江南大学科技成果——苏氨酸工业生产菌代谢工程系统改造

合集下载

微生物生产L_苏氨酸的代谢工程研究进展_董迅衍

微生物生产L_苏氨酸的代谢工程研究进展_董迅衍

Advances in Microbial Metabolic Engineering toIncrease L-Threonine ProductionDONG Xunyan 1,2,WANG Xiaoyuan *1,2(1.State Key Laboratory of Food Science and Technology ,Jiangnan University ,Wuxi 214122,China ;2.Schoolof Biotechnology ,Jiangnan University ,Wuxi 214122,China )Abstract :As an essential amino acid for mammals ,L-threonine has a wide application in the food ,feeds ,pharmaceutical and cosmetics industries.To date ,L-threonine is almost exclusively produced through microbial fermentation.Metabolic engineering provides an effective means to strain development and thus to enhancing the L-threonine production.In this article ,the pathway and regulation of L-threonine in the major industrial strains ,Corynebacterium glutamicum and Escherichia coli are summarized ,and advances on metabolic engineering to increase L-threonine production are reviewed.Keywords :L-threonine ,Corynebacterium glutamicum ,Escherichia coli ,metabolic engineering ,fermentation摘要:L-苏氨酸作为一种必需氨基酸被广泛用于食品、饲料、医药及化妆品行业。

江南大学科技成果——微生物转化生产L-鸟氨酸的关键技术

江南大学科技成果——微生物转化生产L-鸟氨酸的关键技术

江南大学科技成果——微生物转化生产L-鸟氨酸的关键技术成果简介L-鸟氨酸是细胞内重要代谢化合物,近来研究发现L-鸟氨酸可刺激脑垂体分泌生长激素,促进蛋白质合成及糖与脂肪的分解代谢。

