2019届中考数学圆的切线证明综合试题新人教版.docx
中考数学专题复习《圆的切线证明》测试卷-附带答案

中考数学专题复习《圆的切线证明》测试卷-附带答案学校:___________班级:___________姓名:___________考号:___________1.如图 在ABC 中 6,8,10AB BC AC === 以AB 为直径作O 交AC 于点F 连接CO 并延长 分别交O 于D E 、两点 连接,BE BD .(1)求证:BC 是O 的切线(2)求证:2BC CD CE =⋅(3)求ABE ∠的正切值.2.如图 ABC 是圆内接三角形 过圆心O 作OE AC⊥ 连接OA过点C 作CD ∥AO 交BA 的延长线于点D 45AOE ∠=︒.(1)求证:DC 是O 的切线(2)如果8BC CF ⋅= 求O 半径的长度.3.如图 AB 为O 的直径 点C 在O 上 EAC CAB ∠=∠ 直线CD AE ⊥于点D交AB 的延长线于点F .(1)求证:直线CD 为O 的切线(2)当1tan 2F = 4CD =时 求BF 的长.4.已知BC 是O 的直径 点D 是BC 延长线上一点 AB AD = AE 是O 的弦 30AEC ∠=︒.(1)求证:直线AD是O的切线(2)若AE BC⊥垂足为M O的半径为10 求AE的长.5.如图ABC内接于O AB是O的直径D为AC的中点连接OD并延长交O于点E过点E作AC的平行线交BA的延长线于点F连接BE与AC交于点G.(1)求证:EF是O的切线(2)若12EF=5sin BAC∠=求CG的长.6.如图 Rt ABC 中 90ABC ∠=︒ 以点C 为圆心 CB 为半径作C D 为C 上一点 连接AD CD AB AD = AC 平分BAD ∠.(1)求证:AD 是C 的切线(2)延长AD BC 相交于点E 若:2:1ED DA = 求tan BAC ∠的值.7.如图 点E 是正方形ABCD 的边BC 延长线上一点 且AC CE= 连接AE 交CD 于点O以点O 为圆心 OD 为半径作,O O 交线段AO 于点F .(1)求证:AC 是O 的切线(2)若2AB = 求阴影部分的面积.8.如图 在菱形ABCD 中 DH AB ⊥于H 以DH 为直径的O 分别交AD BD 于点E F 连接EF .(1)求证:①CD 是O 的切线①DEF DBA ∽(2)若5AB = 6DB = 求sin DFE ∠.9.如图 已知 AB 是О☉的直径 PB AB ⊥ 连接OP 弦AD OP ∥ 直线PD 交直线AB 于点C 2CD PB =.(1)证明:直线PD 是O ☉的切线(2)求sin OPB ∠的值.10.如图 以Rt ABC △的直角边AB 为直径作O 交斜边AC 于点D过圆心O 作OE AC ∥交BC 于点E 连接DE .(1)求证:DE 是O 的切线(2)求证:22DE CD OE =⋅.11.如图 AB 为O 的直径 AC 是O 的一条弦 作BAC ∠的角平分线与O 相交于点D过点D 作DE AC ⊥交AC 的延长线上于点E 延长线段AB ED 、交于点F 连接DA DB 、.(1)求证:DE 是O 的切线(2)若10AB = 45AD = 求BF .12.如图 已知点C 是以AB 为直径的半圆上一点 D 是AB 延长线上一点过点D 作BD 的垂线交AC 的延长线于点E 连结CD 且CD ED =.(1)求证:CD 是O 的切线(2)若tan 2DCE ∠= 1BD = 求O 的半径.13.如图1 在ABC 中 90ACB ∠=︒ ABC ∠的平分线交AC 于点E 过点E 作BE 的垂线交AB 于点F BEF △的外接圆O 与CB 交于点D .(1)求证:AC 是O 的切线(2)若9BC = 3EH = 求O 的半径长(3)如图2 在(2)的条件下 过C 作CP AB ⊥于P 求CP 的长.14.如图 点P 是O 外一点 PA 切O 于点A AB 是O 的直径连接OP过点B 作BC OP ∥交O 于点C 连接AC 交OP 于点D .(1)求证:PC是O的切线(2)若16cm3PD=8cmAC点E是AB的中点连接CE求CE的长.15.如图AB是O的直径点C在O上.(1)尺规作图:在弦BC的右侧作BCD CAB∠=∠交AB的延长线于点D(保留作图痕迹不写作法)(2)在(1)所作的图中①求证:CD是O的切线①若2BD OB=求tan CAB∠的值.参考答案:1.