玻璃窑炉烟气脱硫脱硝技术-山东日用硅酸盐工业协会

合集下载

《浅析天然气玻璃窑炉废气(NOX、SO2、颗粒物)达标排放的控制方法》

《浅析天然气玻璃窑炉废气(NOX、SO2、颗粒物)达标排放的控制方法》

《浅析天然气玻璃窑炉废气(NOX、SO2、颗粒物)达标排放的控制方法》摘要:随着我国经济的快速发展,玻璃广泛的应性也大大提升,我国平板玻璃产量已达全球首位,但随着玻璃产业的日益增多,所产生的窑炉废气对环境造成极大的破坏。

根据《中华人民共和国环境保护法》和《中华人民共和国大气污染防治法》,加强固定污染源烟气排放监测监管,提高固定污染源烟气排放连续监测管理水平和有关要求,对固定污染源排放的颗粒物和(或)气态污染物的排放浓度和排放量进行连续、实时的自动监测系统CEMS。

玻璃窑炉燃烧产生的主要废气包括:NOX、SO2、颗粒物,下面简单的介绍一下我们公司天然气燃烧废气浓度达标排放的一些方法,仅供参考。

关键词:陶瓷滤管一体化;NOX、SO2、颗粒物名词:连续监测固定污染源颗粒物和(或)气态污染物排放浓度和排放量所需要的全部设备,简称 CEMS。

一、工艺简介:本系统包含氨喷射系统、烟气预处理系统、预除尘系统、滤管除尘脱硝系统、脱硫剂循环系统、换热器系统等。

烟气由余热锅炉高温段确保余热锅炉高温出口烟气温330~380℃引入到脱硝系统中,烟气进入烟气预处理塔预处理,以熟石灰为脱硫剂进行预脱硫,脱除三氧化硫、二氧化硫。

在脱硫塔前烟道中喷入氨气,氨气经过充分混合后随烟气进入触媒陶瓷纤维滤管除尘器,触媒陶瓷纤维滤管表面形成滤饼层,过滤烟气中的颗粒物,在触媒陶瓷纤维滤管所载催化剂的作用下,除尘器内烟气中的氮氧化物与氨发生氧化还原反应,生成氮气和水,处理后的干净烟气回到锅炉低温段,再经引风机至烟囱排出,完成整个除尘脱硝过程。

①工艺流程图:熔窑烟气→高温段锅炉→干法脱硫塔→旋风除尘器→ 触媒陶瓷纤维滤管(一体化)→低温段锅炉→引风机→烟囱其中氨气和石灰从脱硫塔前烟道进入,烟气温度350-380度,一体化烟气温度330-360度。

二、主要控制设备及作用:1、干法脱硫系统脱硫塔是保证将SO2降低到合理水平的关键核心设备,采用底部进气,塔前烟道加入熟石灰,与烟道内烟气充分混合后,进行干法脱硫,经脱硫后的烟气进入下游除尘脱硝一体化系统。

燃气玻璃窑炉烟气脱硫和脱硝系统的设计

燃气玻璃窑炉烟气脱硫和脱硝系统的设计

燃气玻璃窑炉烟气脱硫和脱硝系统的设计摘要:随着我国环保要求的日益严格,电力行业、钢铁行业均实行了烟气超低排放要求,以玻璃窑炉为代表的工业窑炉也将面临超低排放改造的要求。

本文针对燃气玻璃窑炉,结合燃气玻璃窑炉的烟气特点、污染物特点,对燃气玻璃窑炉SCR脱硝+干法脱硫技术进行分析论述,为燃气玻璃窑炉烟气的脱硫脱销除尘综合治理提供一条切实可行的技术路径。

关键词:玻璃窑炉;SCR;布袋除尘器;干法脱硫;引言玻璃行业是耗能大户,同时又是大气污染严重的行业。

玻璃窑炉采用重油、天然气和煤等为燃料,大气污染物排放比较严重,对环境和人类也造成极大的危害,因此,玻璃行业是我国重点工业污染控制行业之一。

针对玻璃窑炉烟气进行污染物的综合治理,不仅是保护生态环境和提高人民生活质量的关键之举,并且对推动我国玻璃产业结构调整和可持续发展具有重要意义。

1燃气玻璃窑炉的烟气特点国内玻璃生产线目前主要使用重油、天然气、煤制气等几种燃料,根据目前国内浮法玻璃行业的生产规模及使用的燃料情况,排气温度大多在400~500℃。

烟气中的主要污染物为SO2和NOX,其含量随使用的燃料不同而相差较大,对于燃气玻璃窑炉烟气,SO2含量低,一般在500 mg/m3; NOX含量高,一般在1200mg/m3。

针对玻璃窑炉烟气污染物的排放,河北省发布了平板玻璃工业大气污染物超低排放标准(DB13/2168-2015),其中对燃气玻璃窑烟气中SO2的排放要求为250mg/m3,对NOX的排放要求为600mg/m3。

按常规燃气玻璃窑炉烟气中污染物的浓度及排放要求考虑,烟气脱硫效率及脱硝效率均应大于50%。

2燃气玻璃窑炉烟气脱硝2.1选择性催化还原技术(SCR)SCR脱硝技术是当前应用最广的烟气脱硝技术,其脱硝率可以达到90%。

该技术主要利用还原剂和NOx在一定温度和SCR选择催化剂的作用下发生反应,进而产生无污染的N2和H2O,具有操作简单、技术完善的优势,缺点就是应用成本较高,需定期更换催化剂。