此外,以鸟氨酸为原料制备的依氟鸟氨酸,能抑制多胺合成,延缓肿瘤细胞生长,是颇具前景的新型抗癌药物。

L-鸟氨酸除了在医药上作为试剂与注射液外,通常还用于配制保肝、强身、解毒的营养剂以及生产消除疲劳的发泡饮料。

而酶法转化精氨酸生产鸟氨酸具有工艺简单、周期短、耗能低、专一性强、收率高、提取方便等优点,因而受到越来越多的关注。

技术指标
工程菌经过培养6h后,ARG酶活可达到177.3U/mL;在4h的催化周期内,L-鸟氨酸产量为112.3g/L,对精氨酸摩尔转化率为87%。

产品性能无副产物,纯度高。

创新要点以耐高温酶为催化剂,大大提高了反应速率,大幅度缩短了生产周期。

效益分析根据目前技术水平,初步估算生产综合成本约10万元/吨,目前市场定价约为14万元/吨。

以1000吨生产规模计算,毛利润可达4000万元/年。

应用情况L-鸟氨酸因其多功能的保健作用,广泛应用于食品、医药和工业领域。

授权专利一种产精氨酸酶工程菌的构建及应用该菌生产L-鸟氨酸,201310658955.1。

江南大学最新科技成果目录汇编

江南大学最新科技成果目录汇编

一、江南大学最新科技成果目录汇编(一) 、生物工程、发酵工程类科技成果目录汇编1.透明质酸生产技术2.ALAO系统处理高浓度有机废水3.好氧颗粒污泥SBR工艺废水处理新工艺4.表皮生长因子5.微生物发酵法生产丙酮酸6.L-抗坏血酸棕榈酸酯酶法合成生产技术7.大豆精华素生产技术8.发酵法生产L-缬氨酸9.发酵法生产L-异亮氨酸10.前体发酵法生产L-丝氨酸11.冰啤生产成套设备12.系列酿造型国酒、水果酒系列13.低温蒸煮生产酒精发酵新工艺14.发酵成套设备技术服务项目15.干法脱胚玉米粉生产啤酒专用糖浆16.甘蔗制糖联产酒精及综合利用17.高转化率谷氨酸发酵新技术18.黄原胶发酵生产技术19.结冷胶发酵生产技术20.唾液酸发酵生产技术21.降血脂他汀类药物22.酒精生产清洁工艺23.L-赖氨酸发酵新技术24.灵芝活性产品25.麦芽-异麦芽低聚糖(寡糖)浆(粉)生产技术26.酸性尿酶生产技术27.洗涤剂用复合酶28.系列发酵产品项目:A.液体发酵法生产高活力纤维素酶技术B.液体发酵法生产β-胡萝卜素C.药用桑黄菌液体发酵生产抗癌食品D.微生物发酵法生产番茄红素E.微生物纤维素(高纤椰果)的生产F.功能性生物保健饮料G.工业废渣发酵转化生产生物活性饲料技术29.系列啤酒类产品项目:A.无甲醛酿造啤酒工艺B.啤酒专用糖浆的生产C.膳食纤维啤酒的研制D.无醇、低醇啤酒的生产E.高档低度黄酒的生产30.现代生物技术生产云芝多糖及虫草菌干粉31.絮凝性细菌Z. mobilis酒精连续发酵32.乙醇浓度监测仪33.优良啤酒酵母34.植酸酶35.工业生物催化关键技术及在食品添加剂制造中的应用36.益生制剂及其增效技术研究与应用37.发酵法生产谷氨酰胺转胺酶38.生物香料酯的研制39.微生物发酵法生产甘油及其转化为1,3丙二醇的研究40.微生物合成丁二酸高产菌株选育与代谢调控研究41.用于食品和石油工业的系列微生物多糖生产技术42.中性纤维素酶高产菌株选育及高效后提取技术研究43.益生制剂及其增效技术研究与应用(二)、食品科学与工程类科技成果目录汇编1.虾头、虾壳生产热反应型虾味调料2.新型涂料稀释剂生产技术3.新型食品防腐剂生产技术4.AF型气氛保鲜纸生产技术5.麦绿素系列产品生产技术6.速溶水果、蔬菜粉生产技术7.纸菜系列产品生产技术8.天然芒果粉生产技术9.速溶板栗粉生产技术10.血液深加工产品生产技术11.脱臭大蒜系列产品生产技术12.杨梅粉生产技术13.百香果粉生产技术14.易腐烂果蔬和河蟹的冰温高湿保鲜技术15.生理功能性青绿色蔬菜饮料生产技术16.园艺农产品的富硒及其加工技术17.区域农产品加工业战略研究及规划18.利用废蚕丝生产丝素蛋白和丝素肽19.无花果系列食品开发20.乳铁蛋白生产技术21.水产品深加工——水产动物蛋白提取物22.利用菊芋工业化生产菊粉及其它深加工产品23.兽药残留量快速酶联免疫(ELISA)检测试剂盒24.活性因子 -氨基丁酸的生物合成技术及制品25.丁酸梭状芽孢杆菌生产简介26.挤压法生产焦糖色素27.天然复合氨基酸胶囊保健食品28.冬瓜系列食品加工技术29.