(1)证明:在ABC中222268100AB BC+=+=2210100AC222AB BC AC ∴+=ABC ∴是直角三角形 90ABC ∴∠=︒ AB 是O 的的直径BC ∴是O 的切线 (2)证明:DE 是直径 90EBC ∴∠=︒90EBO OBD ∴∠+∠=︒ 90CBD OBD ∠+∠=︒ EBO CBD ∴∠=∠OE OB =E EBO ∴∠=∠E CBD ∴∠=∠BCD BCE ∠=∠(公共角) BCD ECB ∴∽BC CD CE BC∴= 即2BC CD CE =⋅ (3)由(2)得2()BC CD CD DE =+ 即(6)64CD CD +=解这个方程 得3CD =-+3CD =-3CD ∴=-BCD ECB ∽BD CD BE BC ∴==连结,AE ADAB 与DE 都是O 的直径AB ∴与DE 互相平分∴四边形AEBD 为平行四边形AE BD ∴=在Rt ABD 中733tan AE BD ABE BE BE -∠=== 2.(1)证明:连接OC①45AOE ∠=︒ OA OC = OE AC ⊥①290AOC AOE ∠=∠=︒ ()118090452OAC ∠=︒-︒=︒ ①CD AO ∥①18090OCD AOC ∠=︒-∠=︒即CD OC ⊥①OC 是O 的半径①DC 是O 的切线.(2)解:由(1)可知=90AOC ︒∠ 45OAC ∠=︒ ①1452ABC AOC ∠=∠=︒ ①45ABC OAC ∠=∠=︒①BCA ACF =∠∠①ABC FAC ∽ ①BC AC AC CF= 即2AC BC CF =⋅ ①8BC CF ⋅=①28AC =①由勾股定理得2228OC AC ==解得:2OC =(负值舍去)①O 半径的长度为2.3.(1)证明:连接OC BCOA OC =CAO ACO ∴∠=∠EAC CAB ∠=∠DAC ACO ∴∠=∠OC AD CDADOC DF ∴⊥ OC 是O 的半径∴直线CD 为O 的切线(2)解:1tan 2F = ∴12OC CF = 设OC x = 则2CF x = AO OB x ==OF ∴=OC ADAFD OFC ∴∽ ∴CF OF DF AF=∴25245x x x x x++ 25x ∴=1025BF OF OB ∴=-=-4.(1)证明:如图 连接OA30AEC ∠=︒∴30B AEC ∠=∠=︒ 260AOC AEC ∠=∠=︒AB AD =∴30D B ∠=∠=︒∴18090OAD AOC D ∠=︒-∠-∠=︒OA 是O 的半径 且AD OA ⊥∴直线AD 是O 的切线.(2)解:BC 是O 的直径 且AE BC ⊥于点M∴AM EM =90AMO ∠=︒ 60AOM ∠=︒∴30OAM ∠=︒ ∴12OM OA = 11052=⨯= ∴2222105AM OA OM -=-53∴2253AE AM ==⨯=35.(1)证明:①AC 是O 的弦 OE 是O 的半径 D 为AC 的中点①OE AC ⊥.①EF AC ,①OE EF ⊥ 即90OEF ∠=︒.①OE 是O 的半径①EF 是O 的切线(2)解:如解图 连接AE .①EF AC ∥①F BAC ∠=∠即sin sin F BAC =∠=OE OF ∴=设OE = 则5OF x =.在Rt OEF △中 222OE EF OF +=①222)12(5)x +=解得x =(负值已舍去) ①6OE =①6OA =在Rt AOD 中 sin OD OA BAC =∠=①AD = 6DE OE OD =-=.在Rt ABC △中 sin BAC ∠=212AB OA ==①sin BC AB BAC AD =∠==. 在BCG 和ADE 中90CBG DAE BC ADBCG ADE ∠=∠⎧⎪=⎨⎪∠=∠=⎩①BCG ADE ≌ ①656CG DE == 6.(1)证明:AC 平分BAD ∠BAC DAC ∴∠=∠.又AB AD = AC AC =()SAS BAC DAC ∴≌90ADC ABC ∴∠=∠=︒CD AD ∴⊥即AD 是C 的切线(2)由()1可知 90EDC ABC ∠=∠=︒又E E ∠=∠EDC EBA ∴∽.①:2:1ED DA =2EDC ADC SS ∴= 且BAC DAC ≌△△ :1:2EDC EBA S S ∴=:2DC BA ∴=DC CB =:2CB BA ∴=2tan CB BAC BA ∴∠==. 7.