世界十大经典物理实验

合集下载

十大最美丽的物理实验

十大最美丽的物理实验

十大最美丽的物理实验
北京天文台里的傅科摆
十大最美丽的物理实验
8. 油滴实验
十大最美丽的物理实验
8. 油滴实验
1909年,美国科学家罗伯特· 密立根开始测量电荷的电量。他用 一个香水瓶的喷头向一个透明的小 盒子里喷油滴。小盒子的顶部和底 部分别放有一个通正电的电板,另 一个放着通负电的电板。当小油滴 通过空气时,就带有了一些静电, 他们下落的速度可以通过改变电板 的电压来控制。经过反复实验密立 根得出结论:电荷的值是某个固定 的常量,最小单位就是单个电子的 带电量。
十大最美丽的物理实验
4. 棱镜分解太阳光
Newton(1643-1727) 英国物理学家、天文学家、数学家。
当时大家都认为白光是一种纯的、没有其他颜色的 光(亚里士多德就是这样认为的),而彩色光是一种不 知何故发生了变化的光。
十大最美丽的物理实验
从1670年到1672年,牛顿研究了光的折射。他把一 面三棱镜放在阳光下,透过三棱镜,墙上出现不同颜色的 光带,后来我们称作为光谱。人们知道彩虹由七种颜色组 成,但是大家认为那是不正常的。牛顿的结论是:正是这 些红、橙、黄、绿、青、蓝、紫基础色有不同的色谱才形 成了表面上颜色单一的白色光。
十大最美丽的物理实验
5. 卡文迪许扭矩实验
Henry Cavendish(1731-1810)
英国科学家,称量地球第一人。
十大最美丽的物理实验
18世纪末,亨利·卡文迪许将两边系有小金属球的 6英尺木棒用金属线悬吊起来,这个木棒就像哑铃一样; 再将两个350磅重的铅球放在相当近的地方,以产生足够 的引力让哑铃转动,并扭动金属线。然后用自制的仪器 测量出微小的转动。如图是卡文迪许使用的装置图。
十大最美丽的物理实验

物理学十大最美实验

物理学十大最美实验

物理学十大最美实验一、伽利略的自由落体实验哎呀,这可太酷啦!伽利略在比萨斜塔上做这个实验(虽然有争议是不是真在斜塔上做的,但不影响它的美呀)。

他就想知道,不同重量的物体下落的速度到底是不是像亚里士多德说的那样,重的物体下落快。

他拿着一轻一重两个球,然后同时放手,结果发现它们同时落地啦。

这就像打破了一个大家一直深信不疑的“魔咒”,告诉我们在没有空气阻力的情况下,所有物体下落的加速度都是一样的。

这可是开启了现代物理学对运动研究的新大门呢。

二、牛顿的三棱镜分解太阳光实验牛顿这个大佬啊,拿着三棱镜对着太阳光那么一照,哇塞,原本白色的太阳光就变成了一条漂亮的彩色光带,红橙黄绿蓝靛紫,就像彩虹被他抓到了手里一样。