大蒜油胶丸及无臭大蒜粉的生产技术、30.新型有机吸附剂-----多孔淀粉31.固体蜂蜜(粉末)生产技术32.变性淀粉的开发及生产技术33.几丁质酶与几丁质寡糖34.班产4000kg冰淇淋项目35.生物工程技术生产新型乳制品36.甲壳素生产技术37.甲壳低聚糖的酶法生产技术38.蝇蛆蛋白质和甲壳素的深加工技术39.莲藕深加工40.淀粉吸水剂生产技术41.淀粉糖系列产品生产技术42.低值淡水鱼综合利用43.应用微胶囊技术开发厨房调味系列产品:A.微胶囊化粉末酱油B.微胶囊化粉末猪油、大豆色拉油C.微胶囊化食用菌44.超市易腐烂果蔬常温气调保鲜技术45.日处理800吨玉米干法脱胚技术46.日产15吨玉米胚芽奶粉47.系列果脯加工技术48.特种红花油料高价值产品的开发49.精制奶粉最佳的替代产品——活性花生蛋白粉50.蕃茄红素产业化项目简介51.蛋白质粉生产技术52.肉类黏合剂—Fibrimex(类似物)的工业化生产及猪血综合利用研究53.超临界流体萃取在食品生物工业中的应用54.鲜奶油产品55.水产品下脚料综合利用56.系列脱水蔬菜生产技术57.芦荟综合深加工系列产品生产技术58.系列速冻食品生产技术59.高能大豆皮颗粒制造技术60.无公害高效水产饲料制造技术61.水产专用全脂大豆制造技术62.贝壳类水产方便休闲食品加工63.贝壳类水产冷冻方便食品加工64.牡蛎的食品资源化开发利用65.即食调理虾方便食品66.功能性大豆浓缩蛋白生产工艺和技术67.稻米及其副产品高效增值深加工技术68.利用玉米芯酶法生产功能性低聚糖――低聚木糖69.一种新型无污染淀粉基木材用胶粘剂的生产技术70.秸秆阳离子吸附剂生产技术71.南瓜粉生产技术72.洗车污水循环处理装置简介73.冷冻大闸蟹系列调理食品的开发技术74.绿茶提取液的纳滤浓缩技术75.新型食品防腐剂生产技术76.AF型气氛保鲜纸生产技术77.速溶水果蔬菜粉及其系列产品生产技术78.速溶板栗、荞麦等栗粟粉生产技术79.麦绿素及其系列产品生产技术80.大蒜脱臭技术及其系列产品生产技术81.纸菜系列产品生产技术82.血液深加工产品生产技术83.新型涂料稀释剂生产技术84.食品常温保鲜和深加工技术开发项目85.鸡蛋粉及其系列产品生产技术86.浓缩水果蔬菜汁及其饮品生产技术87.果醋及其系列产品生产技术88.凹凸棒土高效增值深加工技术89.挤压法生产配合营养米技术研究90.壳聚糖酶法改性技术及应用91.氯霉素和盐酸克伦特罗酶免疫检测试剂盒的研制92.生物转化法生产香草醛93.新型微生物青贮添加剂的研究94.高品质大豆浓缩磷脂和酶法改性磷脂生产技术95.食用油脱色专用凹凸棒土吸附剂研究开发96.易腐烂果蔬和河蟹的冰温高湿保鲜技术97.生理功能性青绿色蔬菜饮料生产技术98.园艺农产品的富硒及其加工技术100.区域农产品加工业战略研究及规划101.凹凸棒土高效增值深加工技术102.壳聚糖酶法改性技术及应用103.预防酒精性脂肪肝樟芝菌粉胶囊104.D-塔格糖生产技术105.以鱼及小麦胚芽为主要原料的营养粉产品106.茶叶综合深度加工关键技术、装备及产业化实施(三)纺织工程与服装类科技成果目录汇编1.江南大学制浆造纸技术服务项目2.利用生物技术实现纺织产品的高档化和生产的清洁化3.数字喷墨印花用超细颜料墨水的研究与开发4.用于纺织工业清洁生产的高效生物催化剂的制备技术5.功能化非织造布可充电式电池隔膜材料6.纳米结构功能纺织材料加工技术7.差别化纤维气流免浆加工法项目8.WKCAD3.0经编针织物CAD系统9.全数字式智能竹节纱生产控制装置10.色织物CAD及仿真系统(软件)11.纺织企业计算机网络管理系统简介12.成布检验实时数据采集与处理系统13.涤棉阻燃多功能防护服装面料14.QDTH系列电脑提花控制系统及花型制备系统15.WS--1织机送经机构改造技术16.Z303经编机的技术改造技术17.三维纬编针织技术18.全自动绞纱丝光机制纱设备系统19.回归反光丝及织品技术20.新型刷花机制造技术21.智能防叠装置22.浆纱机浸浆方式的改造技术23.电脑提花针织物的计算机模拟系统24.缺压经编织物编织技术25.电脑横机程序文件转换系统26.全系列高精度金属探测器27.SU111型全自动剑杆织样机28.