铝合金铸造工艺

合集下载

铝合金重力铸造浇注工艺

铝合金重力铸造浇注工艺

铝合金重力铸造浇注工艺铝合金是一种广泛应用于工业领域的材料,具有重量轻、强度高、优良的导热性和电导性等优点。

为了满足各种工业需求,提高铝合金产品的质量和性能,铝合金重力铸造浇注工艺应运而生。

一、工艺概述铝合金重力铸造浇注工艺是一种利用重力势能将液态铝合金浇入预先设计好的模具内,通过冷却固化后得到所需零部件的工艺。

其流程包括模具准备、熔炼铝合金、浇注和冷却固化等步骤。

二、模具准备模具是铝合金重力铸造浇注工艺中不可或缺的重要环节。

首先,根据产品要求和设计图纸,制作出所需零部件的模具。

模具必须具备良好的耐热性和耐腐蚀性,以便能够承受高温铝合金的浇注。

在制作模具的同时,还需考虑到零部件的收缩率和缩孔等因素。

三、熔炼铝合金铝合金重力铸造浇注工艺要求使用液态铝合金进行浇注。

因此,在浇注之前,需要先进行铝合金的熔炼。

一般来说,熔炼铝合金需要采用高温熔炉,并且根据不同的合金成分和成分比例来调整炉温和熔化时间。

熔炼完成后,将炉中的液态铝合金保持在一定的温度,以便后续的浇注。

四、浇注浇注是铝合金重力铸造浇注工艺的核心步骤。

要正确进行浇注,首先需要保持模具和液态铝合金的温度。

接下来,将液态铝合金缓慢而均匀地倾倒到模具内。

在浇注过程中,需要注意控制浇注的速度和角度,以避免产生气泡和缺陷。

浇注完成后,让铝合金自然冷却,并开始固化过程。

五、冷却固化在浇注完成后,液态铝合金会迅速冷却。

冷却过程中,铝合金会逐渐固化,形成所需零部件的最终形状。

冷却时间可以根据铝合金的种类和厚度来确定。

一般来说,厚度较大的零部件会需要更长的冷却时间。

冷却固化完成后,即可取出铝合金零部件,进行后续的加工和处理。

六、工艺优势铝合金重力铸造浇注工艺具有以下优势:1. 生产工艺简单快捷,不需要复杂的设备和工具。

2. 铝合金重力铸造能够生产出形状复杂、大小不一的零部件。

3. 由于浇注时的重力作用,铝合金零部件内部结构致密度高,具有优异的强度和刚性。

4. 铝合金重力铸造浇注工艺适用于多种类型的铝合金。

铝合金的铸造方法

铝合金的铸造方法

铝合金的铸造方法铝合金铸造方法主要分为压力铸造和重力铸造两种。

1. 压力铸造方法(Pressure Casting)压力铸造是指将熔化的铝合金通过高压注入到金属模具中进行快速凝固的方法。

压力铸造包括冷室压力铸造和热室压力铸造两种方法。

具体步骤如下:- 铝合金材料熔化:将铝合金原料加热至熔点,通常在680C-750C之间。

- 模具准备:选择适当的金属模具,并进行涂料处理,以便提高铝合金熔体与模具表面的润湿性。

- 模具预热:根据具体合金类型和厚度,模具需要预热到一定温度,通常在200C-300C之间。

- 注射:将预热好的模具封闭在注射机中,通过高压将铝合金熔体注入模具中。

- 冷却:模具内的铝合金熔体在注射后迅速凝固,并冷却至室温。

- 模具开启和取出:冷却后,打开模具,取出铸件。

- 去毛刺和后处理:对铸件进行去毛刺和修整等后处理工艺。

2. 重力铸造方法(Gravity Casting)重力铸造是指利用重力将铝合金熔体注入模具中的方法。

相对于压力铸造,重力铸造的压力较低,适用于较大的铸件。

具体步骤如下:- 铸造准备:选择适当的金属模具,并进行涂料处理。

- 铝合金材料熔化:将铝合金原料加热至熔点,通常在680C-750C之间。

- 注射:借助于重力,将铝合金熔体通过溢流口倒入模具中。

在此过程中,可以通过控制溢流口的大小和位置来控制铸件的形状和尺寸。

- 冷却:待铝合金熔体在模具中凝固,冷却至室温。

- 模具开启和取出:冷却后,打开模具,取出铸件。

- 去毛刺和后处理:对铸件进行去毛刺和修整等后处理工艺。

值得注意的是,上述方法仅列举了最常用和基本的铝合金铸造方法,实际生产中还有其他特殊的铸造方法,如砂芯铸造、低压铸造等。

具体方法的选择会根据铸件形状、尺寸和要求等因素进行灵活确定。

铝合金深井铸造工艺流程

铝合金深井铸造工艺流程

铝合金深井铸造工艺流程
铝合金深井铸造工艺流程:
①配料:
- 根据所需合金成分,精确称量各种金属原料。

②熔炼:
- 将配好的原料加入熔炉,加热至熔化状态,形成均匀的铝液。

③精炼保温:
- 对铝液进行精炼处理,去除气体和夹杂物,随后保温以维持液态和温度。

④深井铸造准备:
- 准备深井铸造系统,包括冷却装置和铸模,确保系统处于工作状态。

⑤浇注:
- 将精炼后的铝液通过浇注系统注入深井铸模中。

⑥冷却固化:
- 铝液在深井中迅速冷却,形成内部结构致密的铸锭。

⑦脱模:
- 待铸锭完全固化后,从铸模中取出。

⑧均热处理:
- 将铸锭置于均热炉中,进行均匀加热,消除应力,改善组织结构。

⑨机械加工处理:
- 对铸锭进行锯切、铣面等加工,去除表面缺陷,准备后续工序。

⑩热处理(如果需要):
- 根据合金特性,进行固溶处理、时效硬化等热处理工艺,以增强力学性能。

⑪成品检验:
- 对经过加工的铸锭进行尺寸、表面质量及力学性能的检测。

⑫包装与储存:
- 将检验合格的铝合金铸锭进行包装,防止氧化和损伤,准备交付客户。

深井铸造工艺能够生产出高质量的铝合金铸锭,适用于航空航天、汽车制造等行业对材料性能有严格要求的应用场景。

铸铝件工艺流程

铸铝件工艺流程

铸铝件工艺流程铸铝件是一种常见的金属制品,广泛应用于汽车、航空航天、机械设备等领域。

铸铝件工艺流程包括模具设计、熔炼铝合金、铸造、去毛刺、热处理和表面处理等多个环节。

下面将详细介绍铸铝件的工艺流程。

1. 模具设计铸铝件的质量和形状受到模具设计的影响。

在进行模具设计时,需要考虑铸件的结构特点、壁厚、收缩率等因素,以确保最终铸件的质量和形状符合要求。

同时,还需要考虑模具的冷却系统,以保证铸造过程中的温度控制。

2. 熔炼铝合金铸铝件通常采用铝合金进行铸造,因此首先需要对铝合金进行熔炼。

在熔炼过程中,需要严格控制熔炼温度和合金成分,以确保铝合金的质量符合要求。

3. 铸造铸造是铸铝件工艺流程中的关键环节。

在铸造过程中,需要将熔化的铝合金倒入预先设计好的模具中,然后等待铸件冷却凝固。

在此过程中,需要注意控制浇注速度、温度和压力,以避免产生气孔、夹杂等缺陷。

4. 去毛刺铸造完成后,铸件表面通常会留有一些毛刺和氧化皮。

因此,需要对铸件进行去毛刺处理,以提高表面质量和加工性能。

5. 热处理铸铝件通常需要进行热处理,以消除残余应力、改善组织结构和提高硬度。

常见的热处理工艺包括时效处理、固溶处理和淬火处理等。

6. 表面处理最后,铸铝件还需要进行表面处理,以提高其耐腐蚀性和装饰性。

常见的表面处理工艺包括阳极氧化、喷涂、电镀等。

总结铸铝件工艺流程包括模具设计、熔炼铝合金、铸造、去毛刺、热处理和表面处理等多个环节。

每个环节都对最终铸铝件的质量和性能有着重要影响。

因此,在生产过程中需要严格控制每个环节,以确保铸铝件的质量符合要求。

低压铝合金铸造工艺

低压铝合金铸造工艺

低压铝合金铸造工艺低压铝合金铸造工艺是一种常用的铝合金制造方法,也被广泛应用于各个领域。

本文将介绍低压铝合金铸造工艺的基本原理、工艺流程、优点和应用领域等方面的内容。

一、低压铝合金铸造工艺的基本原理低压铝合金铸造工艺是指在一个密封的铸造腔体中,通过施加气压将熔化的铝合金从铸造炉中注入到铸型中,然后通过冷却凝固形成所需的铸件。

该工艺的基本原理是利用气压将熔化的铝合金从铸造炉中推送到铸型中,并通过冷却凝固固化形成铸件。

低压铝合金铸造工艺的流程一般包括以下几个步骤:1. 铝合金熔炼:将所需的铝合金料放入熔炉中进行熔炼,确保铝合金的纯度和成分符合要求。

2. 铸型制备:根据需要制作相应的铸型,一般采用砂型或金属型。

3. 铝液注入:将熔化的铝合金倒入铸造炉中,然后通过加压将铝液注入到预先准备好的铸型中。

4. 冷却凝固:在铸型中加压注入铝液后,等待一定的冷却时间,让铝液凝固成型。

5. 铸件取出:待铸件冷却后,打开铸型,取出成型的铸件。

三、低压铝合金铸造工艺的优点低压铝合金铸造工艺相比其他铸造方法具有以下优点:1. 成品质量高:低压铝合金铸造工艺可以实现较高的铸件准确性和表面质量,铸件的尺寸精度、表面光洁度和机械性能都能够满足要求。