硫硝尘一体化在平板玻璃熔窑烟气治理中的应用

硫硝尘一体化在平板玻璃熔窑烟气治理中的应用

Science and Technology &Innovation ┃科技与创新2023年第19期·159·文章编号:2095-6835(2023)19-0159-03硫硝尘一体化在平板玻璃熔窑烟气治理中的应用梁瑞馨(东莞市生态环境局,广东东莞523000)摘要:主要介绍了在全国玻璃熔窑废气排放标准不断收严的情况下,脱硫脱硝除尘一体化技术在平板玻璃熔窑烟气治理方面的工艺路线及应用优势。

以广东省某企业采用高温复合滤筒硫硝尘一体化技术治理玻璃熔窑烟气为工程实例,治理后烟气污染物排放质量浓度达到超低要求,其中二氧化硫质量浓度小于50mg/m 3,氮氧化物质量浓度小于100mg/m 3,烟尘质量浓度小于10mg/m 3,为平板玻璃行业企业熔窑烟气治理提供参考。

关键词:玻璃熔窑;烟气治理;脱硫脱硝除尘一体化;高温复合滤筒中图分类号:X773文献标志码:ADOI :10.15913/ki.kjycx.2023.19.049平板玻璃是中国重要的基础建材产业,产量多年位居世界第一,约占全球总产量的50%。

玻璃熔窑烟气温度高、成分复杂、单位质量排放量是燃煤电厂的数倍,因此平板玻璃行业熔窑烟气污染防治是中国工业炉窑大气污染治理的重点和难点之一[1]。

当前除河北省、河南省、天津市、重庆市、山东省、广东省等个别省(直辖市)制定执行更严格的地方标准外,中国其他地区平板玻璃行业大气污染物排放均执行国家标准GB 26453—2011《平板玻璃行业大气污染物排放标准》。

2020年生态环境部修订发布了《玻璃工业大气污染物排放标准(征求意见稿)》,将标准适用范围扩大至玻璃制造、玻璃制品制造、玻璃纤维及制品制造,并进一步收严了玻璃熔窑烟气PM 、SO 2、NO x 的排放限值。

因此,对玻璃熔窑烟气治理设施进行提升改造,处理后废气达到超低排放是大势所趋。

1玻璃熔窑烟气特点目前中国平板玻璃行业熔化工序的燃料主要包括天然气、发生炉煤气、焦炉煤气、重油、煤焦油等,其中天然气作为清洁能源已逐渐被越来越多的玻璃企业所接纳使用。

NID半干法烟气脱硫技术在日用玻璃窑炉的应用

NID半干法烟气脱硫技术在日用玻璃窑炉的应用

NID半干法烟气脱硫技术在日用玻璃窑炉的应用林进跃【摘要】以日用玻璃窑炉烟气采用的NID半干法烟气脱硫除尘一体化设备处理为例,介绍日用玻璃窑炉的烟气特点、处理工艺流程、设计参数以及目前的运行效果,进一步论证其是当下日用玻璃行业烟气综合治理切实可行的途径.【期刊名称】《资源节约与环保》【年(卷),期】2015(000)007【总页数】1页(P23)【关键词】日用玻璃;NID;脱硫除尘效果【作者】林进跃【作者单位】广东华兴玻璃股份有限公司广东佛山 528216【正文语种】中文随着玻璃行业的快速发展,污染物排放也日趋严重,目前已成为大气污染物一大污染源。

玻璃窑炉废气污染物主要以二氧化硫(SO2)、氮氧化物(NOx)、粉尘为主,其中二氧化硫和氮氧化物是形成酸雨的主要污染物。

目前,玻璃行业主要有平板玻璃和日用玻璃两大类。

我国玻璃行业污染物排放执行的国家标准是《工业炉窑大气污染物排放标准》(GB9078-1996),同样适用于日用玻璃行业。

标准中对二氧化硫和烟尘等的排放浓度均有明确的规定,而NOx暂未有明确的规定。

因此,脱硫除尘在日用玻璃行业废气处理过程中是必不可少的途径,而玻璃窑炉脱硫除尘工艺的选择是关系到废气处理效果能否达标,同时也关系到企业能否稳定和健康发展。

在日用玻璃行业中,根据目前大多数的玻璃企业的生产规模及燃料使用情况,玻璃窑炉熔化面积从30m2~150m2不等,燃料多为天然气、燃油、煤气、碳粉等。

窑炉排放的烟气温度一般在450℃~500℃,污染物二氧化硫浓度在200mg/m3~3000mg/m3,其浓度取决于所用燃料的种类及其含硫率、原料配料中芒硝的使用量及燃料燃烧时生成的烟气量,产生的粉尘粒径小,黏结性较强。