各行业的制服设计,以及生活类各种面料的服装服饰设计29.纺织浆料系列产品的生产技术A.酯化淀粉浆料:包括淀粉醋酸酯、淀粉磷酸酯、淀粉氨基甲酸酯(尿素淀粉)浆料;B.醚化淀粉浆料:包括羧甲基淀粉、羟乙基淀粉、羟丙基淀粉和阳离子淀粉浆料;C.各类交联淀粉浆料;D.氧化变性淀粉浆料;E.酸解变性淀粉浆料;F.各类复合变性淀粉浆料;G.高性能变性淀粉浆料;H.聚丙烯酸盐类浆料;I.聚丙烯酸酯类浆料:包括乳聚型聚丙烯酸酯和溶聚型聚丙烯酸酯浆料;J.聚丙烯酰胺类浆料:包括固态和液态聚丙烯酰胺浆料;K.组合浆料;L.辅助浆料30.利用生物技术实现纺织产品的高档化和生产的清洁化31.织物快速准确出样系统系列设备的制造及生产工艺研究32.国产碱性果胶酶棉织物生物酶前处理技术33.蓄光型多色夜光纤维的开发与产业化34.用于纺织工业清洁生产的高效生物催化剂的制备技术35.SU111型全自动剑杆织样机简介36.氯乙烯-丙烯腈共聚物纤维的开发37.玉米聚乳酸(PLA)短纤维系列产品的研究与开发(四)化学工程与材料类科技成果目录汇编1.绿茶提取液的纳滤浓缩技术2.镀镍漂洗废水槽边回收处理技术3.MES生产技术4.MZ-1型新型增塑剂5.三次采油用工业表面活性剂的开发6.以皂脚(或酸化油)为原料生产脂肪酸甲酯7.单碳脂肪酸分离技术8.新型叔胺合成技术9.脂肪醇制叔胺新工艺10.新型抗静电剂-CN生产技术11.无(低)磷洗衣粉生产技术12.晶体甜菜碱型两性表面活性剂生产技术13.椰子油脂肪酸单乙醇酰胺(CMEA)14.椰油酰胺甜菜碱生产技术15.椰油酰胺氧化胺生产技术16.热熔型道路标志漆17.皂脚脂肪酸生产二聚酸及聚酰胺树脂18.磺基甜菜碱19.结构型重垢液体洗涤剂生产技术20.羊毛防虫蛀剂生产技术21.聚醚消泡剂22.脂肪醇硫酸铵和脂肪醇醚硫酸铵23.高效驱油净生产技术24.新型食品防腐剂——对羟基苯甲酸酯生产技术的研究25.新型织物柔软剂——双长链酯基季铵盐26.新型增塑剂偏苯三酸三辛酯生产技术27.增白型防晒剂巴松1789合成项目28.高温交联引发剂TMDPB29.系列精细化工产品介绍A.杀菌剂助剂——TCC(三氯苯基脲)B.高质量N-酰基肌氨酸盐表面活性剂C.烷基二苯醚二磺酸盐产品D.二甲苯磺酸盐生产技术E.N-烷基—丙氨酸盐及N-烷基醋酸盐F.防腐抗菌剂系列产品30.高分子涂料及助剂31.新型邻苯二甲酸二异辛酯生产技术32.医药中间体及产品介绍33.超细轻质碳酸钙的制备34.新型无机填料改性剂(ADDP)35.可转让的化工产品生产技术(五)机电、自动化控制与信息工程类科技成果目录汇编1.3LZ-B全自动三辊高速轧机自控系统2.FPC2000集散控制系统3.包装秤单秤称重控制器4.电机车馈电接触接触线自动停送电装置和自动分区开关5.混凝土搅拌站计算机控制系统6.耐火材料全自动配料计算机控制系统7.耐火材料移动配料称量车8.盘式开听器和杆式开听器9.散料秤计算机控制系统10.蒸汽养护窑温度计算机控制系统11.中波发射台计算机实时监控系统12.商务信息处理系统13.计算机控制材料特性测试系统14.智能化网络办公系统15.宽带网络计费系统16.主要矿山机电类技术合作内容及成果17.普永房地产行业项目管理系统18.多单元变频调速同步控制器19.通用型电动自行车、电动摩托车控制器20.可控硅单、三相半控移相触发控制器21.染整联合机多电机变频调速控制系统22.双闭环三相全控移相触发控制器23.通用电压型多功能三相电器保护器24.管理信息系统:A.不锈钢销售管理系统B.房屋拆迁管理信息系统25.铝塑复合管一次成型生产线项目26.一种容积可变的包装容器27.一种用于大重型电子产品包装的全瓦楞纸板衬垫28.全自动纺织器材(梳理齿条)多功能生产线29.感应加热电源技术及应用领域简介30.LZ-600-8型直线拉丝机全自动控制系统31.数字化玻璃试管自动定量打标仪(六)机械工程学院科技成果目录汇编1.江南大学包装设计中心(多种型式的包装机械、自动生产线、食品与药品的包装工艺与设备、机电产品的运输包装设计)2.包装机械新产品介绍:A.DKH-25屋顶型纸盒成型/充填/封口机B.DGF10型工业炸药中包包装机C.盒式气调保鲜包装机3.高效节能分离技术的研究与产品开发4.先进批量表面光整加工技术。

