操作系统课程设计(页式存储管理)任务书
操作系统 课程实验-实验四页式虚拟存储管理中地址转换和缺页中断

实验四页式虚拟存储管理中地址转换和缺页中断一、实验目的深入了解页式存储管理如何实现地址转换;进一步认识页式虚拟存储管理中如何处理缺页中断。
二、实验预备知识页式存储管理中地址转换的方法;页式虚拟存储的缺页中断处理方法。
三、实验内容编写程序完成页式虚拟存储管理中地址转换过程和模拟缺页中断的处理。
实验具体包括:首先对给定的地址进行地址转换工作,若发生缺页则先进行缺页中断处理,然后再进行地址转换;最后编写主函数对所做工作进行测试。
假定主存64KB,每个主存块1024字节,作业最大支持到64KB,系统中每个作业分得主存块4块。
四、提示与讲解页式存储管理中地址转换过程很简单,假定主存块的大小为2n字节,主存大小为2m'字节和逻辑地址m位,则进行地址转换时,首先从逻辑地址中的高m-n位中取得页号,然后根据页号查页表,得到块号,并将块号放入物理地址的高m'-n位,最后从逻辑地址中取得低n位放入物理地址的低n位就得到了物理地址,过程如图6所示。
逻辑地址图6 页式存储管理系统地址转换示意图地址转换是由硬件完成的,实验中使用软件程序模拟地址转换过程,模拟地址转换的流程如图7所示(实验中假定主存64KB,每个主存块1024字节,即n=10,m'=16,物理地址中块号6位、块内地址10位;作业最大64KB,即m=16,逻辑地址中页号6位、页内地址10位)。
在页式虚拟存储管理方式中,作业信息作为副本放在磁盘上,作业执行时仅把作业信息的部分页面装入主存储器,作业执行时若访问的页面在主存中,则按上述方式进行地址转换,若访问的页面不在主存中,则产生一个“缺页中断”,由操作系统把当前所需的页面装入主存储器后,再次执行时才可以按上述方法进行地址转换。
页式虚拟存储管理方式中页表除页号和该页对应的主存块号外,至少还要包括存在标志(该页是否在主存),磁盘位置(该页的副本在磁盘上的位置)和修改标志(该页是否修改过)。
操作系统虚拟机小论文

课程设计课程设计名称:计算机操作系统专业班级:计算机科学与技术学生姓名:学号:指导教师:课程设计时间:操作系统专业课程设计任务书说明:本表由指导教师填写,由教研室主任审核后下达给选题学生,装订在设计(论文)首页目录一、设计目的为了掌握Linux环境下常用编译工具如gcc/g++/nasm及开源虚拟机bochs 的下载、安装、使用,掌握x86架构下分页式存储管理系统的基本原理,设计一个请求分页式虚拟存储系统。
掌握Linux系统下程序的编写及运行等方面展开实验。
二、设计要求2.1要求熟练掌握sudo apt-get install的用法。
2.2要求能够掌握分页存储管理系统的基本原理。
2.3要求学会在Linux系统下编写程序、执行程序。
三、设计容3.1运行环境3.1.1虚拟机系统下3.1.2使用Ubuntu下提供的apt-get软件包安装工具安装vim、 g++ 、nasm 、bochs等3.2 2.详细设计1)回顾虚拟页式存储系统:作业分页,存分块,只有当进程要使请认真阅读readme.txt文件,弄清楚各个文件的作用2)用其虚拟存时,其对应的数据才装入物理存。
3)完成frame_pool.H 、frame_pool.C 、page_table.C三个文件,其中page_table.H已经提供,我们需要添加page_table.C,自己设计并实现这些函数。
4)在frame_pool.H定义所需要的数据结构,在frame_pool.C完成这些函数。
添加代码如下所示:class FramePool {private: unsigned long base_frame_no; unsigned long nframes;unsigned long info_frame_no; unsigned char* free_frames;public:static const unsigned char USED -1;static const unsigned char UNUSED -0;static const unsigned int FRAME_SIZE -4096;public:FramePool(unsigned long _base_frame_no,unsigned long _nframes,unsigned long _info_frame_no);5)建立Frame_pool.C文件系统中使用位示图bitmap标识页面是否使用,start_frame表示第一个页面的起始地址(如系统存池从2M开始),pool_size表示在用户池中页框的总数(如系统存池的页框从2M~4M,因此共有(4M-2M)/4KB=512个页框)。