2. 生产效率高:低压铝合金铸造工艺具有快速生产的特点,一次注塑可以得到多个铸件,生产效率较高。

3. 设备投资少:低压铝合金铸造工艺相对于其他铸造方法,设备投资相对较少,维护成本也较低。

4. 适用范围广:低压铝合金铸造工艺适用于各种铝合金铸件的制造,例如汽车零部件、航空航天零部件等。

四、低压铝合金铸造工艺的应用领域低压铝合金铸造工艺广泛应用于各个领域,特别是在汽车、航空航天、电子、机械等行业中得到了广泛的应用。

它可以制造各种复杂形状的铝合金零部件,如汽车发动机缸体、飞机发动机壳体、电子设备外壳等。

低压铝合金铸造工艺是一种高效、高质量的铸造方法,具有成本低、生产效率高、适用范围广等优点,被广泛应用于各个领域。

铸造铝合金工艺流程

铸造铝合金工艺流程

铸造铝合金工艺流程
《铸造铝合金工艺流程》
铸造铝合金是一种常用的金属加工方法,它能够制造出各种形状和尺寸的零部件。

铸造铝合金工艺流程通常包括原料准备、模具设计、熔炼铝合金、铸型、冷却、去除模具和表面处理等多个步骤。

首先,原料准备是铸造铝合金工艺流程的第一步。

这里需要准备铝合金原料和其他配料,确保原料的纯度和配比达到标准,以保证铸造出来的铝合金零部件质量。

接下来,模具设计是至关重要的一步。

模具的设计要考虑到最终产品的形状、大小和结构,同时也需要考虑到熔铸温度、压力和冷却方式等因素,以便确保产品的质量和生产效率。

第三步是熔炼铝合金,这一步要用高温熔炼炉将铝合金原料和其他配料熔化成液态状态,然后通过特定的工艺方法进行熔炼处理,使其达到适合铸造的状态。

铸型是下一步,通过铸型将熔化后的铝合金倒入模具中,待冷却凝固后,就能得到所需要的形状和尺寸的零部件。

冷却是整个铸造铝合金工艺流程中的一个关键环节,冷却的速度和方式直接影响产品的质量和性能。

最后,去除模具和表面处理是最后的两步。

在这两个步骤中,
需要将凝固后的铸造铝合金零部件从模具中取出,并进行表面处理,以确保产品的质量和外观。

总的来说,铸造铝合金工艺流程包括多个关键步骤,每一步都需要精心设计和操作,以确保最终产品的质量和性能。

通过不断的改进和优化工艺流程,铸造铝合金工艺将会得到进一步的提升和发展。

铝铸件工艺

铝铸件工艺

铝铸件工艺一、引言铝铸件是指采用铝合金作为原料,通过铸造工艺制造而成的零件或构件。

铝铸件具有重量轻、强度高、耐腐蚀性好等优点,广泛应用于航空、汽车、机械等领域。

本文将介绍铝铸件的工艺流程和主要工艺特点。

二、铝铸件的工艺流程1. 模具设计与制造:首先根据零件的形状、尺寸和要求,设计出相应的模具。

然后根据模具设计图纸制造模具,包括模具芯、型腔等部分。

2. 铝合金熔炼:选用适当的铝合金材料,通过高温熔炼使其变成液态。

在熔炼过程中,需要对铝合金进行精确的配料和熔炼控制,以确保合金成分的准确性和均匀性。

