等),当达到高温时的屈服强度时,就会引起工件不均匀塑性变形而造成形状畸变和残余应力松弛。

淬火冷却时,工件冷却速度的不同时性形成的热应力和组织应力使工件局部产生翘曲变形。

长薄型切片刀在加热和冷却过程中,体积会因为热胀冷缩的原因发生变化以及因组织转变时新旧相比容差而产生的体积改变。

当工件加热到淬火温度时,屈服强度明显降低,塑性则大大提高。

如何解决淬火变形和淬火裂纹的问题

如何解决淬火变形和淬火裂纹的问题

如何解决淬火变形和淬火裂纹的问题淬火的定义与目的将钢加热到临界点Ac3(亚共析钢)或Ac1 (过共析钢)以上某一温度,保温一段时间,使之全部或部分奥氏体化,然后以大于临界淬火速度的速度冷却,使过冷奥氏体转变为马氏体或下贝氏体组织的热处理工艺称为淬火。

淬火的目的是使过冷奥氏体进行马氏体或贝氏体转变,得到马氏体或下贝氏体组织,然后配合以不同温度的回火,以大幅提高钢的强度、硬度、耐磨性、疲劳强度以及韧性等,从而满足各种机械零件和工具的不同使用要求。

也可以通过淬火满足某些特种钢材的铁磁性、耐蚀性等特殊的物理、化学性能。

钢件在有物态变化的淬火介质中冷却时,其冷却过出一般分为以下三个阶段:蒸汽膜阶段、沸腾阶段、对流阶段。

钢的^透性淬硬性和淬透性是表征钢材接受淬火能力大小的两项性能指标,它们也是选材、用材的重要依据。

1.淬硬性与淬透性的概念淬硬性是钢在理想条件下进行淬火硬化所能达到的最高硬度的能力。

决定钢淬硬性高低的主要因索是钢的含碳量,更确切地说是淬火加热时固溶在奥氏体中的含碳量,含碳量越离,钢的淬硬性也就越高。

而钢中合金元素对淬硬性的影响不大,但对钢的淬透性却有重大影响。

淬透性是指在规定条件下,决定钢材淬硬深度和硬度分布的特性。

即钢淬火时得到淬硬层深度大小的能力,它是钢材固有的一种属性。

淬透性实际上反映了钢在淬火时,奥氏体转变为马氏体的容易程度。

它主要和钢的过冷奥氏体的稳定性有关,或者说与钢的临界淬火冷却速度有关。

还应指出:必须把钢的淬透性和钢件在具体淬火条件下的有效淬硬深度区分开来。

钢的淬透性是钢材本身所固有的属性,它只取决于其本身的内部因素,而与外部因素无关;而钢的有效淬硬深度除取决于钢材的淬透性外,还与所采用的冷却介质、工件尺寸等外部因索有关,例如在同样奥氏体化的条件下,同一种钢的淬透性是相同的,但是水淬比油淬的有效淬硬深度大,小件比大件的有效淬硬深度大,这决不能说水淬比油淬的淬透性高。

也不能说小件比大件的淬透性高。

热处理淬火及变形

热处理淬火及变形

热处理工艺、操作与变形关系一、预处理淬火前通过对工件进行消除应力、改善组织的预备热处理,对减少淬火变形是非常有利的。

预处理一般包括球化退火、消除应力退火,有些还采用调质或正火处理。

①消除应力退火:在机械加工过程中,工件表层在加工方法、背吃刀量、切削速度等的影响下,会产生一定的残余应力,由于其分布的不均衡,导致了工件在淬火时产生了变形。

为了消除这些应力的影响,淬火前将工件进行一次消除应力的退火是必要的。

消除应力退火的温度一般为500-700 ℃,在空气介质中加热时,为防止工件产生氧化脱碳可采用500-550 ℃进行退火,保温时间一般为2-3h。

工件装炉时要注意可能因自重引起的变形,其他操作同一般退火操作。

②以改善组织为目的的预热处理:这种预处理包括球化退火、调质及正火等。

——球化退火:球化球退火是碳素工具钢及合金工具钢在热处理过程中必不可少的工序,球化退火后所获得的组织对淬火变形趋势影响很大。

所以可以通过调整退火后的组织来减少某些工件有规律的淬火变形。

——其他预处理:为减少淬火变形所采用的预处理方法有很多种,如调质处理、正火处理等。

针对工件产生淬火变形的原因及工件所用材料,合理地选用正火、调质等预处理对减少淬火变形是有效的。

但应对正火后引起的残余应力及硬度提高对机加工的不利影响应给予注意,同时调质处理对含W Mn 等钢可减少淬火时胀大,而对GCr15等钢种的减少变形作用不大。

在实际生产中要注意分清淬火变形产生的原因,即要分清淬火变形是由残余应力引起的还是由组织不佳引起的,只有这样才能对症处理。

若是由残余应力引起的淬火变形则应进行消除应力退火而不用类似调质等改变组织的预处理,反之亦然。

只有这样,才能达到减少淬火变形的目的,才能降低成本,保证质量。

以上各种预处理的具体操作同其他相应操作,此处不赘述。

二、淬火加热操作①淬火温度:淬火温度对工件的淬火变形影响很大。

其影响淬火变形趋势的一般规律如图所示。

根据图的所示曲线对淬火畸变的影响规律,我们可通过调整淬火温度来达到减少变形的目的,或将预留机械加工余量同淬火温度来达到减少变形的目的,或将预留机械加工余量同淬火温度经热处理试验后合理地选择、使用,从而达到减少后序加工余量。