目前国内外在玻璃行业中脱硫工艺可分为三种,即湿法脱硫、半干法脱硫、干法脱硫。

新型NID脱硫除尘一体化技术是法国ALSTOM公司在传统的半干法脱硫技术的基础上,改良出的新一代干法烟气脱硫技术,该系统具有占地面积小、效率高、运行灵活等特点。

玻璃窑炉烟气脱硫脱硝除尘一体化技术分析

玻璃窑炉烟气脱硫脱硝除尘一体化技术分析

玻璃窑炉烟气脱硫脱硝除尘一体化技术分析摘要:在玻璃生产过程中,玻璃窑炉烟气中会由于所选择的燃料而产生不同程度的粉尘和硫硝污染物。

为了使烟气达到排放标准,符合绿化环保的生产要求,采取烟气脱硫脱硝除尘一体化技术对玻璃窑炉烟气进行治理是十分必要的。

对此,本文分析了玻璃窑炉烟气脱硫脱硝除尘现状,分别从不同方面具体研究了玻璃窑炉烟气脱硫脱硝除尘一体化技术,希望有所帮助。

关键词:玻璃窑炉;烟气;脱硫脱硝除尘;一体化技术引言:在国民经济不断发展,现代化建设的进程不断推进的环境下,玻璃作为工业的重要原材料,其生产规模越来越大。

在电子信息、房地产、汽车等相关行业发展中,玻璃行业也得到了快速的发展,玻璃产量不断加大。

而在玻璃生产的过程中,由于其生产使用的燃料会对空气环境产生严重的污染,为了确保玻璃行业的持续化发展,加强对玻璃窑炉烟气的治理势在必行。

1.玻璃窑炉烟气脱硫脱硝除尘现状目前,我国玻璃的生产规模较大,生产线较多。

在玻璃生产当,有超过半数的生产使用燃料为石油焦粉,其余的生产所用燃料中重油和天然气、煤制气等各占一半左右。

玻璃生产过程中所使用的燃料不同,其产生的烟气污染情况也有所不同,比如使用石油焦粉作为燃料的生产过程中,产生的烟气污染物中粉尘浓度更高、硝类污染物的浓度与其他两种燃料相差不多,硫类污染物的浓度相对较高,但小于重油产生的污染物浓度。

就目前烟气污染物处理现状来看,我国大多数的玻璃生产企业都安装了相应的烟气处理措施,但也存在部分烟气未经过窑炉脱硫脱硝除尘处理就直接排放的问题,就整个行业而言,对玻璃窑炉烟气脱硫脱硝除尘工作仍需进一步完善。

1.玻璃窑炉烟气脱硫脱硝除尘一体化技术在传统的玻璃生产脱硫脱硝除尘技术中,对各类污染物单独去除,需要涉及到很多的设备和工艺,不仅需要消耗大量的成本其去除效果也并不可观。

采用脱硫脱硝除尘一体化技术能够有效节约设备的占地面积并节省成本投资,在一体化技术作用下,还能够实现对各类污染物同时高效去除的效果,为玻璃窑炉烟气治理工作带来了新的方式。