江南大学科技成果——手性氨基酸的微生物高效生产方法

江南大学科技成果——手性氨基酸的微生物高效生产方法

江南大学科技成果——手性氨基酸的微生物高效生产方法成果简介手性氨基酸作为最重要的原料和中间体,市场规模也越来越大。

本项目研发的手性氨基酸包含L-2-氨基丁酸、D-苏氨酸、L-天冬酰胺、L-叔亮氨酸、L-色氨酸等。

2-氨基丁酸是一种非天然的氨基酸,是一种重要的化工原料,被用作为多种手性药物合成中的重要中间体,包括抗结核药物乙胺丁醇、布瓦西坦和抗癫痫药物左乙拉西坦。

D-苏氨酸是天然氨基酸L-苏氨酸的光学异构体,是一种非天然氨基酸。

主要应用于手性药物、手性添加剂和手性助剂等领域,在制药行业作为手性合成的手性源,主要用于生产新型光谱抗生素、D-苏氨醇和多肽合成过程的苏氨酸保护剂。

L-天冬酰胺是常见的20种氨基酸之一,在食品、医药、化工合成、微生物培养等领域广泛应用。

L-天冬酰胺可以作为添加剂用于清凉饮料,,同时在肿瘤治疗及蛋白质糖基化中扮演重要角色。

L-天冬酰胺常用于氨基酸输液,以及具有降压、平喘、抗消化性溃疡、胃功能障碍等功能,并可用于治疗心肌梗死、心肌代谢障碍、心力衰竭、心脏传导阻滞、疲劳症等。

此外,L-天冬酰胺也是微生物培养和动物细胞培养重要的添加剂。

L-叔亮氨酸是一种非蛋白原的手性氨基酸,由于叔丁基的空间位阻大,叔亮氨酸的衍生物可在不对称合成中作为诱导不对称的模板。

随着不对称合成的发展,叔亮氨酸的应用也非常广泛。

又由于占空间大的叔丁基链及其疏水性,它在多肽的合成中能够很好地控制分子构象,增加多肽的疏水性和受酶降解的稳定性,因此在药物和生物应用中正迅速地发展,用于抗癌、抗艾滋病等药物和生物抑制剂及肽等。

创新要点通过构建稳定的生物催化转化体系,能够实现高效催化合成上述L-2-氨基丁酸、D-苏氨酸、L-天冬酰胺、L-叔亮氨酸,光学纯度高,同时分离纯化简单;构建成熟的发酵工艺能够高效生产L-色氨酸。