操作系统的虚拟存储管理与页式存储技术

操作系统的虚拟存储管理与页式存储技术操作系统是计算机系统中非常重要的一个组件,它负责管理计算机硬件和软件资源,协调各个应用程序的执行,以及提供用户与计算机之间的接口。
虚拟存储管理是操作系统中的一个核心功能,它通过将主存(内存)和辅存(磁盘)结合起来,在有限的主存空间中管理多个应用程序的运行和数据存储。
页式存储技术是一种常用的虚拟存储管理技术,下面将详细介绍虚拟存储管理以及页式存储技术的原理和实现方式。
一、虚拟存储管理的概念和原理虚拟存储管理是一种用于管理计算机主存和辅存的技术,它将辅存中的数据自动地转移到主存中,并且能够在程序运行时动态地分配和回收主存空间。
通过虚拟存储管理,即使计算机的主存空间有限,也可以实现更多应用程序的并发执行和大规模数据的存储与处理。
虚拟存储管理的主要原理是将辅存中的数据划分为若干个固定大小的存储块,称为页面(Page)。
同样,主存也被划分为与辅存页面大小相同的存储块,称为页框(Page Frame)。
每个页面和页框都有唯一的标识符,用于管理和映射页面到页框的关系。
当一个应用程序需要访问或执行某个页面时,操作系统将其从辅存中读入一个空闲的页框,并将其映射到相应的页面标识符。
如果主存中没有空闲的页框,则需要使用一定的页面置换算法将某个页面替换出去,以腾出页框给新的页面使用。
虚拟存储管理能够有效地利用计算机的主存资源,并且能够在不同的应用程序之间进行数据保护和隔离。
通过页面和页框的映射关系,操作系统可以实现虚拟地址空间的划分和隔离,每个应用程序都认为自己独占了整个计算机的内存空间,而不需要关心其他应用程序的存在。
二、页式存储技术的实现方式页式存储技术是一种基于虚拟存储管理的实现方式,它将主存和辅存划分为固定大小的页面,并且使用页表来管理页面和页框的映射关系。
下面将详细介绍页式存储技术的实现方式。
1. 页面和页框的划分页式存储技术将辅存和主存划分为固定大小的页面和页框,通常大小为2的幂次方,例如2KB、4KB或者16KB等。
计算机操作系统课程设计教学大纲

《计算机操作系统》课程设计教学大纲课程编号:08120070课程名称:计算机操作系统/Computer Operating System课程总学时/学分:56/3.5(其中理论46学时,实验10学时课程设计时间/学分:1周/1学分适用专业:计算机科学与技术一、设计任务及目的《计算机操作系统》课程是计算机科学与技术专业的一门重要专业基础课,“计算机操作系统课程设计”的目的是在学生学习了《计算机操作系统》课程之后理论联系实践,一方面延续《计算机操作系统》课程实验的要求,进一步加深与巩固学生对计算机操作系统中概念、基本原理、算法的理解和掌握,培养学生对计算机常用操作系统的操作能力;另一方面通过本环节加强培养学生分析、修改和设计操作系统的能力。
期望达到学为所用,并且能进一步提高使用计算机和编程能力。
二、课程设计的基本要求1、了解所选择开发环境的调试功能,掌握跟踪,修改错误的技巧。
2、能根据实际问题选择数据结构,清淅的描述算法。
3、培养良好的编程风格。
4、撰写课程设计报告,按格式要求写出完整的、规范的报告并打印,其中模块图、流程图要清楚规范,特别要求学生独立完成。
三、设计需运用的基本理论设计需运用计算机系统知识、操作系统基本概念、进程管理、存储管理技术、I/O管理技术、文件管理、高级语言程序设计、数据结构等内容。
四、课程设计内容与时间安排1、设计内容:可以选择下面提供的参考选题,也可以自选,如果自选,需要将自选题,目的详细内容以及实现要求提供给老师,老师批准后方可采用。