玻璃行业脱硝系统中氨逃逸的精准控制

玻璃行业脱硝系统中氨逃逸的精准控制

d o i :10.3963/j.i s s n .1674-6066.2023.05.029玻璃行业脱硝系统中氨逃逸的精准控制沈 浩,刘大朝,王 骐,刘 飞,刘昊宇,程 林,方 昂(深圳凯盛科技工程有限公司,深圳518000)摘 要: 该文以超白玻璃行业某烟气治理工程项目为例,针对超白玻璃窑炉特殊的烟气性质,采用触媒陶瓷一体化烟气治理技术,最终总排口污染物排放浓度N O x <100m g /N m 3,S O 2<50m g /N m 3,粉尘<10m g /N m 3㊂针对玻璃行业因窑炉换火而导致氨逃逸超标的问题,采用最新研究的喷氨自控技术,最终总排口氨逃逸浓度<8m g/N m 3,该技术的成功应用解决了困扰玻璃行业多年的换火期间氨逃逸超标的问题,进一步降低了氨的消耗量,减少了运行成本㊂关键词: 超白玻璃; 氨逃逸; 喷氨自控; 触媒陶瓷滤管P r e c i s eC o n t r o l o fA m m o n i aE s c a p e i nD e n i t r a t i o n S y s t e mo fG l a s s I n d u s t r yS H E N H a o ,L I UD a -z h a o ,W a n g Q i ,L I UF e i ,L I U H a o -y u ,C H E N GL i n ,F A N GA n g(S h e n z h e nT r i u m p hT e c h n o l o g y E n g i n e e r i n g Co ,L t d ,S h e n z h e n518000,C h i n a )A b s t r a c t : T h i s a r t i c l e t a k e s a f l u e g a s t r e a t m e n t p r o j e c t i n t h eu l t r a -c l e a r g l a s s i nd u s t r y a s a ne x a m p l e .I nr e s p o n s e t o t h e s p e c i a lf l u eg a s p r o p e r t i e so fu l t r a -c l e a r g l a s s f u r n a c e ,th e p r o j e c t a d o p t sac a t a l y s t c e r a mi c i n t e g r a t e df l u e g a s t r e a t m e n t t e c h n o l o g y ,r e s u l t i n g i n t o t a l e m i s s i o n s o f p o l l u t a n t sw i t hN O x <100m g /N m 3,S O 2<50m g /N m 3,a n dd u s t <10m g /N m 3.I n r e s p o n s e t o t h e p r o b l e mo f e x c e s s i v e a mm o n i a e s c a p e d u r i n g t h e r e v e r s a l o f f u r n a c e i n t h e g l a s s i n -d u s t r y ,t he l a t e s t r e s e a r c ho n a mm o n i a s p r a y i n g a u t o m a t i c c o n t r o l t e c h n o l o g y i s a d o p t e d ,r e s u l t i n gi n t o t a l e m i s s i o n s o f a mm o n i a e s c a p e c o n c e n t r a t i o n <8m g /N m 3.T h e s u c c e s s f u l a p p l i c a t i o no f t h i s t e c h n o l o g y s o l v e s t h e p r o b l e mo f e x c e s -s i v e a mm o n i a e s c a p e d u r i n g t h e r e v e r s a l o f f u r n a c e t h a t h a s p l a g u e d t h e g l a s s i n d u s t r y f o rm a n y y e a r s ,f u r t h e r r e d u c i n gt h e c o n s u m p t i o no f a mm o n i a a n d r e d u c i n g t h e o p e r a t i n g c o s t s .K e y w o r d s : u l t r a -c l e a r g l a s s ; a mm o n i ae s c a p e ; a mm o n i as p r a y i n g a u t o m a t i cc o n t r o l ; c a t a l y s t c e r a m i c f i l t e r t u b e收稿日期:2023-03-27.作者简介:沈 浩(1984-),高级工程师.E -m a i l :982775815@q q.c o m 国家标准中,2010年以后实施的‘平板玻璃工业大气污染物排放标准“(G B 26453-2011㊁G B 29495-2013)到2023年后实施的‘玻璃工业大气污染物排放标准“(G B 26453-2022)中规定,一般地区N O x 由700m g /N m 3降低至400m g /N m 3,S O 2由400m g /N m 3降低至200m g /N m 3,粉尘由50m g /N m 3降低至30m g/N m 3,重点地区更加严格[1,2]㊂地方标准中,以山东省地方标准为例,2010年以后实施的‘建材工业大气污染物排放标准“(D B 37/2373-2013)到了2018年以后实施的‘建材工业大气污染物排放标准“(D B 37/2373-2018)中规定,一般控制区N O x 由500m g /N m 3降低至200m g /N m 3,S O 2由300m g /N m 3降低至100m g /N m 3,粉尘由30m g /N m 3降低至20m g/N m 3,重点控制区也更加严格[3]㊂由此看出,无论国家还是地方,对于玻璃行业大气污染物的排放要求正在逐步完善,控制更加精确㊂玻璃窑炉废气除了常见的N O x ㊁S O 2㊁粉尘3种污染物之外,对于氨逃逸的排放也逐渐纳入监测监管范围内,排放限值也由最初的10ˑ10-6降低到8m g /N m 3以下㊂烟气治理中去除N O x 的原理为脱硝氧化还原反应,有S C R (选择性催化还原技术)脱硝和S N C R (选择性非催化还原法)脱硝2种工艺㊂玻璃窑炉废气治理方案中,S N C R 工艺无法满足行业排放要求,因此主要采用S C R 脱硝工艺技术,其化学反应方程式[4]如下:121建材世界 2023年 第44卷 第5期主反应2N O +2N H 4OH +1/2O 2ң催化剂2N 2+5H 2O (1)2N O 2+2N H 4OH ң催化剂2N 2+5H 2O +1/2O 2(2) 可以看出,氨的过量使用会发生副反应,生成硫酸铵及硫酸氢氨等产物,副产物具有粘性和腐蚀性,会影响后续设备的使用寿命,同时多余的氨气排放到大气中,会进一步造成污染,因此国家及地方将氨逃逸纳入实时监测及控制范围㊂在一般的烟气治理系统运行过程中,N O x 与氨的氧化还原反应,受到反应温度㊁催化剂用量㊁氨耗量㊁氨与烟气的混合程度及烟气进入各个反应器的均匀程度等诸多因素的影响,往往会出现为了降低脱硝出口N O x 浓度而过量喷氨,从而导致氨逃逸过大的情况㊂玻璃行业存在其特殊的窑炉换火需求,一般分为两个火向,两火切换一般间隔20m i n ,燃烧工况会随着换火而发生剧烈变化㊂每向火平稳燃烧时的燃烧工况也略有不同,因此在烟气治理系统中,玻璃窑炉的N O x 及氨逃逸相较于其他窑炉更加难以控制,所以就迫切需要专门针对玻璃行业的特殊性,寻找一个合适的工艺以求达到对喷氨的精准控制,从而实现N O x 及氨逃逸的双向稳定达标㊂1 国内玻璃行业氨逃逸现状玻璃窑炉换火时,N O x ㊁氧含量㊁烟气量等工况会发生剧烈波动,此时想要精准地控制N O x 就变得非常困难,由此会导致换火期间喷入的氨量过剩或者不足,过剩会导致氨逃逸超高,不足将导致N O x 超标㊂另外,在喷氨压力等变化时,喷氨流量也会有所波动,加大了N O x 及氨逃逸超标的风险㊂以往在N O x 排放标准要求在700m g /N m 3或者400m g /N m 3以下时,N O x 控制可调范围较大,喷氨量无需过度精准,因此氨逃逸能够满足8m g /N m 3以内㊂当前,多数地区要求N O x 排放标准为200m g /N m 3以下,还有地区要求在100m g /N m 3以下,在此超低排放形式的重压下,玻璃企业为避免因N O x 