推广应用情况该技术生产产品可应用于食品添加剂、医药中间体以及饲料添加剂行业,具有较大应用潜力。

江南大学科技成果——L-苏氨酸的微生物高效生产方法

江南大学科技成果——L-苏氨酸的微生物高效生产方法

江南大学科技成果——L-苏氨酸的微生物高效生产方法项目简介L-苏氨酸在食品、饲料、医药和化妆品等领域的用量呈长期稳定增长趋势,尤其在饲料添加剂中增长最为迅速。

以添加了L-苏氨酸的低蛋白配方饲料作为家禽日粮,不但可以缓解天然蛋白的匮乏,减少动物氨的排放,还能提高家禽的生产性能。

而在医药领域,L-苏氨酸除了用于氨基酸输液之外,随着人类保健意识的提高,各类氨基酸保健饮品涌现市场,L-苏氨酸是必不可少的配方成分。

L-苏氨酸有望取代色氨酸,成为继赖氨酸和甲硫氨酸之后第三大发展最迅速的氨基酸。

因此L-苏氨酸产业迫切需要提高产量,降低成本,以满足市场需求。

本实验室以谷氨酸棒状杆菌为出发菌株,通过代谢工程技术手段进行基因敲除和敲入,对关键基因进行了测序、蛋白结构解析及定向改造,以达到“开源节流”,即增强L-苏氨酸合成路径代谢流,抑制或阻断旁路途径代谢流,最终提高L-苏氨酸产率近20倍,具有较好的应用前景。

本项目获得国家“863”、“973”计划及国家自然科学基金支持。

创新要点首次对谷氨酸棒状杆菌L-苏氨酸合成相关基因开展系统分析、蛋白结构建模及分子改造,并获得了一系列遗传稳定的高产菌株,发酵操作操作方便,纯化工艺简单,项目投资少。

效益分析本技术在不增加发酵培养基、发酵动力成本的前提下,提高L-苏氨酸产率近20倍,且降低了杂酸比例、降低了分离成本、提高了葡萄糖转化率,因此在总投资降低情况下,可显著提高L-苏氨酸产量。

授权专利一种大肠杆菌-棒状杆菌穿梭型诱导表达载体pDXW-8及其构建方法,200910233618.1;一种大肠杆菌-棒状杆菌穿梭组成型表达载体及其构建方法,200910260991.6;一种棒状杆菌启动子探测载体及其构建方法和应用,201010108464.6;一种改造的sacB基因及其衍生的整合型载体,201110302090.6;一种棒状杆菌基因连续敲除系统及其构建方法和应用,103409446A。

江南大学科技成果——异亮氨酸工业生产菌代谢工程系统改造

江南大学科技成果——异亮氨酸工业生产菌代谢工程系统改造

江南大学科技成果——异亮氨酸工业生产菌代谢工程系统改造成果简介本项目首先借助比较蛋白组学研究技术,从细胞内异亮氨酸合成及转运的整体网络入手,揭示其中影响氨基酸胞外积累的若干关键蛋白质,研究氨基酸合成及转运、代谢调控、底物利用、细胞通透等相关蛋白质的作用机制。

然后采用系统生物学和代谢工程研究手段,利用启动子改造、基因共表达、酶定向进化等技术进行系统改造,以显著提高乳糖发酵短杆菌支链氨基酸生产水平。

比较蛋白组学分析将为支链氨基酸高产机理研究奠定坚实理论基础,乳糖发酵短杆菌代谢工程系统改造为工业化应用提供有力技术支撑。

关键技术L-异亮氨酸是人体8种必需氨基酸之一,因其具特殊的结构和功能,其用量逐年增长,目前国际上日本生产L-异亮氨酸且占垄断地位,厂家有味之素、协和发酵和田边制药三家,均已发酵法生产,产率达30-35g/L,提取率60-70%,我国的异亮氨酸研究起步晚,目前分批发酵大罐产酸率为20-22g/L,总得率为40-50%,与日本相比较,我国的L-异亮氨酸生产水平还很低下,主要是由于生产菌株绝大多数通过诱变选育获得,少数菌株利用基因工程手段改造,但仅局限于少数合成酶基因,这严重制约了支链氨基酸产率的进一步提高。

本成果克服了行业内的菌株瓶颈,并优化获得了工业发酵工艺。

知识产权一株产L-异亮氨酸基因工程菌的构建方法及应用,201410726700.9;一种产多种L-氨基酸的基因工程菌及应用,201610853074.9。

项目成熟度目前已在百吨级工业发酵罐进行了成功放大,具体策略为综合优化合成途径、分泌系统和辅酶供给,进一步提高C.glutamicum中L-异亮氨酸生产效率。

构建了一序列重组菌。

通过测定L-异亮氨酸产量和关键酶酶活,发现与对照菌相比,四种重组菌L-异亮氨酸的产量都得到了提高,其中提高幅度最大的在3L发酵罐水平,L-异亮氨酸产量由24.3g•L-1提高至32.3g•L-1,比对照菌提高了32.9%。