淬火易出现的问题及解决方法(一)

淬火易出现的问题及解决方法(一)

淬火易出现的问题及解决方法(一)淬火易出现的问题及解决问题一:淬火不均匀•原因:–材料不均匀或存在内部缺陷–淬火介质温度不均匀–淬火过程中材料受冷却介质的影响不均匀•解决方法:–使用质量稳定、无内部缺陷的优质材料–控制淬火介质的温度,确保均匀性–加强淬火工艺研究,调整冷却介质的流速和温度,提高均匀性问题二:淬火变形或开裂•原因:–材料冷却过程中产生的内应力超过材料的强度极限–材料形状复杂或厚度不均匀,导致冷却过程不均匀–淬火介质的温度或冷却速度选择不当•解决方法:–优化材料的形状设计,避免过于复杂或不均匀的厚度–控制淬火介质的温度和冷却速度,避免产生过大的内应力–使用适当的预淬火或回火工艺,调整材料内部应力分布,减少变形或开裂的风险问题三:淬火硬度不符合要求•原因:–材料的组织状态不合适–淬火温度选择不准确–淬火介质选择错误或控制不当•解决方法:–优化材料的热处理工艺,确保组织状态符合要求–通过试验和实践确定合适的淬火温度范围–针对不同材料选择适当的淬火介质,并控制冷却速度,以达到所需的硬度问题四:淬火后强度不稳定•原因:–淬火过程中产生的残余应力导致材料强度波动–淬火后材料的晶粒尺寸和组织状态不稳定•解决方法:–通过适当的回火工艺降低残余应力,增加材料的稳定性–控制热处理过程中的冷却速度和回火温度,以稳定材料的晶粒尺寸和组织状态以上是淬火易出现的问题及解决方法的总结。

通过优化材料选择、淬火工艺的调整和回火工艺的控制,我们可以解决淬火过程中遇到的各种问题,从而获得满足要求的材料性能。

问题五:淬火后的表面质量不理想•原因:–材料表面存在氧化物或杂质–淬火介质中含有污染物–淬火过程中产生的气泡或烟碱•解决方法:–在淬火之前,对材料进行表面清洁,去除氧化物和杂质–选用纯净的淬火介质,避免污染物对材料表面造成影响–控制淬火过程中温度和冷却速度,减少气泡或烟碱的产生问题六:淬火过程中能耗较高•原因:–淬火介质的温度过高,导致能量损耗增加–淬火介质的循环和冷却系统不合理,造成能量浪费•解决方法:–优化淬火介质的温度和冷却速度,尽量减少能量损耗–对淬火介质的循环和冷却系统进行调整和优化,提高能量利用率问题七:淬火后材料的尺寸变化较大•原因:–淬火介质的温度和冷却速度选择错误,导致材料尺寸变化过大–材料的形状设计和尺寸控制不合理•解决方法:–确定适当的淬火温度和冷却速度范围,以减小尺寸变化–在材料的形状设计和尺寸控制上进行优化,避免过大的尺寸变化以上是淬火易出现的问题以及解决方法的总结。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

淬火变形问题的解决办法
本文基于淬火变形的机理及其影响因素,浅谈淬火变形的预防控制及后期的机加工补救方法。

一,导致淬火变形的因素
1,碳含量及其对淬火变化量的影响
高碳钢屈服强度的升高,其变形量要小于中碳钢。

对碳素钢来说,在大多数情况下,以T7A钢的变形量为最小。

当碳的质量分数大于0.7%时,多趋向于缩小;但碳的质量分数小于0.7%时,内径、外径都趋向于膨胀。

碳素钢本身屈服强度相对较低,因而带有内孔(或型腔)类的碳素钢件,变形较大,内孔(或型腔)趋于胀大。

合金钢由于强度较高,Ms点较低,残余奥氏体量较多,故淬火变形较小,并主要表现为热应力型的变形,其钢件内孔(或型腔)趋于缩小。

因此,在与中碳钢同样条件下淬火时,高碳钢和高合金钢工件往往以内孔收缩为主。

2,合金元素对淬火变形的影响
合金元素对工件热处理变形的影响主要反映在对钢的Ms点和淬透性的影响上。

大多数合金元素,例如,锰、铬、硅、镍、钼、硼等,使钢的Ms点下降,残余奥氏体量增多,减小了钢淬火时的比体积变化和组织应力,因此,减小了工件的淬火变形。

合金元素显著提高钢的淬透性,从而增大了钢的体积变形和组织应力,导致工件热处理变形倾向的增大。

此外,由于合金元素提高钢的淬透性,使临界淬火冷却速度降低,实际生产中,可以采用缓和的淬火介质淬火,从而降低了热应力,减小了工件的热处理变形。

硅对Ms点的影响不大,只对试样变形起缩小作用;钨和钒对淬透性和Ms点影响也不大,对工件热处理变形影响较小。

故工业上所谓微变形钢,均含有较多量的硅、钨、钒等合金元素。

3,原始组织和应力状态对热处理变形的影响
工件淬火前的原始组织,例如,碳化物的形态、大小、数量及分布,合金元素的偏析,锻造和轧制形成的纤维方向都对工件的热处理变形有一定影响。