这说明了啥呢?原来白色的光不是单一的,而是由各种不同颜色的光混合而成的。

这个实验就像是揭开了光的神秘面纱的一角,让我们开始深入地去了解光的本质到底是什么。

三、托马斯·杨的双缝干涉实验这个实验看起来就很神奇。

托马斯·杨让光通过两条狭缝,然后在后面的屏幕上就出现了干涉条纹。

这就像是光在和自己玩游戏一样,一会儿叠加,一会儿抵消。

这个实验证明了光具有波动性,就像水波一样,可以互相干涉。

这对于我们理解光的特性又迈进了一大步,而且这个干涉条纹看起来真的特别有艺术感,就像光画出来的美丽图案。

四、卡文迪许扭秤实验卡文迪许这个实验超级厉害。

他用一个扭秤装置来测量万有引力常量。

他就像一个非常有耐心的侦探,通过测量非常微小的扭转角度,来算出两个小球之间的引力大小,进而得出万有引力常量。

这个常量可是非常重要的,它让我们能够计算天体之间的引力,对研究宇宙的结构和天体的运动有着不可替代的作用。

五、傅科摆实验傅科摆是个很有趣的东西。

在一个大厅里,一个长长的摆锤在摆动。

你看着它,会发现它的摆动平面在慢慢地转动。

这可不是有什么神秘力量在推动它,而是因为地球在自转。

这个实验就像是地球自转的一个证明,它让我们能直观地感受到地球的自转,那种感觉就像是地球在偷偷地展示自己的小秘密。

十大经典物理实验

十大经典物理实验

NO.9:卢瑟福发现核子实验 1911 年卢瑟福还在曼彻斯特大学做放射能实
验时,原子在人们的印象中就好像是“葡萄 干布丁”,大量正电荷聚集的糊状物质,中 间包含着电子微粒。但是他和他的助手发现 向金箔发射带正电的阿尔法微粒时有少量被 弹回,这使他们非常吃惊。卢瑟福计算出原 子并不是一团糊状物质,大部分物质集中在 一个中心小核上,现在叫作核子,电子在它 周围环绕。
NO.3:罗伯特· 米利肯的油滴实验 很早以前,科学家就在研究电。人们知道这种 无形的物质可以从天上的闪电中得到,也可以 通过摩擦头发得到。 1897 年,英国物理学家 J · J ·托马斯已经确立电流是由带负电粒子即电子组
成的。 1909 年美国科学家罗伯特·米利肯开始测 量电流的电荷。 米利肯用一个香水瓶的喷头向一个透明的小盒 子里喷油滴。小盒子的顶部和底部分别连接一 个电池,让一边成为正电板,另一边成为负电 板。当小油滴通过空气时,就会吸一些静电, 油滴下落的速度可以通过改变电板间的电压来 控制。 米利肯不断改变电压,仔细观察每一颗油滴的 运动。经过反复试验,米利肯得出结论:电荷 的值是某个固定的常量,最小单位就是单个电 子的带电量。
NO.5:托马斯· 杨的光干涉实验 牛顿也不是永远正确。在多次争吵后,牛顿让 科学界接受了这样的观点:光是由微粒组成的,
而不是一种波。 1830 年,英国医生、物理学家 托马斯·杨用实验来验证这一观点。他在百叶窗 上开了一个小洞,然后用厚纸片盖住,再在纸 片上戳一个很小的洞。让光线透过,并用一面 镜子反射透过的光线。然后他用一个厚约 1 / 30 英寸的纸片把这束光从中间分成两束。结果 看到了相交的光线和阴影。这说明两束光线可 以像波一样相互干涉。这个实验为一个世纪后 量子学说的创立起到了至关重要的作用。

世界十大最美物理实验概述

世界十大最美物理实验概述

世界十大最美物理实验概述
下面是世界十大最美的物理实验的简要概述:
1. 双缝实验(Young实验):这个实验使用光或电子束通过两个狭缝,观察到干涉和衍射现象,证明了波粒二象性的存在。

2. 斯特恩-盖拉赫实验:利用分子束通过磁场,发现了电子的自旋,证明了量子力学的基本原理。

3. 弗朗克-赫兹实验:通过让电子束通过气体原子,发现了原子的能级结构,进一步验证了量子理论。

4. 米立根油滴实验:将油滴悬浮在电场中,通过测量油滴的运动来测定电荷的基本单位,即电子的电荷量。

5. 兰纳德放电管实验:通过在真空管中加入气体,产生带电粒子,并观察到产生的荧光,验证了兰纳德散射理论。

6. LIGO引力波观测实验:使用光学干涉技术观测到由两个黑洞合并产生的引力波,为广义相对论提供了重要的证据。

7. CERN大型强子对撞机实验:利用加速器将两束质子相撞,产生高能量的粒子,探索基本粒子和宇宙奥秘。

8. 脉冲星实验:通过测量脉冲星的周期和频率,验证了广义相对论对于极端条件下的引力场的预测。

9. 霍金辐射模拟实验:通过模拟黑洞的辐射过程,进一步验证了霍金辐射理论。

10. 反质子物理实验:通过制造反质子并与正常质子碰撞,研究反物质的性质,为了解宇宙的平衡提供了重要线索。

十大经典物理实验

十大经典物理实验

十大经典物理实验1、电灯泡实验:首先将电池与电灯泡连接,然后将接线盒的线端插入电池,然后将另外一只线缆插入电灯泡的端口,最后按下开关,电灯泡就会闪亮,并发出光和热。