面向生物合成的代谢工程策略设计

面向生物合成的代谢工程策略设计

面向生物合成的代谢工程策略设计马红武1 陈修来2,3 袁倩倩1 刘立明2,3,4*孙际宾1*1 中国科学院天津工业生物技术研究所 天津 3003082 江南大学 食品科学与技术国家重点实验室 无锡 2141223 江南大学 工业生物技术教育部重点实验室 无锡 2141224 江南大学 粮食发酵工艺与技术国家工程实验室 无锡 214122摘要 代谢工程研究的主要目的是通过改造菌株代谢网络,高效地合成目的产品。

由于细胞代谢网络的复杂性,从数千个代谢反应及其调控回路中找到合适的改造靶点非常困难,往往要经过反复试差才能成功。

通过对大规模代谢网络的计算分析,设计出特定生物产品的最优合成途径,可以帮助人们找出合适的代谢工程改造策略,减少改造过程的盲目性,更快更好地得到生物合成菌株。

文章重点讨论两个问题:(1)如何设计代谢网络来合成原来不能合成的产品并提高产品得率,介绍了基于代谢网络计算分析的代谢工程设计方法;(2)如何设计菌株实现酶反应的精准调控,介绍了通过设计基因回路动态调控代谢途径流向的动态代谢工程研究新进展。

关键词 计算设计,代谢工程,生物合成,动态调控,代谢网络,合成生物学DOI 10.16418/j.issn.1000-3045.2018.11.004*通讯作者资助项目:天津市科委项目(15PTCYSY 00020),国家轻工技术与工程一流学科自主课题(LITE 2018-08),江南大学研究生教育教学研究与实践课题(YJSJG 2017004)修改稿收到日期:2018年10月29日关键技术Key Technology基因工程技术的出现使得人类不再受限于自然变异和筛选,通过有目的的基因组改造可以大幅度地提升菌株的生产性能。

例如,通过对代谢网络中酶基因的引入、敲除或精细调控可以创造新的细胞,将廉价的原料转化为有价值的目标产品。

这正是目前代谢工程和合成生物学研究的主要内容。

从原料到产品的生物转化途径常常包括几十步的酶反应,目前常用的代谢工程改造策略主要就是过表达和优化产物合成途径中的关键酶、敲除副产物生成途径、解除产物合成抑制等。

代谢工程改造微生物合成生物基单体的进展与挑战

代谢工程改造微生物合成生物基单体的进展与挑战

化工进展Chemical Industry and Engineering Progress2023 年第 42 卷第 8 期代谢工程改造微生物合成生物基单体的进展与挑战高聪,陈城虎,陈修来,刘立明(江南大学食品科学与技术国家重点实验室,江苏 无锡 214122)摘要:单体是合成聚合物所用的小分子基础原料,目前主要来源于化石燃料。

利用微生物制备生物基单体具有生产条件温和、环境友好、可持续的优势,是实现高分子材料行业绿色制造的重要途径。

借助代谢工程和合成生物学元件,目前已经实现了多种单体的微生物制造,然而与石油基生产工艺相比,这些单体微生物细胞工厂的生产性能普遍较低。

围绕代谢工程改造微生物合成生物基单体过程中存在的瓶颈问题,本文基于具体案例分析,从廉价底物的高效利用、提高生物基单体合成效率、强化细胞环境耐受性三个方面,总结了改造微生物合成单体的最新研究进展。