(1)解:过点O 作OG AC ⊥ 交AC 于点G①正方形ABCD①DA CB ∥ OD AD ⊥①∠=∠DAE AEC①AC CE =①EAC AEC ∠=∠①EAC DAE ∠=∠①OD OG =①点G 在O 上①AC 是O 的切线(2)解:①正方形ABCD①45OCG DAC ∠=∠=︒2DC AB ==①OD OG =设OD a = 则OC =①(12DC a == 解得:2a =①2OD a == ①114522.522EAC DAE DAC ∠=∠=∠=⨯︒=︒ ①9022.567.5DOA ∠=︒-︒=︒()22167.5π167.5π23222π236023604ABC DOF OD S S S DA OD ⨯=-=⨯⋅-=⨯⨯-=-阴影扇形故答案为:324-π. 8.(1)证明:①①①四边形ABCD 是菱形①AB CD ∥①DH AB ⊥①90CDH DHA ∠=∠=︒①CD OD ⊥①D 为O 的半径的外端点①CD 是O 的切线①连接HF①DF DF =①DEF DHF ∠=∠①DH 为O 直径①90DFH ∠=︒①90DHF BDH ∠=︒-∠ ①90DHB ∠=︒①90DBA BDH ∠=︒-∠①DHF DBA DEF ∠=∠=∠ ①EDF BDA ∠=∠①DEF DBA ∽(2)解:连接AC 交BD 于G .①在菱形ABCD 中 6BD = ①AC BD ⊥ AG GC = 132DG GB BD === ①在Rt AGB △中 2222534AG AB GB -- ①28AC AG == ①12ABCD S AC BD AB DH =⋅=⋅菱形 即18652DH ⨯⨯=⋅ ①245DH = ①DEF DBA ∽①DFE DAH ∠=∠ ①24245sin sin 525DH DFE DAH AD ∠=∠===. 9.(1)证明:如图所示 连接OD ①PB AB ⊥①90OBP ∠=︒①OA OD =①OAD ODA ∠=∠①AD OP ∥①OAD BOP ODA DOP ==∠∠,∠∠ ①DOP BOP ∠=∠又①OD OB OP OP ==, ①()SAS DOP BOP ≌①90ODP OBP ∠=∠=︒ ①OD CD ⊥又①OD 是O 的半径①直线PD 是O ☉的切线(2)解:①DOP BOP ≌△△ ①PD PB =①2CD PB =①3PC PD =①3PC PB =①AD OP ∥①CAD COP △∽△ ①23AC CD OC CP ==①2AC OA =①44BC OA OB ==在Rt PBC 中 由勾股定理得222PC PB BC =+ ①()()22234PB PB OB =+ ①2PB OB = ①225OP OB PB OB + ①5sin OB OPB OP ==∠10.(1)证明:连接OD BD①AB 是O 的直径①90ADB BDC ∠=∠=︒. ①OE AC ∥ OA OB = ①BE CE =①DE BE CE ==①DBE BDE ∠=∠.①OB OD =①OBD ODB ∠=∠①90ODE OBE ∠=∠=︒ ①点D 在O 上①DE 是O 的切线.(2)证明:①90BCD ABC ∠=∠=︒ C C ∠=∠ ①BCD ACB ∽△△ ①BCCDAC BC =①2BC CD AC =⋅.由(1)知12 DE BE CE BC ===①24DE CD AC=⋅.由(1)知OE是ABC是中位线①2AC OE=①242DE CD OE=⋅①22DE CD OE=⋅.11.(1)证明:连接ODBAC∠的角平分线与O交于点DCAD BAD∴∠=∠OA OD=BAD ADO∴∠=∠CAD ADO∴∠=∠AC DO∴∥DE AC⊥90E∴∠=︒90ODF E∴∠=∠=︒OD DE∴⊥OD是O的半径DE∴是O的切线(2)如图过点D作DM AB⊥于点MAB为O的直径90ADB ∴∠=︒1045AB AD ==,2225BD AB AD ∴=-=1122ABD S AD BD AB DM =⋅=⋅ 45254AD BD DM AB ⋅⨯∴=== 228AM AD DM ∴=-设BF x =BAC ∠的角平分线与O 交于点D DE AC DM AB ⊥⊥, DE DM ∴=CD BD ∴=在Rt AED △和Rt AMD △中 AD AD DE DM =⎧⎨=⎩()Rt Rt HL AED AMD ∴≌ AE AM ∴=4DM =4DE DM ∴==8AM =8AE AM ∴==90F F ODF E ∠=∠∠=∠=︒, FDO FEA ∴△∽△OD OF AE AF∴= 55810x x +∴=+ 解得:103x = 103BF ∴=. 