3. 铸造过程:将熔融的铝合金倒入模具中,经过凝固和冷却过程,使铝液逐渐凝固成型。

铸造过程中需要控制好铸造温度、冷却速度和液态金属的充填等因素,以确保铸件的质量。

4. 清理与去毛刺:铸件冷却后,需要对其进行去除毛刺、修整、清理等工艺处理。

通过去毛刺可以提高铸件的表面光洁度和精度。

5. 热处理:对一些特殊要求的铝铸件,需要进行热处理以改变其组织和性能。

常见的热处理方法包括时效处理、固溶处理等。

6. 机械加工:对于需要进行精密加工的铝铸件,如钻孔、铣削、车削等,需要进行相应的机械加工工艺。

7. 表面处理:根据产品要求和应用领域的不同,可以对铝铸件进行表面处理,如喷涂、阳极氧化、电镀等,以提高其防腐蚀性和美观度。

8. 检测与质量控制:通过各种检测方法对铝铸件进行质量检验,包括外观检查、尺寸测量、力学性能测试等。

确保铝铸件符合设计要求和使用要求。

三、铝铸件工艺的特点1. 模具成本低:与其他铸造工艺相比,铝铸件的模具成本较低,制造周期较短,能够快速满足不同产品的需求。

2. 产品形状复杂:铝铸件工艺适用于各种复杂形状的产品制造,可以生产出具有复杂内部结构和外观形状的零件。

3. 高材料利用率:铝铸件工艺具有较高的材料利用率,废料少,可以有效降低成本。

4. 材料性能优良:铝铸件具有优良的物理性能和机械性能,强度高、刚性好、耐腐蚀性强。

铝合金重力铸造浇注工艺

铝合金重力铸造浇注工艺

铝合金重力铸造浇注工艺铝合金重力铸造浇注工艺是一种常用的铝合金成型工艺。

它采用铸造的方式制作出各种铝合金零件,能够满足各种工业领域的需求。

本文将介绍铝合金重力铸造浇注工艺的原理、特点、应用和发展趋势。

一、原理铝合金重力铸造浇注工艺是一种利用重力作用将熔化的铝合金浇注入铸型中形成所需零件的工艺。

在铸造过程中,由于铝合金的液态性,会自然地填充铸型中的空腔,从而形成各种形状的零件。

铝合金重力铸造浇注工艺主要包括模具制作、熔炼铝合金材料、浇注、冷却和脱模等环节。

二、特点1.适用范围广:铝合金重力铸造浇注工艺适用于各种铝合金零件的制作,包括高强度、高耐热、高耐腐蚀等要求较高的零件。

2.精度高:由于铝合金液态性好,能够自然地填充铸型中的空腔,因此能够制作出形状复杂、精度高的零件。

3.生产效率高:铝合金重力铸造浇注工艺能够实现大批量生产,生产效率高,能够满足各种工业领域的需求。

4.成本低:相比其他成型工艺,铝合金重力铸造浇注工艺成本低,能够为工业领域提供更为经济实惠的铝合金零件。

三、应用铝合金重力铸造浇注工艺广泛应用于各种工业领域。

例如,汽车工业中的发动机、底盘、变速器等零部件;航空航天工业中的发动机叶片、涡轮盘、航空轮毂等零部件;电子工业中的散热器、外壳、铝合金框架等零部件等。