通过这个过程,学生们可以了解到当涉及具有传导能力的导体时,电流会在其中流动,给电灯泡提供光和热。

2、神奇膜实验:首先将神奇膜放在容器底部,然后将容器密封,倒入足够的滴定液,使神奇膜完全没入液体中,观察神奇膜的表面,可以发现它在微弱光源的附近发出一种不规则的荧光。

实验结果表明,神奇膜具有折射光的特性,从而把太阳的能量折射到特定的方向。

3、测磁实验:首先准备一个磁铁,然后用线圈绕住磁铁,使其形成一个磁力场,最后将电表接入,可以观察到电表指针随着磁铁中磁力场的变化而变化。

通过这个实验,学生们可以更好地理解在磁力场中磁通率的变化原理。

4、光粒子操控实验:准备一块柔软的光粒子控制板,然后用手机设置控制信号,最后将其传输到光粒子控制板上,可以控制硅片上的灯光变换,并可以选择可视化效果,学生可以通过这个实验了解到如何使用光粒子进行控制操作。

5、电吸附实验:准备一束电线,然后将铜线端接入接线头,然后将另一束电线接到另一个接线头,将铜线放置在金属物体上,观察到铜线会吸引金属,这就是电吸附效应。

由此可以看出,在有充足电子的导体上表面会形成受电势能影响的电离层,使金属表面拥有电的吸力。

6、自由落体实验:准备一枚不同重量的物体,将其放入容器中,观察物体在容器中的落体运动。

由实验结果可以看出,不同重量物体在重力作用下,其自由落体时间也不相同,这对探究重力自由落体运动有很大的帮助。

7、电磁感应实验:先准备一磁铁,然后把铜线包裹在磁铁上,让其形成一定形状,利用强大的磁力带动铜线做出振荡动作,形成电流。

实验表明,当磁力场与铜线横向经过时,铜线上的电子就会沿着绕线的方向产生振荡运动,形成电流。

8、电离容实验:首先将电离容和电源连接起来,然后从它的外部装载适量的电场,电离容内的电反作用就会保持电容电压不变。

物理历史上的十大经典实验

物理历史上的十大经典实验

物理历史上的十大经典实验物理学作为一门基础学科,对理解自然现象和解决生活中的实际问题有着重要的作用。

在物理学的发展历程中,不断出现各种精妙的实验,这些实验不仅改变了人们对物理世界的认识,也推动了物理学的进步。

下面我们来看看物理历史上的十大经典实验。

1.托马斯·杨双缝实验1801年,杨氏实验是一项非常著名的实验,它揭示了光的波动性和干涉现象。

实验中杨先生利用一束单色光通过一个直角状的小孔,朝一个屏幕上的双狭缝辐辏。

这时,在屏幕后观察到光的干涉条纹,从而证实了光的波动特性。

2. 爱因斯坦的光电效应实验1905年,爱因斯坦发表了《关于物质中的能量转换问题》一文,提出了光电效应学说。

实验中,通过投射单色光线至金属材料表面,测定光电子的能量和光的频率关系,从而证明了光子的存在,以及“光子具有能量和动量”的结论。

3. Rutherford 的黄金箔实验1911年,Rutherford发明了黄金箔实验,通过在黄金箔中间打一个非常小的孔,从而使放射性粒子入射。

观察到大部分粒子径直穿过了黄金箔,而小部分粒子向其他方向偏转,从而推翻了原子结构的传统假说,证明了原子由原子核和电子云构成的新理论。

4.磁通量量子化实验1931年,约瑟夫·约瑟夫逊和弗里曼特·劳厄发现磁通量量子化,称为约瑟夫逊-劳厄效应。

实验中,利用所谓的,用于控制精确的磁通量的整数倍的微小旋转磁场,证实了磁通量量子化现象,并证明了新量子理论是正确的。