球状珠光体比片状珠光体比体积大,强度高,所以经过预先球化处理的工件淬火变形相对要小。

对于一些高碳合金工具钢,例如,9Mn2V、CrWMn和GCr15钢的球化等级对其热处理变形开裂和淬火后变形的校正有很大影响,通常以2.5-5级球化组织为宜。

调质处理不仅使工件变形量的绝对值减小,并使工件的淬火变形更有规律,从而有利于对变形的控制。

条状碳化物分布对工件的热处理变形有很大影响。

淬火后平行于碳化物条带方向工件膨胀,与碳化物条带相垂直的方向则收缩,碳化物颗检愈粗大,条带方向的膨胀愈大。

对于Cr12类型钢和高速钢等莱氏体钢来说,碳化物的形态和分布对淬火变形的影响尤为显著。

总之,工件的原始组织愈均匀,热处理变形愈小,变形愈有规律,愈易于控制。

4,淬火前工件本身的应力状态对变形有重要影响。

特别是形状复杂,经过大进给量切削加工的工件,其残余应力若未经消除,对淬火变形有很大影响。

5,工件几何形状对热处理变形的影响
几何形状复杂,截面形状不对称的工件,例如带有键槽的轴,键槽拉刀、塔形工件等,淬火冷却时,一个面散热快,另一面散热慢,是一种不均匀的冷却。

如果在Ms以上的不均匀冷却引起的变形占优势,则冷却快的一面是凹面, 若在Ms以下的不均匀冷却引起的变形占优势,则冷却快的一面是凸面,增加等温时间,增长贝氏体转变量,使残余奥氏体更加稳定,减小空冷中的马氏体转变量,可使工件的变
形量显著减小。

6,工艺参数对热处理变形的影响
无论是常规热处理还是特殊热处理,都可能产生热处理变形,分析热处理工艺参数对热处理变形的影响时,最重要的是分析加热过程和冷却过程的影响。

加热过程的主要参数是加热的均匀性、加热温度和加热速度。

冷却过程的主要参数是冷却的均匀性和冷却速度。

不均匀冷却对淬火变形的影响与工件截面形状不对称造成的不均匀冷却情况相同,本节主要讨论其它工艺参数的影响。

二,淬火变形的预防与控制方法
1) 反向压弯法:根据轴类零件的热处理变形规律,可在淬火前预加一个应力,即在零件弯曲方向的反向压弯,以补偿淬火后所产生的弯曲变形,可减小校直工作量。

适用于截面明显不均匀,变形严重的零件。

2) 静态淬火法:要求淬火冷却液的温度要均匀,并且是在淬火前刚被搅匀后的静止状态。

将零件用钳子夹住,淬入冷却液中。

这种方法可比用铅丝吊扎悬挂淬入变形量要小得多。

3) 零件设计均匀对称:零件的截面形状设计应尽量均匀对称,必要时可开工艺用槽。

例如,镗杆上有两条对称的槽,实际上只用一条,另一条就是为了减小热处理变形而设计的。

4)采用专用淬火夹具淬火:如果零件截面是对称的,在出炉后可套入专用夹具,然后以垂直方向淬入冷却液。

由于零件变形受到夹具的限制,一般都可以控制在预留余量范围以内。

5)利用埋入式盐浴炉加热:插入式盐浴炉加热,零件单面受热快,容易产生弯曲变形,而埋入式盐浴炉则温度较均匀,而且节能,也可采用流动粒子炉。

6)直吊横放:对于长零件淬火前后的存放,应注意不使零件因自重而弯曲,最好采用架子直吊。

长途运输时,可采用多个塑料气垫包,这样不但能使零件自动取得平衡,且有减震作用。

7)淬火前消除应力:用于重要的容易变形的零件,例如精密长丝杆等。

淬火前进行退火或正火以细化晶粒并使组织均匀化,减少内应力。

淬火加热时严格控制加热温度。

三,淬火变形的机加工纠正方法。

以渗碳淬火齿轮轴为例,在渗碳前和淬火后的加工余量按标准很大,直接磨齿即不经济又不方便,硬度大,有什么方法直接加工呢?
采用非金属粘合剂HLCBN刀具BN-S20牌号可对淬硬工件,进行大余量一次走刀加工完成,BN-S20牌号超硬刀具能够大余量切除淬硬层,替代大余量粗磨加工,可省去退火后再进行二次淬火的传统加工方法,节约了加工费用和相应的工序成本,并大幅度提高生产效率。

相关文档
最新文档