同时,讨论了单体微生物细胞工厂目前存在的挑战和未来发展方向。

关键词:微生物细胞工厂;塑料单体;底物利用;调控策略;环境耐受性中图分类号:Q815; TQ92 文献标志码:A 文章编号:1000-6613(2023)08-4123-13Progress and challenges of engineering microorganisms to producebiobased monomersGAO Cong ,CHEN Chenghu ,CHEN Xiulai ,LIU Liming(State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China)Abstract: Monomers are the basic raw materials used in the synthesis of polymers, which mainly come from fossil fuels. Engineering microorganisms to synthesize monomers has the advantages of mild production conditions, environmental friendliness, and sustainability, which is an important way to achieve green manufacturing in the material industry. With the help of metabolic engineering and synthetic biology parts, microbial manufacturing of various monomers has been realized at present. However, compared with petroleum-based production processes, the production performance of these microbial cell factories is limited. Focusing on the bottleneck problems in engineering microorganisms to synthesize bioplastic monomers, this review summarizes the latest research progress in the metabolic engineering of microorganisms to produce monomers from three aspects: efficient utilization of cheap substrates, improvement of monomer synthesis efficiency, and enhancement of cell environment tolerance,based on specific case studies. At the same time, the current challenges and future direction of the microbial monomer cell factory are discussed.Keywords: microbial cell factories; bioplastic monomer; substrate utilization; regulation strategy;environmental tolerance特约评述DOI :10.16085/j.issn.1000-6613.2023-0289收稿日期:2023-02-28;修改稿日期:2023-04-08。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江南大学科技成果——苏氨酸工业生产菌代谢工程
系统改造
成果简介
本成果从一株高产L-异亮氨酸出发,运用反向代谢工程策略对其代谢通路进行理性重排,以期实现L-苏氨酸高产,特别是近期,通过热诱导丙酮酸羧化酶和苏氨酸外排泵创苏氨酸产率纪录,开发了一种两段式温控发酵苏氨酸的重组大肠杆菌和工艺,发酵罐苏氨酸摩尔转化率达103.28%。

这套复杂中心代谢途径的自我调控维持了生产和生长的平衡。

论文用实验室前期构建的一株产苏氨酸的重组大肠杆菌TWF001为宿主,首先编辑了涉及副产物有机酸合成、产物降解和转运的基因,并证实这一系列菌种在37度升至42度情况下的生长情况等同正常37度发酵;然后用一套大肠杆菌热敏启动子去转录四环素启动子阻遏蛋白,四环素启动子后的报告基因37度表达,42度不表达。

项目成果
氨基酸发酵产业规模在过去十年中整整扩大了一倍,L-苏氨酸(33万吨)是年产量排名前三的氨基酸之一,2014年达33万吨/年,早期的L-苏氨酸生产菌种主要有通过传统育种方法选育而来的粘质沙雷氏菌、大肠杆菌和谷氨酸棒杆菌。

目前大肠杆菌占主导地位,谷氨酸棒杆菌次之。

全世界主要的L-苏氨酸生产企业有日本味之素公司、日本协和发酵工业公司、德国德固赛公司、德国巴斯夫公司和美国ADM公司。

这些公司生产的L-苏氨酸占据了全球市场90%的份额。

其中日本味之素公司的生产规模最大,多年来占据约60%全球市场份额。

此外,韩国希杰公司和印尼三星公司也是老牌L-苏氨酸生产企业。

近几年来,随着国内L-苏氨酸项目大批涌现:大成生化、广东星湖、河北梅花、浙江国光、山东恩贝等企业的L-苏氨酸生产线相继投产,这种局面得到了很大的改善,菌株产率和国际竞争厂家相比仍存在着一定差距,本成果对苏氨酸合成进行了系统改造优化,为赶超国际竞争厂家提供了可能。

知识产权
一种产多种L-氨基酸的基因工程菌及应用,201610853074.9;一株高产L-苏氨酸基因工程菌的构建方法及其应用,201910077955.X;一种敲除大肠杆菌PTS系统提高L-苏氨酸产量的方法,201910077967.2;一种强化脂肪酸降解和乙醛酸循环提高苏氨酸产量的方法,201910077953.0。

项目成熟度
本成果在200吨级工业发酵罐水平获得20批次成功放大和应用,菌株产率提高至125g/L,为目前业内最高水平。

菌株稳定性好,不使用IPTG诱导剂,不增加培养基和发酵成本,对环境友好。

特别是近期开发的两段式温控发酵苏氨酸的重组大肠杆菌和工艺,发酵罐苏氨酸摩尔转化率达103.28%,具有重要应用前景。

投资期望及应用情况目前全球L-苏氨酸以每年超20%的增长率高速增长,全球市场看好,本成果采用多种技术手段,增强苏氨酸合成主路途径,抑制杂酸途径,并采用新型温度诱导,前景广阔。

相关文档
最新文档