四、发展趋势铝合金重力铸造浇注工艺随着科技的不断进步,也在不断发展和完善。

未来,铝合金重力铸造浇注工艺将更加注重环保和能源节约,推广高效、低能耗的新工艺;同时,也将更加注重提高铝合金零件的质量和精度,满足工业领域对高性能铝合金零件的需求。

铝合金重力铸造浇注工艺是一种重要的铝合金成型工艺,具有广泛的应用前景和发展潜力。

未来,我们有理由相信,随着科技的不断进步,铝合金重力铸造浇注工艺将在各个工业领域中发挥更加重要的作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

铝合金铸造工艺
一、铸造概论
铝合金铸造的种类如下:
由于铝合金各组元不同,从而表现出合金的物理、化学性能均有所不同,结晶过程也不尽相同。

故必须针对铝合金特性,合理选择铸造方法,才能防止或在许可范围内减少铸造缺陷的产生,从而优化铸件。

1、铝合金铸造工艺性能
铝合金铸造工艺性能,通常理解为在充满铸型、结晶和冷却过程中表现最为突出的那些性
能的综合。

流动性、收缩性、气密性、铸造应力、吸气性。

铝合金这些特性取决于合金的成分,但也与铸造因素、合金加热温度、铸型的复杂程度、浇冒口系统、浇口形状等有关。

(1) 流动性
流动性是指合金液体充填铸型的能力。

流动性的大小决定合金能否铸造复杂的铸件。

在铝合金中共晶合金的流动性最好。

影响流动性的因素很多,主要是成分、温度以及合金液体中存在金属氧化物、金属化合物及其他污染物的固相颗粒,但外在的根本因素为浇注温度及浇注压力(俗称浇注压头)的高低。

(2) 收缩性
收缩性是铸造铝合金的主要特征之一。

一般讲,合金从液体浇注到凝固,直至冷到室温,共分为三个阶段,分别为液态收缩、凝固收缩和固态收缩。

合金的收缩性对铸件质量有决定性的影响,它影响着铸件的缩孔大小、应力的产生、裂纹的形成及尺寸的变化。

通常铸件收缩又分为体收缩和线收缩,在实际生产中一般应用线收缩来衡量合金的收缩性。

铝合金收缩大小,通常以百分数来表示,称为收缩率。

①体收缩
体收缩包括液体收缩与凝固收缩。

铸造合金液从浇注到凝固,在最后凝固的地方会出现宏观或显微收缩,这种因收缩引起的宏观缩孔肉眼可见,并分为集中缩孔和分散性缩孔。

集中缩孔的孔径大而集中,并分布在铸件顶部或截面厚大的热节处。

分散性缩孔形貌分散而细小,大部分分布在铸件轴心和热节部位。

显微缩孔肉眼难以看到,显微缩孔大部分分布在晶界下或树枝晶的枝晶间。

缩孔和疏松是铸件的主要缺陷之一,产生的原因是液态收缩大于固态收缩。

生产中发现,铸造铝合金凝固范围越小,越易形成集中缩孔,凝固范围越宽,越易形成分散性缩孔,因此,在设计中必须使铸造铝合金符合顺序凝固原则,即铸件在液态到凝固期间的体收缩应得到合金液的补充,是缩孔和疏松集中在铸件外部冒口中。