12.(1)解:连接OC①CD DE = OC OA =①DCE E ∠=∠ OCA OAC ∠=∠ ①ED AD ⊥①90ADE ∠=︒ 90OAC E ∠+∠=︒ ①90DCO ∠=︒①CD 是O 的切线(2)解:连接BC①CD DE =①DCE E ∠=∠①tan 2DCE ∠=①tan 2E =①ED AD ⊥在Rt EDA △中 2AD ED= 设O 的半径为x 则OA OB x ==, ①1BD =①21AD x =+ ①212x ED+= ①12ED x CD =+= ①CD 是O 的切线①2·CD BD AD = 即:()211212x x ⎛⎫+=⨯+ ⎪⎝⎭ 解得:32x =或12x =-(舍) 故答案为:O 的半径为32. 13.(1)证明:连接OE 如图所示:OB OE =ABE OEB ∴∠=∠ BE 平分ABC ∠ABE CBE ∴∠=∠OEB CBE ∴∠=∠①OE BC ∥90OEA ACB ∴∠=∠=︒ AC 经过O 的半径OE 的外端 且AC OE ⊥ AC ∴是O 的切线(2)解:如图 作OG BD ⊥于点G 则90OGB OGC ∠=∠=︒90C OEC ∴∠=∠=︒∴四边形OECG 是矩形 CG OE OB == BE 平分ABC ∠ EC BC ⊥ EH BA ⊥ 3OG EC EH ∴===9BC =99BG CG OB ∴=-=-222OG BG OB +=()22239OB OB ∴+-= 5OB ∴=∴O 的半径长为5.(3)解:连接OE 如图所示:由(2)得:5OE OF == 3EC EH == ①EH AB ⊥①4OH ==在Rt OHE △中 45cos OH EOA OE ∠== 在Rt EOA 中 4cos 5OE EOA OA ∠== ①52544OA OE ==①154AE == ①1527344AC AE EC =+=+=①2545544AB OB OA=+=+=90ACB∠=︒①ABC的面积1122AB CP BC AC =⨯=⨯①2792744554BC ACCPAB⨯⨯===.14.1)证明:如图连接OCPA切O于点A∴OA PA⊥∴90PAO∠=︒OP BC∥∴AOP OBC∠=∠COP OCB∠=∠OC OB=∴OBC OCB∠=∠∴AOP COP∠=∠在PAO和PCO△中OA CAOP COPOP OP=⎧⎪∠=∠⎨⎪=⎩∴()SASPAO PCO≌∴90PAO PCO∠=∠=︒∴OC PC⊥∴PC是O的切线(2)连结AE BE作BH CE⊥于H如图AB 是O 的直径∴90ACB AEB ∠=∠=︒OP BC ∥∴PO AC ⊥142AD CD AC ∴=== 在Rt PAD △中PA APO DPA ∠=∠∴Rt Rt PAD POA ∽△△∴ PA PO PD PA =∶∶ 即201620333PO =∶∶ 解得253PO = ∴3OD PO PD =-=AO BO = ∥OD BC∴26BC OD ==在Rt ACB △中10AB =点E 是AB 的中点1452BCE ACE ACB ∴∠=∠=∠= ∴AE BE =∴BCH 和ABE 都是等腰直角三角形252BE AB ∴==在Rt BEH △中 ()()22523242EH =-=324272CE CH EH ∴=+= 15.(1)如图所示 BCD ∠为所求.(2)①连接OCOA OC =∴CAO ACO ∠=∠ CAO BCD ∠=∠∴ACO BCD ∠=∠AB 是O 的直径∴90ACB ∠=︒∴90ACO OCB BCD OCB ∠+∠=∠+∠=︒ 即OC CD ⊥∴CD 是O 的切线①设OB a = 则2BD a = OA OC a == 4AD a = 在Rt OCD △中 ()2222322CD OD OC a a a =--= BDC ADC ∠=∠ BCD CAD ∠=∠∴BDC CDA ∽ ∴222BC CD a AC AD ==∴在Rt ABC △中 2tan BC CAB AC ∠==.。
人教中考数学圆的综合综合题含详细答案