超标而造成的环保处罚会喷入大量的氨,氨逃逸也就超标严重㊂随着国家及地方对于氨逃逸的管控,过量喷氨将成为过去时㊂2 解决方法对比根据S C R 脱硝反应原理以及脱硝系统运行的各个环节要求,一般从以下几点着手解决N O x 和氨逃逸的控制问题:1)在喷氨点后段一定距离的烟管道内设置静态混合器:静态混合器一般设置2台,烟气经过静态混合器时,受到静态混合器的阻挡,气流方向发生改变㊁搅动,从而使得烟气中的N O x 与喷入的氨能够更好地混合,提高混合的均匀性㊂2)加大脱硝反应器的尺寸:脱硝反应器加大后,同量的烟气经过脱硝反应器时,流速降低,从而增加了烟气在脱硝反应器中的停留时间,延长了N O x 与氨的反应时间,可提高其反应效率㊂3)增加脱硝催化剂的使用量:S C R 脱硝反应是在钒钛系催化剂的作用下才能够发生氧化还原反应的,催化剂越多,反应越充分㊂目前国内外玻璃行业所用的大多是蜂窝式催化剂,其表面积受到蜂窝数量的影响㊂为提高烟气与催化剂的接触面积,可适当增加催化剂的用量,以此提升脱硝效果㊂4)针对2个不同的火分别对应2个喷氨量:同一座玻璃窑炉,2个不同的火燃烧产生的N O x 不同,甚至同一个火不同时间燃烧所产生的N O x 也不同,这是因为玻璃窑炉燃烧大多采用空气助燃,空气的密度㊁温度㊁氧含量等不同,都会影响到燃烧结果㊂因此,针对不同的火,分别对应喷氨量,N O x 高的火,加大喷氨量,N O x 低的火,减少喷氨量㊂经过多年的实践经验发现,上述方案均无法稳定㊁高效的达到N O x 超低排放的同时氨逃逸稳定低于8m g/N m 3的要求㊂3 氨逃逸的精准控制方案为解决前述问题,结合多个项目㊁多种工艺的实际运行情况,从多角度出发,总结出一种能够精准匹配221建材世界 2023年 第44卷 第5期N O x 浓度的波动并可进行实时调节喷氨量的方法,实现了在稳定控制N O x 的同时,又大大降低了氨逃逸的目标㊂3.1 氨逃逸控制原理介绍理论上N O x 与氨发生氧化还原反应的氨氮摩尔比为1ʒ1㊂当氨氮摩尔比大于1ʒ1时,会出现氨逃逸;当氨氮摩尔比小于1ʒ1时,会导致N O x 超标㊂因此在N O x 波动时,喷氨量应随之调整㊂玻璃窑炉换火时,燃烧枪熄灭,助燃风进行吹扫,氧含量较高,此时烟气中折算出的N O x 浓度会出现波峰值,在波峰时应加大喷氨量;同时也因为燃烧枪的熄灭,助燃风燃烧不充分,换火过程的后期,窑炉燃烧产生的N O x 浓度较低,出现波谷值,此时应大量减少喷氨量;当燃烧枪重新点火后,N O x 浓度缓慢上升至正常值,此时喷氨量也应与之匹配,呈缓慢上升趋势㊂同理,后续稳定燃烧时,如N O x 发生轻微波动,喷氨量也应随之调整,若喷氨量的调整曲线与N O x 的波动曲线能够吻合时,则可大大减少因某个时间段氨氮摩尔比严重高于1ʒ1而导致的氨逃逸超标㊂3.2 喷氨控制逻辑1)读取窑炉换火时间,以换火时间节点为基准,调节喷氨量㊂2)读取脱硝入口N O x 实时浓度,根据脱硝入口N O x 实时的变化,调节喷氨量㊂3)将窑炉每个火的20m i n 拆分为多个时间段,每个时间段对应1个喷氨量㊂4)根据脱硝入口N O x 实时浓度的变化规律,再行自动调节各个时间段内的喷氨量,精准匹配N O x 波动曲线,见图1㊂3.3 应用数据该玻璃窑炉烟气治理系统采用陶瓷滤管一体化脱硫脱硝除尘工艺,系统运行高效稳定,运行费用低,窑炉烟气参数如表2所示㊂喷氨控制系统加以融入完善后,通过现场C E M S 监测㊁氨逃逸监测以及氨气物料消耗的分析,氨逃逸指标得到良好控制,物料消耗得到大幅降低,结果如表3~表5所示㊂表2 窑炉烟气参数燃料类型天然气备用燃料油烟气量/(N m 3㊃h-1)100000~120000湿基烟气温度/ħ340~380发电锅炉出口基线粉尘浓度/(m g㊃N m -3)300~500d r y ,8%O 2基线N O x 浓度/(m g ㊃N m -3)2200~2700d r y ,8%O 2基线S O 2浓度/(m g ㊃N m -3)300~1500d r y ,8%O 2目标粉尘浓度/(m g㊃N m -3)5d r y ,8%O 2目标N O x 浓度/(m g ㊃N m -3)100d r y ,8%O 2目标S O 2浓度/(m g ㊃N m -3)50d r y ,8%O 2氨逃逸/(m g㊃N m -3)5d r y ,8%O 2烟气含氧量/%9~13干基321建材世界 2023年 第44卷 第5期表3脱硝进出口N O x浓度对比(喷氨控制程序应用前后)序号应用前进口N O x浓度/(m g㊃N m-3)出口N O x浓度/(m g㊃N m-3)应用后进口N O x浓度/(m g㊃N m-3)出口N O x浓度/(m g㊃N m-3)换火时间/m i n12450522432750 22520552561712 3334023533101033 4112541103584 52300422326695 62430452448626 725706725577314 824908324696920 925653925517622 1026457526128123表4脱硝出口氨逃逸浓度对比(喷氨控制程序应用前后)序号应用前出口氨逃逸浓度/(m g㊃N m-3)应用后出口氨逃逸浓度/(m g㊃N m-3)换火时间/m i n18.691.050 210.231.242 313.911.723 411.450.984 513.041.515 69.760.776 714.771.8314 818.251.2120 916.320.9322 1014.772.1523表5氨气用量对比(喷氨控制系统应用前后)序号应用前进口烟气量/(N m3㊃h-1)进口N O x浓度/(m g㊃N m-3)氨气用量/(m3㊃h-1)应用后进口烟气量/(N m3㊃h-1)进口N O x浓度/(m g㊃N m-3)氨气用量/(m3㊃h-1)备注1113565245884115421242269日均值2112184250791111065248773日均值3112387249194110030252371日均值4109976243387111086246977日均值5111235253989109674250163日均值6112698260785108859263872日均值7110246238897112007234674日均值由表5可知,喷氨控制程序应用后氨气用量日均值明显下降㊂(下转第132页) 4213标准修订的意义综上可知,对现行国家标准G B/T25182 2010的修订是必须且必要的,这将有利于提升和保证预应力孔道灌浆剂产品的质量,从而满足设计和施工的要求,保证预应力结构工程的质量,以适应当前我国预应力孔道灌浆的发展水平,使预应力孔道灌浆剂真正发挥出应有的性能优势㊂而且该标准的修订,符合建筑材料高性能化㊁绿色化方向的总体战略要求,有利于淘汰落后的技术,吸纳先进的技术内容,与相关标准保持协调,实现我国预应力孔道灌浆剂产品质量和整体水平的提高㊂参考文献[1]张舒,杨杰,宋普涛,等.缓凝剂种类及掺量对高温环境用预应力孔道压浆料性能的影响[J].新型建筑材料,2022,49(12):67-70.[2]张鹤译.矿物掺合料对压浆料性能研究[J].水利科学与寒区工程,2020,3(1):29-32.[3]王甲春,黄国新,钟哲伦,等.预应力混凝土压浆料流变性能测试[J].硅酸盐通报,2017,36(10):3527-3530.[4]程平阶,宋小婧,李北星,等.塑性膨胀剂对预应力孔道压浆料体积变形与亚微观结构的影响[J].硅酸盐通报,2014,33(6):1329-1335.[5]逄鲁峰,庞伟琪,张健壮,等.负温公路用压浆料的研究与工程应用[J].新型建筑材料,2022,49(4):39-43.[6]孙玉龙,霍曼琳,陈晓松.负温铁路用预应力孔道压浆料的试验研究[J].新型建筑材料,2020,47(9):123-126.[7]李浩浩.高原地区预应力孔道压浆料自发热配合比试验研究[D].长沙:湖南科技大学,2019.[8]孔祥赟.低负温型管道压浆料工艺性能研究[J].居舍,2017(28):24.[9]朱清华,费伟全,谢松.低负温型管道压浆料工艺性能研究[J].混凝土与水泥制品,2017(4):88-90,94.(上接第124页)4结论a.陶瓷滤管一体化脱硫脱硝除尘系统运行后,出口污染物排放浓度N O x<100m g/N m3,S O2< 50m g/N m3,粉尘<10m g/N m3,均达到超低排放标准㊂b.喷氨控制系统应用后,氨逃逸<4m g/N m3,完全满足了最新的山东省地方标准8m g/N m3以下的要求㊂c.总排口N O x得到了更加稳定的控制,大幅减少了波峰波谷的波动范围,降低了N O x小时均值超标的风险㊂d.氨逃逸大幅下降,且控制稳定㊂e.氨气消耗量明显降低㊂f.随着该系统的长期稳定运行,为企业解决了超低排放的稳定性问题,减少了物料消耗,降低了运行成本㊂该氨逃逸精确控制系统在山东省乃至全国首推并给出完美成果,树立了行业标杆,取得了良好的社会效益和经济效益,为行业及环境的良性发展助力㊂参考文献[1] G B26453-2011,平板玻璃工业大气污染物排放标准[S].[2] G B29495-2013,平板玻璃工业大气污染物排放标准[S].[3] D B37/2373-2018,建材工业大气污染物排放标准[S].[4]苏毅,张唯,孙佩石,等.N O x废气的生化处理技术[J].化工环保,2004,24(z1):154-156.231。