5. 李淳风实验1978年,李淳风在北京大学上课时,讲述了“冰箱传热理论”。

他认为,每个特定的系统都存在着一个最优的热传输速率,而这个速率取决于所涉及的物质的特定属性。

这推动了物理学家对非平衡系统的研究,进一步推进了膜科学,研制了更加高效的膜材料。

6. 湮没粒子实验1965年,来自贝尔实验室的阿诺·彭韦茨和羅伯特·迪克等三名物理学家,在实验中通过研究中微子捕获效应,揭示了一个新的粒子-湮灭粒子的问题。

物理界10大实验

物理界10大实验

物理界10大实验
物理学是一门广泛的科学学科,在过去的几百年里,物理学家们进行了许多伟大的实验,揭示了自然界的秘密。

这里列出了10个著名的物理学实验:
1.爱因斯坦相对论的验证——这是一项证明了爱因斯坦相对论的著名实验,包括布
鲁尔半导体实验和诺曼·牛顿卫星实验。

2.原子核裂变——这是一项发现了原子核裂变的重要实验,由费米和中山大学的弗
莱明和伦道夫·费米完成。

3.光的波粒二象性——这是一项证明了光具有波粒二象性的著名实验,由爱因斯坦
和波莫尔完成。

4.玻尔兹曼冷却——这是一项发现了玻尔兹曼冷却效应的实验,由玻尔兹曼、霍尔
和费米完成。

5.波动方程的验证——这是一项证明了量子力学中的波动方程的著名实验,由费米
和威廉·巴克完成。

6.牛顿第二定律的验证——这是一项证明了牛顿第二定律(即动量守恒定律)的著
名实验,由牛顿本人完成。

7.麦克斯韦方程的验证——这是一项证明了麦克斯韦方程的著名实验,由麦克斯韦
和保罗·莫尔完成。

这个方程描述了电磁场的传播。

8.希格斯玻色子的发现——这是一项发现了希格斯玻色子的著名实验,由希格斯和
威廉·福克斯完成。

希格斯玻色子是量子力学中的一种基本粒子,是原子内部的基本组成单位。

9.布鲁尔实验——这是一项证明了电磁场和电动势之间存在关系的著名实验,由布
鲁尔完成。

10.出现海明威不确定性原理——这是一项发现了海明威不确定性原理的著名实验,
由海明威完成。

海明威不确定性原理是量子力学中最著名的定理之一,它表明在许多情况下,粒子的位置和速度都是不确定的。

科学史上十大著名实验

科学史上十大著名实验

科学史上十大著名实验1. 突触传递的Sharpless实验:1945年,美国科学家罗伯特·夏普尔斯(Robert Sharpless)完成了一项关于突触传递的实验,该实验表明,突触传递在脑和神经传导中具有重要作用。

2. 佩尔蒙特氏实验:1862年,法国科学家居里夫人(Marie Curie)完成了一项有关佩尔蒙特(périméthèse)的实验,从而证实了水滴层原理并支持了放射性元素的存在。

3. 亚里士多德真空实验:公元前330年,古希腊哲学家亚里士多德(Aristotle)进行了一项真空实验,实验表明:气体不仅可以扩散,而且也可以应用于低压环境中。

4. 穆勒实验:1903年,德国物理学家威廉·穆勒(Wilhelm Mueller)发现了聚变现象,这一发现成为探索核反应的重要步骤,也是实验物理学的重要基石。

5. 理查德·瓦特实验:1882年,俄罗斯物理学家理查德·瓦特(RichardT. Watt)发明了一种可测量温度场及其变化的原理,该原理后来被称为“瓦特定律”,并成为物理实验的典范。