课题一:进程管理演示设计目的:加深对进程概念及进程管理各部分内容的理解;熟悉进程管理中主要数据结构的设计及进程调度算法、进程控制机构、同步机构及通讯机构的实施。
设计内容:设计一个允许n个进程并发运行的进程管理模拟系统。
该系统包括有简单的进程控制、同步与通讯机构,其进程调度算法可任意选择(优先级调度,时间片轮转,短进程优先中的一种)。
每个进程用一个PCB表示,其内容根据具体情况设置。
操作系统——页式存储管理

操作系统——页式存储管理分区式存储管理最⼤的缺点是碎⽚问题严重,内存利⽤率低。
究其原因,主要在于连续分配的限制,即它要求每个作⽤在内存中必须占⼀个连续的分区。
如果允许将⼀个进程分散地装⼊到许多不相邻的分区中,便可充分地利⽤内存,⽽⽆需再进⾏“紧凑”。
基于这⼀思想,产⽣了“⾮连续分配⽅式”,或者称为“离散分配⽅式”。
连续分配:为⽤户进程分配的必须是⼀个连续的内存空间。
⾮连续分配:为⽤户进程分配的可以是⼀些分散的内存空间。
分页存储管理的思想:把内存分为⼀个个相等的⼩分区,再按照分区⼤⼩把进程拆分成⼀个个⼩部分。
分页存储管理分为:实分页存储管理和虚分页存储管理⼀、实分页式存储管理实分页式存储最⼤的优点是内存利⽤率⾼,与⽬前流⾏的虚分页存储管理相⽐,具有实现简单,程序运⾏快的优点。
⽬前,飞速发展的硬件制造技术使得物理内存越来越⼤,因此我们认为,实分页式存储管理将是⼀种最有发展前途的存储管理⽅式。
1.1、基本原理假设⼀个⼤型饭店,所有的客房都是标准的双⼈间,部分客房已经住进客⼈,现在⼜有⼀个旅游团要求⼊住。
接待员统计了⼀下,对旅游团领队说:“贵团全体成员都能住下,两⼈⼀个房间,但是不能住在同⼀楼层了,因为每层空着的客房不够,更没有⼏个挨着的。
请原谅!”。
对于这样的安排,⼀般⼈不会感到奇怪。
因为旅游团本来就是由⼀位位个⼈或夫妻等组成的,⽽饭店的客房本来也是两⼈⼀间的,两⼈⼀组正好可住在⼀个客房⾥;另外,饭店⼏乎每天都有⼊住的和退房的客⼈,想在同⼀楼层找⼏间挨着的客房实在不容易。
①将整个系统的内存空间划分成⼀系列⼤⼩相等的块,每⼀块称为⼀个物理块、物理页或实页,页架或页帧(frame),可简称为块(block)。
所有的块按物理地址递增顺序连续编号为0、1、2、……。
这⾥的块相当于饭店的客房,系统对内存分块相当于饭店把⼤楼所有的客房都设计成标准的双⼈间。
②每个作业的地址空间也划分成⼀系列与内存块⼀样⼤⼩的块,每⼀块称为⼀个逻辑页或虚页,也有⼈叫页⾯,可简称为页(page)。
操作系统存储管理实验报告

操作系统实验·报告
typedef struct pfc_struct pfc_type; (2)模块结构 (伙伴系统) # define Inital 1024 //初始时的总内存
NODE root=(memory_node *)malloc(1*sizeof(memory_node));//根节点 int chip=0; // 记录总的碎片大小
total = 256 use =127 remain_max = 0 flag = 0 pid =0
total = 256 use = 0 remain_max = 256 flag = 0 pid =-1
total = 1024 use = 0 remain_max = 512 flag = 1 pid =-1
total = 512 use = 0 remain_max = 512 flag = 0 pid =-1
total = 512 use = 267 remain_max = 0 flag = 0 pid = -1
6 / 37
操作系统实验·报告
三、实验理论分析
7 / 37
操作系统实验·报告