玻璃窑炉烟气脱硫脱硝除尘一体化技术探讨

玻璃窑炉烟气脱硫脱硝除尘一体化技术探讨
Abs t r a c t :Th e u t i l i z a t i o n s t a t u s o f f u e l a n d d i s c h a r g e s i ua t t i o n o f p o l l u t a n t s f r o m g l a s s ur f n a c e we r e d e s c r i b e d. Co mp r e h e ns i v e a n a l y s i s o f d o me s t i c d e s u l ph u r i z a t i o n a n d d e n i t r a t i o n t e c h no l o g y wa s c a  ̄i e d o u t. S o me p r o c e s s
适 合 玻璃 窑 炉烟气 的脱 硫 脱硝 除尘 一体 化 工 艺方案 。
关 键词
玻璃窑炉
S C R 脱硝
脱硫
除尘
余 热 利用
中 图分 类 号 :T Q1 7 1 文 献标 识 码 :A 文 章编 号 :1 0 0 3—1 9 8 7( 2 0 1 3) 0 5— 0 0 4 3—0 3
Di s c u s s i o n o n I nt e g r a t e d Te c h ni que o f De s ul ph ur i z a t i o n,
De n i t r a t i o n, a nd Dus t Aba t e me n t Te c hn o l o g y o f Fl u e Ga s o f Gl a s s Fur na c e
Xu J i a o xi a, Di n g Mi n g, Yo u Zhe n f e n g, Xi a J i a n pi ng

玻璃工业废气治理工程技术规范 HJ 1281

玻璃工业废气治理工程技术规范 HJ 1281

玻璃工业废气治理工程技术规范1适用范围本标准规定了玻璃工业废气治理工程的污染物与污染负荷、总体要求、工艺设计、主要工艺设备和材料、检测及过程控制、主要辅助工程、劳动安全与职业卫生、施工与验收、运行与维护等技术要求。