6. 勒索士实验:1827年,英国化学家约翰·勒索士(John Dalton)完成了一系列“质量守恒实验”,提出了原子理论,明确了物质的基本单元便是原子,这对进一步探究物质的内在结构有着重要意义。

7. 克拉克律仪实验:1873年,英国物理学家约翰·克拉克(John Clark)开发出可用来测量光速的KCalibre律仪,以具体的数字幅度验证了光在实验中的行为,也是科学技术史上的里程碑。

8. 劳伦斯缩小实验:在1660年代,英国物理学家克里斯托弗·劳伦斯(Christopher Laurence)开展了一项有关摩擦力的实验,提出了劳伦斯缩小定律,为研究宏观世界的材料结构奠定了基础。

9. 卡斯卡尔勃朗特实验:1887年,德国物理学家卡尔·斯特林,卡斯卡尔-勃朗特(Carl Stellen)完成了一项实验,它在建模晶体表面结构方面发挥了非常重要的作用,也为材料科学建立了基础。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

世界十大经典物理实验
这些经典实验的共通之处是他们都仅仅“抓”住了物理学家眼中“最美丽”的科学之魂:最简单的仪器和设备,发现了最根本、最单纯的科学概念,就像是一座座历史丰碑一样,扫开人们长久的困惑和含糊,开辟了对自然界的崭新认识。

从十大经典科学试验本身,我们也能清楚地看出2000年来科学家们最重大的发现轨迹,就像我们“鸟瞰”历史一样。

让我们从第十名开始,回顾这些经典的实验。

第十名米歇尔·傅科钟摆实验1851年法国科学家傅科当众做了一个实验,用一根长220英尺的钢丝吊着一个重62磅重的头上带有铁笔的铁球悬挂在屋顶下,观测记录它的摆动轨迹。

周围观众发现钟摆每次摆动都会稍稍偏离原轨迹并发生旋转时,无不惊讶。

实际上这是因为房屋在缓缓移动。

傅柯的演示说明地球是在围绕地轴旋转。

在巴黎的纬度上,钟摆的轨迹是顺时针方向,30小时一周期。

在南半球,钟摆应是逆时针转动,而在赤道上将不会转动。

在南极,转动周期是24小时。

目前在人大附中中,还有一个傅科钟摆的模型。

第九名卢瑟福的阿尔法粒子散射实验1911年卢瑟福还在
曼彻斯特大学做放射能实验时,原子在人们的印象中就好像是“葡萄干布丁”,大量正电荷聚集的糊状物质,中间包含着电子微粒。