一、圆的综合真题与模拟题分类汇编(难题易错题)1.如图,⊙O的半径为6cm,经过⊙O上一点C作⊙O的切线交半径OA的延长于点B,作∠ACO的平分线交⊙O于点D,交OA于点F,延长DA交BC于点E.(1)求证:AC∥OD;(2)如果DE⊥BC,求AC的长度.【答案】(1)证明见解析;(2)2π.【解析】试题分析:(1)由OC=OD,CD平分∠ACO,易证得∠ACD=∠ODC,即可证得AC∥OD;(2)BC切⊙O于点C,DE⊥BC,易证得平行四边形ADOC是菱形,继而可证得△AOC是等边三角形,则可得:∠AOC=60°,继而求得弧AC的长度.试题解析:(1)证明:∵OC=OD,∴∠OCD=∠ODC.∵CD平分∠ACO,∴∠OCD=∠ACD,∴∠ACD=∠ODC,∴AC∥OD;(2)∵BC切⊙O于点C,∴BC⊥OC.∵DE⊥BC,∴OC∥DE.∵AC∥OD,∴四边形ADOC 是平行四边形.∵OC=OD,∴平行四边形ADOC是菱形,∴OC=AC=OA,∴△AOC是等边三角形,∴∠AOC=60°,∴弧AC的长度=606180π⨯=2π.点睛:本题考查了切线的性质、等腰三角形的判定与性质、菱形的判定与性质以及弧长公式.此题难度适中,注意掌握数形结合思想的应用.2.如图,AB是半圆的直径,过圆心O作AB的垂线,与弦AC的延长线交于点D,点E在OD上DCE B∠=∠.(1)求证:CE是半圆的切线;(2)若CD=10,2tan3B=,求半圆的半径.【答案】(1)见解析;(2)13【解析】分析: (1)连接CO ,由DCE B ∠=∠且OC=OB,得DCE OCB ∠=∠,利用同角的余角相等判断出∠BCO+∠BCE=90°,即可得出结论;(2)设AC=2x ,由根据题目条件用x 分别表示出OA 、AD 、AB ,通过证明△AOD ∽△ACB ,列出等式即可.详解:(1)证明:如图,连接CO .∵AB 是半圆的直径,∴∠ACB =90°.∴∠DCB =180°-∠ACB =90°.∴∠DCE+∠BCE=90°.∵OC =OB ,∴∠OCB =∠B.∵=DCE B ∠∠,∴∠OCB =∠DCE .∴∠OCE =∠DCB =90°.∴OC ⊥CE .∵OC 是半径,∴CE 是半圆的切线.(2)解:设AC =2x ,∵在Rt △ACB 中,2tan 3AC B BC ==, ∴BC =3x .∴()()222313AB x x x =+=.∵OD ⊥AB ,∴∠AOD =∠A CB=90°.∵∠A =∠A ,∴△AOD ∽△ACB .∴AC AO AB AD=. ∵11322OA AB x ==,AD =2x +10, ∴113221013x x x =+. 解得 x =8.∴1384132OA=⨯=.则半圆的半径为413.点睛:本题考查了切线的判定与性质,圆周角定理,相似三角形.3.如图,已知四边形ABCD是矩形,点P在BC边的延长线上,且PD=BC,⊙A经过点B,与AD边交于点E,连接CE .(1)求证:直线PD是⊙A的切线;(2)若PC=25,sin∠P=23,求图中阴影部份的面积(结果保留无理数).【答案】(1)见解析;(2)20-4π.【解析】分析:(1)过点A作AH⊥PD,垂足为H,只要证明AH为半径即可.(2)分别算出Rt△CED的面积,扇形ABE的面积,矩形ABCD的面积即可.详解:(1)证明:如图,过A作AH⊥PD,垂足为H,∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∠PCD=∠BCD=90°,∴∠ADH=∠P,∠AHD=∠PCD=90°,又PD=BC,∴AD=PD,∴△ADH≌△DPC,∴AH=CD,∵CD=AB,且AB是⊙A的半径,∴AH=AB,即AH是⊙A的半径,∴PD是⊙A的切线.(2)如图,在Rt△PDC中,∵sin∠P=23CDPD=,5,令CD=2x,PD=3x,由由勾股定理得:(3x)2-(2x)252,解得:x=2,∴CD=4,PD=6,∴AB=AE=CD=4,AD=BC=PD=6,DE=2,∵矩形ABCD 的面积为6×4=24,Rt △CED 的面积为12×4×2=4, 扇形ABE 的面积为12π×42=4π, ∴图中阴影部份的面积为24-4-4π=20-4π.点睛:本题考查了全等三角形的判定,圆的切线证明,三角形的面积,扇形的面积,矩形的面积.4.对于平面直角坐标系xOy 中的线段MN 和点P ,给出如下定义:点A 是线段MN 上一个动点,过点A 作线段MN 的垂线l ,点P 是垂线l 上的另外一个动点.如果以点P 为旋转中心,将垂线l 沿逆时针方向旋转60°后与线段MN 有公共点,我们就称点P 是线段MN 的“关联点”.