本标准适用于平板玻璃制造的废气治理工程,可作为工程咨询、环境保护设施设计与施工、建设项目竣工环境保护验收及建成后运行管理的参考依据。

玻璃制品制造、玻璃纤维及制品制造、其他玻璃制造的废气治理工程可参考本标准执行。

2规范性引用文件本标准引用了下列文件或其中的条款。

凡是注明日期的引用文件,仅注日期的版本适用于本标准。

凡是未注日期的引用文件,其最新版本(包括所有的修改单)适用于本标准。

GB2893安全色GB2894安全标志及其使用导则GB4053.1固定式钢梯及平台安全要求第1部分:钢直梯GB4053.2固定式钢梯及平台安全要求第2部分:钢斜梯GB4053.3固定式钢梯及平台安全要求第3部分:工业防护栏杆及钢平台GB/T4754—2017国民经济行业分类GB7231工业管道的基本识别色、识别符号和安全标识GB/T11651个体防护装备选用规范GB12348工业企业厂界环境噪声排放标准GB/T12801生产过程安全卫生要求总则GB/T13869用电安全导则GB15562.1环境保护图形标志—排放口(源)GB/T16157固定污染源排气中颗粒物测定与气态污染物采样方法GB18597危险废物贮存污染控制标准GB18599一般工业固体废物贮存和填埋污染控制标准GB/T20801(所有部分)压力管道规范工业管道GB26453玻璃工业大气污染物排放标准GB50016建筑设计防火规范GB50019工业建筑供暖通风与空气调节设计规范GB50029压缩空气站设计规范GB50052供配电系统设计规范GB50054低压配电设计规范GB/T50087工业企业噪声控制设计规范GB50093自动化仪表工程施工及质量验收规范GB50140建筑灭火器配置设计规范GB50187工业企业总平面设计规范GB/T50252工业安装工程施工质量验收统一标准GB50254电气装置安装工程低压电器施工及验收规范GB50257电气装置安装工程爆炸和火灾危险环境电气装置施工及验收规范GB50275风机、压缩机、泵安装工程施工及验收规范GB50300建筑工程施工质量验收统一标准GB50435平板玻璃工厂设计规范GB50727工业设备及管道防腐蚀工程施工质量验收规范GBZ1工业企业设计卫生标准GBZ2.1工作场所有害因素职业接触限值第1部分:化学有害因素GBZ2.2工作场所有害因素职业接触限值第2部分:物理因素GBZ/T194工作场所防止职业中毒卫生工程防护措施规范HJ/T1气体参数测量和采样的固定位装置HJ75固定污染源烟气(SO2、NO x、颗粒物)排放连续监测技术规范HJ76固定污染源烟气(SO2、NO x、颗粒物)排放连续监测系统技术要求及检测方法HJ178烟气循环流化床法烟气脱硫工程通用技术规范HJ179石灰石/石灰—石膏湿法烟气脱硫工程通用技术规范HJ/T397固定源废气监测技术规范HJ562火电厂烟气脱硝工程技术规范选择性催化还原法HJ988排污单位自行监测技术指南平板玻璃工业HJ2020袋式除尘工程通用技术规范HJ2028电除尘工程通用技术规范HJ2305玻璃制造业污染防治可行技术指南AQ3009危险场所电气防爆安全规范DL/T1589湿式电除尘技术规范JB/T10563一般用途离心通风机技术条件JB/T11638湿式电除尘器JB/T13732高温电除尘器SH/T3007石油化工储运系统罐区设计规范《国家危险废物名录》《排污口规范化整治技术要求(试行)》(环监〔1996〕470号)《建设项目竣工环境保护验收暂行办法》(国环规环评〔2017〕4号)3术语和定义下列术语和定义适用于本标准。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


脱硫技术分类
钙法 按 脱 硫 产 物 是 否 回 收 抛弃法 脱硫混合物 直接排放 按 脱 硫 剂 种 类 划 分 以CaCO3为基础
镁法 钠法 氨法
以MgO为基础 以NaOH为基础 以NH3为基础
再生法 脱硫副产物 以硫酸或硫 磺等形式回 收
有机碱法 以有机碱为基础

世界上普遍使用的瓶罐玻璃窑炉FGD技术是 钠法和氨法,所占比例在80%以上。按吸收剂及

氧化反应: CaSO3· 1/2 H2O + 1/2 O2 = CaSO4· 1/2 H2O

国、内外瓶罐玻璃窑炉烟气脱硫技术的主要发 展趋势为:脱硫效率高、技术水平先进、投资省、
占地少、运行费用低、自动化程度高、可靠性好等。


2.1 技术内容:
采用“余热回收+脉冲布袋除尘+半干式氨法脱硫” 工艺代替传统的干法、半干法、湿法脱硫除尘工艺。
2.2 工艺流程:
氨水投加系统
蒸汽回用 泵 脉冲布 袋除尘 器 半干式 氨法脱 硫吸收 系统
烟 气 达 标 排 放
热管换热器
泵 软化水 箱
引风机
排尘
烟囱
脱硫工艺流程简图


余热回收工艺特点:
由于瓶罐玻璃窑炉烟气排放温度高,烟气流量大,任其自
由排放而不加以回收利用,烟气中的热能将被全部浪费

本工艺采用热管换热器作为回收烟气热能的装置。 优点:传热量大、温差小、重量轻体积小、热响应迅速, 而且安装方便、维修简单、使用寿命长、阻力损失小、进、 排风流道便于分隔、互不渗漏。

第二阶段为气——固脱硫反应阶段,液滴蒸发后形 成Na2CO3、Na2SO3、Na2SO4颗粒,烟气中的SOx继 续与颗粒表面的Na2CO3反应,生成Na2SO3、 Na2SO4颗粒。其主要反应过程如下: SO2 +Na2CO3 = Na2SO3 +CO2 SO3 + Na2CO3 = Na2SO4 + CO2