(伙伴算法) Buddy System 是一种经典的内存管理算法。在 Unix 和 Linux 操作系统中都有用到。其 作用是减少存储空间中的空洞、减少碎片、增加利用率。避免外碎片的方法有两种: a.利用分页单元把一组非连续的空闲页框映射到非连续的线性地址区间。 b.开发适当的技术来记录现存的空闲连续页框块的情况,以尽量避免为满足对小块的 请 求而把大块的空闲块进行分割。 基于下面三种原因,内核选择第二种避免方法: a.在某些情况下,连续的页框确实必要。 b.即使连续页框的分配不是很必要,它在保持内核页表不变方面所起的作用也是不容 忽视的。假如修改页表,则导致平均访存次数增加,从而频繁刷新 TLB。 c.通过 4M 的页可以访问大块连续的物理内存,相对于 4K 页的使用,TLB 未命中率降 低,加快平均访存速度。 Buddy 算法将所有空闲页框分组为 10 个块链表,每个块链表分别包含 1,2,4,8,16,32,64,128,256,512 个连续的页框,每个块的第一个页框的物理地址是该块 大小的整数倍。如,大小为 16 个页框的块,其起始地址是 16*2^12 的倍数。 例,假设要请求一个 128 个页框的块,算法先检查 128 个页框的链表是否有空闲块, 如果没有则查 256 个页框的链表,有则将 256 个页框的块分裂两份,一 份使用,一份 插入 128 个页框的链表。如果还没有,就查 512 个页框的链表,有的话就分裂为 128, 128,256,一个 128 使用,剩余两个插入对应链 表。如果在 512 还没查到,则返回 出错信号。 回收过程相反,内核试图把大小为 b 的空闲伙伴合并为一个大小为 2b 的单独块,满足 以下条件的两个块称为伙伴: a.两个块具有相同的大小,记做 b。 b.它们的物理地址是连续的。 c.第一个块的第一个页框的物理地址是 2*b*2^12 的倍数。 该算法迭代,如果成功合并所释放的块,会试图合并 2b 的块来形成更大的块。 为了模拟 Buddy System 算法,我采用了数的数据结构,并使用了结构体,来记录各项 数据与标记,虽然不是真正的操作系统使用的方法,但成功模拟了插入和回收的过程。 在回收时我采用物理上的合并——即删除实际的物理节点,释放空间。然而实际中可 能根据需要仅仅是删除了标记项,使之标记成没用过的,从而避免了合并,会提高下 一次的插入操作。 碎片百分比 = 碎片总大小/总内存大小 (置换算法)
操作系统课程设计任务书

操作系统集中上机实验1:银行家算法一、目的和要求银行家算法是避免死锁的一种重要方法,本实验要求用高级语言编写和调试一个简单的银行家算法程序。
加深了解有关资源申请、避免死锁等概念,并体会和了解死锁和避免死锁的具体实施方法。
二、实验内容1.设计进程对各类资源最大申请表示及初值确定。
2.设定系统提供资源初始状况。
3.设定每次某个进程对各类资源的申请表示。
4.编制程序,依据银行家算法,决定其申请是否得到满足。
三、算法描述银行家可以把一定数量的资金供多个用户周转使用,为保证资金的安全银行家规定:1.当一个用户对资金的最大需求量不超过银行家现有的资金就要接纳该用户;2.用户可以分期贷款,但贷的总数不能超过最大需求量;3.当银行家现有的资金不能满足用户的沿需贷数时,对用户的贷款可推迟支付,但总能使用户在有限的时间里得到贷款;4.当用户得到所需的全部资金后,一定能在有限的时间里归还所有的资金。
实验2:时间片轮转法基本思想:将CPU的处理时间划分成一个个时间片,就绪队列中的诸进程轮流运行一个时间片,当时间片结束时,就强迫运行进程让出CPU,该进程进入就绪队列,等待下一次调度,同时,进程调度又去选择就绪队列中的一个进程,分配给它一个时间片,以投入运行。
在轮转法中,时间片长度的选择非常重要,将宜接影响系统开销和响应时间。
如果时间片长度很小,则调度程序剥夺处理机的次数频繁,加重系统开销;反之,如果时间片长度选择过长,比方说一个时间片就能保证就绪队列中所有进程都执行完毕,则轮转法就退化成先进先出算法。
实验3-4:抢占式(或非抢占式)优先级调度算法基本思想:该算法的基本思想是进程优先级高者优先调度,是一种常用的进程调度算法。
该算法的关键是如何确定优先数。
通常确定优先数的方法有两种,即静态法和动态法。
(1)静态优先权是在创建进程时确定的,其运行特征是优先数确定之后在整个进行运行期间不再改变。
确定静态优先权的依据有进程的类型、进程所使用的资源、进程的估计运行时间等因素。
《操作系统》课件(五)页式存储管理

段的共享和保护
共享:在不同用户的段表中添入相同的 段表表项。
保护:在段表中添加一个保护位。 思 考:为什么段式存储管理比页式存储
管理更容易实现共享和保护?