但是他和他的助手发现向金箔发射带正电的阿尔
法微粒时有少量被弹回,这使他们非常吃惊。

卢瑟福计算出原子并不是一团糊状物质,大部分物质集中在一个中心小核上,现在叫作原子核,电子在它周围环绕。

第八名伽利略的加速度实验伽利略进行他的物体移动研究。

他做了一个6米多长,3米多宽的光滑直木板槽。

再把这个木板槽倾斜固定,让铜球从木槽顶端沿斜面滑下。

然后测量铜球每次下滑的时间和距离,研究它们之间的关系。

亚里士多德曾预言滚动球的速度是均匀不变的:铜球滚动两倍的时间就走出两倍的路程。

伽利略却证明铜球滚动的路程和时间的平方成比例:两倍的时间里,铜球滚动4倍的距离。

因为存在重力加速度。

第七名埃拉托色尼测量地球圆周
在公元前3世纪,埃及的一个名叫阿斯瓦的小镇上,夏至正午的阳光悬在头顶。

物体没有影子,太阳直接照入井中。

埃拉托色尼意识到这可以帮助他测量地球的圆周。

在几年后的同一天的同一时间,他记录了同一地点的物体的影子。

发现太阳光线有稍稍偏离,与垂直方向大约成7度角。

剩下的就是几何问题了。

假设地球是球状,那么它的圆周应是360度。

如果两座城市成7度角,就是7/360的圆周,就是当时5000个希腊运动场的距离。

因此地球圆周应该是25万个希腊运动场。

今天我们知道埃拉托色尼的测量误差仅仅在5%以内。

第六名卡文迪许扭秤实验牛顿的另一大贡献是他的万
有引力理论:两个物体之间的吸引力与他们质量的平方成正比,与他们距离的平方成反比。

但是万有引力到底多大?18世纪末,英国科学家亨利·卡文迪许决定要找到一个计算方法。

他把两头带有金属球的6英尺木棒用金属线悬吊起来。

再用两个350磅重的皮球放在足够近的地方,以吸引金属球转动,从而使金属线扭动,然后用自制的仪器测量出微小的转动。

测量结果惊人的准确,他测出了万有引力的参数恒量。

在卡文迪许的基础上可以计算地球的地球质量为6.0×10^24公斤第五名托马斯·杨的光干涉实验牛顿曾认为光是由微粒组
成的,而不是一种波。

1830年英国医生也是物理学家的托
马斯·杨向这个观点挑战。

他在百叶窗上开了一个小洞,然后用厚纸片盖住,再在纸片上戳一个很小的洞。

让光线透过,并用一面镜子反射透过的光线。

然后他用一个厚约1/30英寸的纸片把这束光从中间分成两束。

结果看到了相交的光线和阴影。

这说明两束光线可以像波一样相互干涉。

这个试验为一个世纪后量子学说的创立起到了至关重要的作用。

第四名牛顿的棱镜分解太阳光艾萨克·牛顿出生那年,伽利略与世长辞。

牛顿1665年毕业于剑桥大学的三一学院。


时大家都认为白光是一种纯的没有其它颜色的光,而有色光是一种不知何故发生变化的光(又是亚利斯多德的理论)。


了验证这个假设,牛顿把一面三棱镜放在阳光下,透过三棱
镜,光在墙上被分解为不同颜色,后来我们称作为光谱。

人们知道彩虹的五颜六色,但是他们认为那时因为不正常。

牛顿的结论是:正是这些红、橙、黄、绿、青、蓝、紫基础色有不同的色谱才形成了表面上颜色单一的白色光,如果你深入地看看,会发现白光是非常美丽的。

第三名罗伯特·密立根的油滴实验很早以前,科学家就在研究电。

人们知道这种无形的物质可以从天上的闪电中得到,也可以通过摩擦头发得到。

1897年,英国物理学家托马斯已经得知如何获取负电荷电流。

1909年美国科学家罗伯特·密立根开始测量电流的电荷。

他用一个香水瓶的喷头向一个透明的小盒子里喷油滴。

小盒子的顶部和底部分别放有一个通正电的电板,另一个放有通负电的电板。

当小油滴通过空气时,就带有了一些静电,他们下落的速度可以通过改变电板的电压来控制。

经过反复试验米利肯得出结论:电荷的值是某个固定的常量,最小单位就是单个电子的带电量。

第二名伽利略的自由落体实验在16世纪末,人人都认为重量大的物体比重量小的物体下落的快 因为伟大的亚里士
多德是这么说的。

伽利略,当时在比萨大学数学系任职,他大胆的向公众的观点挑战,他从斜塔上同时扔下一轻一重的物体,让大家看到两个物体同时落地。

他向世人展示尊重科学而不畏权威的可贵精神。

第一名电子干涉实验
20世纪初,麦克斯·普克朗和艾伯特·爱因斯坦分别指出一种叫光子的东西发出光和吸收光。

但是其他试验还是证明光是一种波状物。

经过几十年发展的量子学说最终总结了两个矛盾的真理:光子和亚原子微粒,(如电子、光子等等)是同时具有两种性质的微粒,物理上称它们为波粒二象性。

科学家们将托马斯·杨的双缝演示改造一下,用电子流代替光束来解释这个实验。

根据量子力学,电粒子流被分为两股,被分得更小的粒子流产生波的效应,他们相互影响,以至产生像托马斯·杨的双缝演示中出现的加强光和阴影。

这说明微粒也有波的效应。

是谁最早做了这个试验已经无法考证。

=================================。

相关文档
最新文档