吸收反应: SO2 + 2NaOH = Na2SO3 + H2O Na2SO3 + SO2 + H2O = 2NaHSO3 副反应: Na2SO3 +1/2 O2 = Na2SO4

再生反应 :用Ca(OH)2溶液对吸收液进行再生 2NaHSO3 + Ca(OH)2 = Na2SO3 + CaSO3· 1/2 H2O + 3/2 H2O Na2SO3 + Ca(OH)2 + 1/2 H2O = 2NaOH + CaSO3· 1/2 H2O

据美国环保局(EPA)的统计资料,全美瓶罐玻璃行
业各种湿式脱硫法所占百分比如下图:
双减 法 47.4% 石灰 石法 4.1%
湿式 氨法 39.6%
石灰 法 其他 3.1% 6%
世界各国(如德国、日本等),在瓶罐玻璃行业中,60%以 上采用湿式双碱法烟气脱硫工艺流程。

脱硫吸收和产物处理均在干状态下进行, 优点:无污水废酸排出、设备腐蚀程度较轻,烟气

回收的烟气中的蒸汽能源可回用于工业生产,也可以 用于吹扫烟道,封阻煤气铅封,以及生活使用(取暖、洗
浴等)等


脉冲布袋除尘工艺特点:
玻璃窑炉烟气中烟尘形式主要为粉尘,具有粒度小,质轻、 不易沉降的特点。

目前采用的除尘器主要为布袋除尘器和静电除尘器
布袋式除尘器和静电除尘器基本性能对比
布袋除尘 除尘效率 烟尘浓度的影响 送、引风机风量 的影响 温度的影响 烟气成份的影响 可高达99.99% 只引起滤袋负荷的变化,导致清灰 频率改变,不引起排放浓度变化 引起设备阻力的变化,而对除尘效 率基本没有影响 如果温度的变化在滤料的承受温度 范围内,就不会影响除尘效率 对除尘效率没有影响,如果烟气中 含有对所有滤料都有腐蚀破坏的成 分时就会直接影响滤料的使用寿命 不影响除尘效率 对于耐氧性能差的除尘布袋会影响 布袋寿命 静电除尘 小于布袋除尘 直接影响除尘效率, 除尘效率随风量的变化明显 除尘效率随温度变化明显 对除尘效率影响较大
山东绿泉环保工程有限公司
1 2
脱硫技术 脱硝技术
1. 2.
现有技术简介 玻璃窑炉半干式氨法脱硫除尘技术简介
脱硫技术分为燃烧前、燃烧中和燃烧后三种。
燃烧前脱硫
• 选煤、煤气化、液化和水煤浆技术
燃烧中脱硫
燃烧后脱硫
• 低污染燃烧、型煤和流化床燃烧技 术 • 即烟气脱硫(Flue gas desulfurization,简称FGD)技术

一种应用成熟的烟气脱硫技术,尤其是在中、小瓶罐
玻璃窑炉烟气污染治理方面应用较为广泛

脱硫剂:氢氧化钠溶液(含30%NaOH)和生石灰 (含90%CaO)。 工艺原理:以NaOH溶液为第一碱吸收烟气中的SO2, 然后再用生石灰加水熟化成Ca(OH)2溶液作为第二碱 再生NaOH,副产品为石膏。再生后的吸收液送回脱 硫过程中的干湿状态
又可将脱硫技术分为湿法、干法和半干(半湿)
法。

用含有吸收剂的溶液或浆液在湿状态下脱硫和处理脱 硫产物。

工艺机理:主要是使用石灰石(CaCO3)、石灰(CaO)
或氢氧化钠(NaOH)等浆液作洗涤剂,在反应塔中对
烟气进行洗涤,从而除去烟气中的SO2。

优点:脱硫反应速度快、设备简单、脱硫效率高 (90%~98%)、运行费用较低和副产品易回收
在净化过程中无明显降温、净化后烟温高、利于烟
囱排气扩散、二次污染少等

缺点:脱硫效率低,反应速度较慢、设备庞大

指脱硫剂在干燥状态下脱硫、在湿状态下再生,或者 在湿状态下脱硫、在干状态下处理脱硫产物的烟气脱 硫技术。

特别是在湿状态下脱硫、在干状态下处理脱硫产物的 半干法,以其既有湿法脱硫反应速度快、脱硫效率高

工艺主要有:

1)喷雾干燥法脱硫工艺 2)钠钙双碱法脱硫工艺

采用喷嘴向含硫烟气中喷入雾化脱硫碱液进行烟气半干 法脱硫的先进技术。

烟气进入脱硫塔后,在导流板的作用下向上均匀流动,
其脱硫反应主要分两个阶段。

第一阶段:气——液脱硫反应阶段,喷嘴将吸收液雾化 成超细液滴,液滴与烟气接触时,SOx溶解进吸收液(以 Na2CO3为例)并与Na2CO3发生反应,生成Na2SO3、 Na2SO4等
的优点,又有干法无污水废酸排出、脱硫后产物易于
处理的优势而受到人们广泛的关注。

按脱硫产物的用途,可分为抛弃法和回收法两种。

目前我国瓶罐玻璃年产量大约380万吨,年生产能力 在10-44万吨之间的大型公司有20余家。 近年来,我国相关部门在瓶罐玻璃窑炉烟气脱硫技术 引进工作方面加大了力度。对目前世界上瓶罐玻璃窑 炉较广泛采用的脱硫工艺建造了示范工程,这些脱硫
相关文档
最新文档