如图,M (1,2),N (4,2).(1) 在点P 1(1,3),P 2(4,0),P 3(3,2)中,线段MN 的“关联点”有 ;(2) 如果点P 在直线1y x =+上,且点P 是线段MN 的“关联点”,求点P 的横坐标x 的取值范围;(3) 如果点P 在以O (1,1-)为圆心,r 为半径的⊙O 上,且点P 是线段MN 的“关联点”,直接写出⊙O 半径r 的取值范围.【答案】(1)P 1和P 3;(2)3311x -≤≤;(3333 3.r +≤ 【解析】【分析】 (1)先根据题意求出点P 的横坐标的范围,再求出P 点的纵坐标范围即可得出结果; (2)由直线y=x+1经过点M (1,2),得出x≥1,设直线y=x+1与P 4N 交于点A ,过点A 作AB ⊥MN 于B ,延长AB 交x 轴于C ,则在△AMN 中,MN=3,∠AMN=45°,∠ANM=30°,设AB=MB=a ,tan ∠ANM=AB BN ,即tan30°=3a a-,求出a 即可得出结果; (3)圆心O 到P 4的距离为r 的最大值,圆心O 到MP 5的距离为r 的最小值,分别求出两个距离即可得出结果.【详解】(1))如图1所示:∵点A 是线段MN 上一个动点,过点A 作线段MN 的垂线l ,点P 是垂线l 上的另外一个动点,M (1,2),N (4,2),∴点P 的横坐标1≤x≤4,∵以点P 为旋转中心,将垂线l 沿逆时针方向旋转60°后与线段MN 有公共点,当∠MPN=60°时,PM=60MN tan ︒=3=3, 同理P′N=3,∴点P 的纵坐标为2-3或2+3,即纵坐标2-3≤y≤2+3,∴线段MN 的“关联点”有P 1和P 3;故答案为:P 1和P 3;(2)线段MN 的“关联点”P 的位置如图所示,∵ 直线1y x =+经过点M (1,2),∴ x ≥1.设直线1y x =+与P 4N 交于点A .过点A 作AB ⊥MN 于B ,延长AB 交x 轴于C .由题意易知,在△AMN 中,MN = 3,∠AMN = 45°,∠ANM = 30°.设AB = MB = a ,∴ tan AB ANM BN ∠=,即tan303a a ︒=-, 解得333a -=∴ 点A 的横坐标为33333111.22x a --=+=+= ∴331.x -≤ 综上 3311.2x -≤≤(3)点P 在以O (1,-1)为圆心,r 为半径的⊙O 上,且点P 是线段MN 的“关联点”,如图3所示:连接P 4O 交x 轴于点D ,P 4、M 、D 、O 共线,则圆心O 到P 4的距离为r 的最大值,由(1)知:MP 4=NP 53即OD+DM+MP 433圆心O 到MP 5的距离为r 的最小值,作OE ⊥MP 5于E ,连接OP 5, 则OE 为r 的最小值,MP 5225MN NP +223(3)+3OM=OD+DM=1+2=3, △OMP 5的面积=12OE•MP 5=12OM•MN ,即12312×3×3, 解得:33 ∴3323 【点睛】本题是圆的综合题,考查了旋转、直角三角形的性质、勾股定理、最值等知识,熟练掌握“关联点”的含义,作出关于MN 的“关联点”图是关键.5.如图,在直角坐标系中,⊙M 经过原点O(0,0),点6,0)与点B(02),点D 在劣弧OA 上,连结BD 交x 轴于点C ,且∠COD =∠CBO.(1)求⊙M 的半径;(2)求证:BD 平分∠ABO ;(3)在线段BD 的延长线上找一点E ,使得直线AE 恰为⊙M 的切线,求此时点E 的坐标.【答案】(1)M 的半径r =2;(2)证明见解析;(3)点E 的坐标为(263,2). 【解析】 试题分析:根据点A 和点B 的坐标得出OA 和OB 的长度,根据Rt △AOB 的勾股定理得出AB 的长度,然后得出半径;根据同弧所对的圆周角得出∠ABD=∠COD ,然后结合已知条件得出角平分线;根据角平分线得出△ABE ≌△HBE ,从而得出BH=BA=22,从而求出OH 的长度,即点E 的纵坐标,根据Rt △AOB 的三角函数得出∠ABO 的度数,从而得出∠CBO 的度数,然后根据Rt △HBE 得出HE 的长度,即点E 的横坐标.