对易产生分散疏松的铝合金铸件,冒口设置数量比集中缩孔要多,并在易产生疏松处设置冷铁,加大局部冷却速度,使其同时或快速凝固。

②线收缩
线收缩大小将直接影响铸件的质量。

线收缩越大,铝铸件产生裂纹与应力的趋向也越大;冷却后铸件尺寸及形状变化也越大。

对于不同的铸造铝合金有不同的铸造收缩率,即使同一合金,铸件不同,收缩率也不同,在同一铸件上,其长、宽、高的收缩率也不同。

应根据具体情况而定。

(3) 热裂性
铝铸件热裂纹的产生,主要是由于铸件收缩应力超过了金属晶粒间的结合力,大多沿晶界产生从裂纹断口观察可见裂纹处金属往往被氧化,失去金属光泽。

裂纹沿晶界延伸,形状呈锯齿形,表面较宽,内部较窄,有的则穿透整个铸件的端面。

不同铝合金铸件产生裂纹的倾向也不同,这是因为铸铝合金凝固过程中开始形成完整的结晶框架的温度与凝固温度之差越大,合金收缩率就越大,产生热裂纹倾向也越大,即使同一种合金也因铸型的阻力、铸件的结构、浇注工艺等因素产生热裂纹倾向也不同。

生产中常采用退让性铸型,或改进铸铝合金的浇注系统等措施,使铝铸件避免产生裂纹。

通常采用热裂环法检测铝铸件热裂纹。

(4) 气密性
铸铝合金气密性是指腔体型铝铸件在高压气体或液体的作用下不渗漏程度,气密性实际上表征了铸件内部组织致密与纯净的程度。

铸铝合金的气密性与合金的性质有关,合金凝固范围越小,产生疏松倾向也越小,同时产生析出性气孔越小,则合金的气密性就越高。

同一种铸铝合金的气密性好坏,还与铸造工艺有关,如降低铸铝合金浇注温度、放置冷铁以加快冷却速度以及在压力下凝固结晶等,均可使铝铸件的气密性提高。

也可用浸渗法堵塞泄露空隙来提高铸件的气密性。

(5) 铸造应力
铸造应力包括热应力、相变应力及收缩应力三种。

各种应力产生的原因不尽相同。

①热应力
热应力是由于铸件不同的几何形状相交处断面厚薄不均,冷却不一致引起的。

在薄壁处形成压应力,导致在铸件中残留应力。

②相变应力
相变应力是由于某些铸铝合金在凝固后冷却过程中产生相变,随之带来体积尺寸变化。

主要是铝铸件壁厚不均,不同部位在不同时间内发生相变所致。

③收缩应力
铝铸件收缩时受到铸型、型芯的阻碍而产生拉应力所致。

这种应力是暂时的,铝铸件开箱是会自动消失。

但开箱时间不当,则常常会造成热裂纹,特别是金属型浇注的铝合金往往在这种应力作用下容易产生热裂纹。

铸铝合金件中的残留应力降低了合金的力学性能,影响铸件的加工精度。

铝铸件中的残留应力可通过退火处理消除。

合金因导热性好,冷却过程中无相变,只要铸件结构设计合理,铝铸件的残留应力一般较小。

(6) 吸气性
铝合金易吸收气体,是铸造铝合金的主要特性。

液态铝及铝合金的组分与炉料、有机物燃烧产物及铸型等所含水分发生反应而产生的氢气被铝液体吸收所致。

铝合金熔液温度越高,吸收的氢也越多;在700℃时,每100g铝中氢的溶解度为0.5~0.9,温度升高到850℃时,氢的溶解度增加2~3倍。

当含碱金属杂质时,氢在铝液中的溶解度显著增加。

铸铝合金除熔炼时吸气外,在浇入铸型时也会产生吸气,进入铸型内的液态金属随温度下降,气体的溶解度下降,析出多余的气体,有一部分逸不出的气体留在铸件内形成气孔,这就是通常称的“针孔”。