段式和页式的问题和优点
页式:解决了碎片问题。但不便于用户作业 的共享和保护。由于用户调入的页可能只用 到其中的一部分,因此系统的效率不高。
210=1024,25=32
(2)根据给定的逻辑地址得到页号和页内地址。
035E(H)=(0000001101011110)2 从左边 数10位为页内地址,剩余为页号。页号为0。
(3)根据页号查页表,得到块号为5。
(4)将块号与块内地址组合为物理地址:
01011101011110=175E(H)
页表的实现—快表
块号
5 12
保护位
R WR
5
5
5
5
5
用户1
用户2
用户3
页式虚拟存储技术
虚拟存储器:内存扩充技术,为用户提供一 个比实际内存大得多的内存空间。
实现虚拟的三个三个条件;
程序中的哪些页已经加载内存。 当要访问的页不在内存时,如何将其掉如内存? 若此时内存空间已满,如何选择换出的页?
页式虚拟的基本原理:加载作业时,只加载 那些最活跃的页,其余的页需要时再加载。 “请求调页技术”和“预调页技术”。
从上述地址变换过程可以看出:CPU每取一条 指令或数据,都必须经过页表。
因此,页表的每一个表项都是一个动态重定位 机构。
如何实现页表,将影响系统的效率。 方式:
硬件实现:用寄存器组。但代价太高,特别是内存 很大时,是不可能的。
软件实现:将页表放在内存中。每取一条指令,要 两次访问内存。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、课程设计的原始资料及依据
查阅有关计算机操作系统的教材、实验指导书等资料,进一步熟悉操作系统的基本原理,算法的设计思想。
页式和段式存储管理是操作系统中存储管理中实现离散式存储管理的重要内容。
本设计要求用高级语言编写和调试一个简单的页式和段式存储管理程序。
通过本设计
可以加深理解有关页表、段表、进程队列的概念,并体会和了解地址转换。
二、课程设计主要内容及要求
1 •认真阅读资料,掌握离散式存储管理的原理和思想。
2 •要求在设计的过程中,建立清晰的层次结构。
3•画出主要的功能结构图和主要算法的流程图。
4. 设计页表和段表结构,实现离散式存储管理功能。
页表通常包括以下信息:页号,块号。
根据调度算法的不同,页表结构的内容可以作适
当的增删。
5•实现逻辑地址到物理地址的转换。
6. 建立进程序列。
7. 实现进程的离散式分配。
&运行程序,检查结果是否和理论值一致。
9.环境可以使用Windows. Turbo C环境或Linux。
三、对课程设计说明书撰写内容、格式、字数的要求
1. 课程设计说明书是体现和总结课程设计成果的载体,主要内容包括:设计题目、设计目的、设备器材、设计原理及内容、设计步骤、遇到的问题及解决方法、设计总结、参考文献等。
一般不应少于3000字。
2. 在适当位置配合相应的实验原理图、功能模块图、算法流程图等图表进行说明。
应做到文理通顺,内容正确完整,书写工整,装订整齐。
3. 设计总结部分主要写本人完成工作简介以及自己的设计体会,包括通过课程设计学到了什么,哪里遇到了困难,解决的办法以及今后的目标。
4. 课程设计说明书手写或打印均可。
手写要用学校统一的课程设计用纸,用黑或蓝黑
墨水工整书写;打印时采用A4纸,页边距均为20mm,正文采用宋体小四号字,行间距18 磅。
文中大标题采用黑体小三号字,一级节标题采用黑体四号字,二级节标题采用黑体小四
号字,表题与图题采用宋体五号字。
5. 课程设计说明书装订顺序为:封面、任务书、成绩评定表、目录、正文、参考文献。
四、设计完成后应提交成果的种类、数量、质量等方面的要求
1. 完成“任务书”中指定的功能,运行结果正确。
2. 课程设计说明书。
五、时间进度安排
六、主要参考资料(文献)
[1] 凤羽•操作系统•北京:电子工业出版社,2004
[2] 马季兰、冯秀芳等•操作系统原理与Linux.北京:人民邮电出版社,2000
[3] 孟静•操作系统原理教程•北京:清华大学出版社,2000
[4] 周苏、金海溶•操作系统原理实验•北京:科学出版社,2000。