试题解析:(1)∵点A 为(6,0),点B 为(0,-2) ∴OA=6OB=2 ∴根据Rt △AOB 的勾股定理可得:AB=22∴M 的半径r=12AB=2. (2)根据同弧所对的圆周角相等可得:∠ABD=∠COD ∵∠COD=∠CBO ∴∠ABD=∠CBO ∴BD 平分∠ABO(3)如图,由(2)中的角平分线可得△ABE ≌△HBE ∴BH=BA=22∴OH=22-2=2在Rt △AOB 中,3OA OB=∴∠ABO=60° ∴∠CBO=30° 在Rt △HBE 中,HE=2633=∴点E 的坐标为(263,2)考点:勾股定理、角平分线的性质、圆的基本性质、三角函数.6.在O 中,AB 为直径,C 为O 上一点.(Ⅰ)如图①,过点C 作O 的切线,与AB 的延长线相交于点P ,若28CAB ∠=︒,求P ∠的大小;(Ⅱ)如图②,D 为弧AC 的中点,连接OD 交AC 于点E ,连接DC 并延长,与AB 的延长线相交于点P ,若12CAB ∠=︒,求P ∠的大小.【答案】(1)∠P =34°;(2)∠P =27°【解析】【分析】(1)首先连接OC ,由OA=OC ,即可求得∠A 的度数,然后由圆周角定理,求得∠POC 的度数,继而求得答案;(2)因为D 为弧AC 的中点,OD 为半径,所以OD ⊥AC ,继而求得答案.【详解】(1)连接OC ,∵OA =OC ,∴∠A =∠OCA =28°,∴∠POC =56°,∵CP 是⊙O 的切线,∴∠OCP =90°,∴∠P =34°;(2)∵D 为弧AC 的中点,OD 为半径,∴OD ⊥AC ,∵∠CAB =12°,∴∠AOE =78°,∴∠DCA =39°,∵∠P =∠DCA ﹣∠CAB ,∴∠P =27°.【点睛】本题考查切线的性质以及等腰三角形的性质.注意准确作出辅助线是解此题的关键.7.如图,等边△ABC 内接于⊙O ,P 是弧AB 上任一点(点P 不与A 、B 重合),连AP ,BP ,过C 作CM ∥BP 交PA 的延长线于点M ,(1)求证:△PCM 为等边三角形;(2)若PA =1,PB =2,求梯形PBCM 的面积.【答案】(1)见解析;(21534【解析】【分析】(1)利用同弧所对的圆周角相等即可求得题目中的未知角,进而判定△PCM 为等边三角形;(2)利用上题中得到的相等的角和等边三角形中相等的线段证得两三角形全等,进而利用△PCM 为等边三角形,进而求得PH 的长,利用梯形的面积公式计算梯形的面积即可.【详解】(1)证明:作PH ⊥CM 于H ,∵△ABC 是等边三角形,∴∠APC=∠ABC=60°,∠BAC=∠BPC=60°,∵CM ∥BP ,∴∠BPC=∠PCM=60°,∴△PCM 为等边三角形;(2)解:∵△ABC 是等边三角形,△PCM 为等边三角形,∴∠PCA+∠ACM=∠BCP+∠PCA ,∴∠BCP=∠ACM ,在△BCP 和△ACM 中, BC AC BCP ACM CP CM =⎧⎪∠=∠⎨⎪=⎩,∴△BCP ≌△ACM (SAS ),∴PB=AM ,∴CM=CP=PM=PA+AM=PA+PB=1+2=3,在Rt△PMH中,∠MPH=30°,∴PH=332,∴S梯形PBCM=12(PB+CM)×PH=12×(2+3)×33=1534.【点睛】本题考查圆周角定理、等边三角形的判定、全等三角形的性质及梯形的面积计算方法,是一道比较复杂的几何综合题.8.如图,AB是半圆⊙O的直径,点C是半圆⊙O上的点,连接AC,BC,点E是AC的中点,点F是射线OE上一点.(1)如图1,连接FA,FC,若∠AFC=2∠BAC,求证:FA⊥AB;(2)如图2,过点C作CD⊥AB于点D,点G是线段CD上一点(不与点C重合),连接FA,FG,FG与AC相交于点P,且AF=FG.①试猜想∠AFG和∠B的数量关系,并证明;②连接OG,若OE=BD,∠GOE=90°,⊙O的半径为2,求EP的长.【答案】(1)见解析;(2)①结论:∠GFA=2∠ABC.理由见解析;②PE 3.【解析】【分析】(1)证明∠OFA=∠BAC,由∠EAO+∠EOA=90°,推出∠OFA+∠AOE=90°,推出∠FAO=90°即可解决问题.(2)①结论:∠GFA=2∠ABC.连接FC.由FC=FG=FA,以F为圆心FC为半径作⊙F.因为AG AG,推出∠GFA=2∠ACG,再证明∠ACG=∠ABC.②图2﹣1中,连接AG,作FH⊥AG于H.想办法证明∠GFA=120°,求出EF,OF,OG即可解决问题.【详解】(1)证明:连接OC.∵OA=OC,EC=EA,∴OF⊥AC,∴FC=FA,∴∠OFA=∠OFC,∵∠CFA=2∠BAC,∴∠OFA=∠BAC,∵∠OEA=90°,∴∠EAO+∠EOA=90°,∴∠OFA+∠AOE=90°,∴∠FAO=90°,∴AF⊥AB.