气体有时会与缩孔结合在一起,铝液中析出的气体留在缩孔内。

若气泡受热产生的压力很大,则气孔表面光滑,孔的周围有一圈光亮层;若气泡产生的压力小,则孔内表面多皱纹,看上去如“苍蝇脚”,仔细观察又具有缩孔的特征。

铸铝合金液中含氢量越高,铸件中产生的针孔也越多。

铝铸件中针孔不仅降低了铸件的气密性、耐蚀性,还降低了合金的力学性能。

要获得无气孔或少气孔的铝铸件,关键在于熔炼条件。

若熔炼时添加覆盖剂保护,合金的吸气量大为减少。

对铝熔液作精炼处理,可有效控制铝液中的含氢量。

二、砂型铸造
采用砂粒、粘土及其他辅助材料制成铸型的铸造方法称为砂型铸造。

砂型的材料统称为造型材料。

有色金属应用的砂型由砂子、粘土或其他粘结剂和水配制而成。

铝铸件成型过程是金属与铸型相互作用的过程。

铝合金液注入铸型后将热量传递给铸型,砂模铸型受到液体金属的热作用、机械作用、化学作用。

因此要获得优质的铸件除严格掌握熔炼工艺外,还必须正确设计型(芯)砂的配比、造型及浇注等工艺。

三、金属型铸造
1、简介及工艺流程
金属型铸造又称硬模铸造或永久型铸造,是将熔炼好的铝合金浇入金属型中获得铸件的方法,铝合金金属型铸造大多采用金属型芯,也可采用砂芯或壳芯等方法,与压力铸造相比,铝合金金属型使用寿命长。

2、铸造优点
(1) 优点
金属型冷却速度较快,铸件组织较致密,可进行热处理强化,力学性能比砂型铸造高15%左右。

金属型铸造,铸件质量稳定,表面粗糙度优于砂型铸造,废品率低。

劳动条件好,生产率高,工人易于掌握。

(2) 缺点
金属型导热系数大,充型能力差。

金属型本身无透气性。

必须采取相应措施才能有效排气。

金属型无退让性,易在凝固时产生裂纹和变形。

3、金属型铸件常见缺陷及预防
(1) 针孔
预防产生针孔的措施:
严禁使用被污染的铸造铝合金材料、沾有有机化合物及被严重氧化腐蚀的材料。

控制熔炼工艺,加强除气精炼。

控制金属型涂料厚度,过厚易产生针孔。

模具温度不宜太高,对铸件厚壁部位采用激冷措施,如镶铜块或浇水等。

采用砂型时严格控制水分,尽量用干芯。

(2) 气孔
预防气孔产生的措施:
修改不合理的浇冒口系统,使液流平稳,避免气体卷入。

模具与型芯应预先预热,后上涂料,结束后必须要烘透方可使用。

设计模具与型芯应考虑足够的排气措施。

(3)氧化夹渣
预防氧化夹渣的措施:
严格控制熔炼工艺,快速熔炼,减少氧化,除渣彻底。

Al-Mg合金必须在覆盖剂下熔炼。

熔炉、工具要清洁,不得有氧化物,并应预热,涂料涂后应烘干使用。

设计的浇注系统必须有稳流、缓冲、撇渣能力。

采用倾斜浇注系统,使液流稳定,不产生二次氧化。

选用的涂料粘附力要强,浇注过程中不产生剥落而进入铸件中形成夹渣。

(4) 热裂
预防产生热裂的措施:
实际浇注系统时应避免局部过热,减少内应力。

模具及型芯斜度必须保证在2°以上,浇冒口一经凝固即可抽芯开模,必要时可用砂芯代替金属型芯。

控制涂料厚度,使铸件各部分冷却速度一致。

根据铸件厚薄情况选择适当的模温。

细化合金组织,提高热裂能力。

改进铸件结构,消除尖角及壁厚突变,减少热裂倾向。

(5) 疏松
预防产生疏松的措施:
合理冒口设置,保证其凝固,且有补缩能力。

适当调低金属型模具工作温度。

控制涂层厚度,厚壁处减薄。

调整金属型各部位冷却速度,使铸件厚壁处有较大的激冷能力。

适当降低金属浇注温度。

相关文档
最新文档