(2)①解:结论:∠GFA=2∠ABC.理由:连接FC.∵OF垂直平分线段AC,∴FG=FA,∵FG=FA,∴FC=FG=FA,以F为圆心FC为半径作⊙F.∵AG AG,∴∠GFA=2∠ACG,∵AB是⊙O的直径,∴∠ACB=90°,∵CD⊥AB,∴∠ABC+∠BCA=90°,∵∠BCD+∠ACD=90°,∴∠ABC=∠ACG,∴∠GFA =2∠ABC .②如图2﹣1中,连接AG ,作FH ⊥AG 于H .∵BD =OE ,∠CDB =∠AEO =90°,∠B =∠AOE ,∴△CDB ≌△AEO (AAS ),∴CD =AE ,∵EC =EA ,∴AC =2CD .∴∠BAC =30°,∠ABC =60°,∴∠GFA =120°,∵OA =OB =2,∴OE =1,AE =,BA =4,BD =OD =1, ∵∠GOE =∠AEO =90°,∴OG ∥AC , 323DG OG ∴==, 222213AG DG AD ∴=+=, ∵FG =FA ,FH ⊥AG ,∴AH =HG 21∠AFH =60°, ∴AF =27sin 60AH ︒=, 在Rt △AEF 中,EF 2213AF AE -=, ∴OF =OE +EF =43 , ∵PE ∥OG , ∴PE EF OG 0F=, ∴134233=,∴PE =36 . 【点睛】圆综合题,考查了垂径定理,勾股定理,圆周角定理,全等三角形的判定和性质,锐角三角函数,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.9.如图,已知AB 是⊙O 的直径,直线CD 与⊙O 相切于C 点,AC 平分∠DAB . (1)求证:AD ⊥CD ;(2)若AD =2,AC=6,求⊙O 的半径R 的长.【答案】(1)证明见解析(2)32【解析】试题分析:(1)连接OC ,由题意得OC ⊥CD .又因为AC 平分∠DAB ,则∠1=∠2=12∠DAB .即可得出AD ∥OC ,则AD ⊥CD ; (2)连接BC ,则∠ACB =90°,可证明△ADC ∽△ACB .则2AD AC AC R ,从而求得R . 试题解析:(1)证明:连接OC ,∵直线CD 与⊙O 相切于C 点,AB 是⊙O 的直径,∴OC ⊥CD .又∵AC 平分∠DAB ,∴∠1=∠2=12∠DAB . 又∠COB =2∠1=∠DAB ,∴AD ∥OC ,∴AD ⊥CD .(2)连接BC ,则∠ACB =90°,在△ADC 和△ACB 中∵∠1=∠2,∠3=∠ACB =90°,∴△ADC ∽△ACB . ∴2AD AC AC R= ∴R =2322AC AD =10.如图,AN 是⊙M 的直径,NB ∥x 轴,AB 交⊙M 于点C . (1)若点A (0,6),N (0,2),∠ABN=30°,求点B 的坐标; (2)若D 为线段NB 的中点,求证:直线CD 是⊙M 的切线.【答案】(1) B (,2).(2)证明见解析.【解析】 试题分析:(1)在Rt △ABN 中,求出AN 、AB 即可解决问题; (2)连接MC ,NC .只要证明∠MCD=90°即可试题解析:(1)∵A 的坐标为(0,6),N (0,2), ∴AN=4,∵∠ABN=30°,∠ANB=90°,∴AB=2AN=8,∴由勾股定理可知:NB=,∴B (,2). (2)连接MC ,NC∵AN 是⊙M 的直径,∴∠ACN=90°,∴∠NCB=90°,在Rt △NCB 中,D 为NB 的中点,∴CD=NB=ND ,∴∠CND=∠NCD ,∵MC=MN ,∴∠MCN=∠MNC,∵∠MNC+∠CND=90°,∴∠MCN+∠NCD=90°,即MC⊥CD.∴直线CD是⊙M的切线.考点:切线的判定;坐标与图形性质.。
中考数学复习两圆的公切线2[人教版](新201907)
](https://img.taocdn.com/s3/m/13eb1de6ad51f01dc281f1c9.png)
为 ,连心线与外公切线的夹角
为 ,连心线与内公切线夹角的
正弦值是
.
;战歌网,冰雪战歌网,战歌: ;
在乌蛮滩疏河通航而建的一座祭祀性建筑 欲以息民 ”帝复笑曰:“卿非刺客 草草埋葬在那里 有弟子数百人 此吾所大恶也 弱水以南 .陶瞻 做长久屯驻之准备 ”发使上表言状 命令儿子孟之经担任策应司都统制 爵 起临洮属之辽东 号 命幕吏以少牢告庙 并截发起誓 副来歙监诸将平 凉州 镇于沌口 若非嗣子之英才 世祖迎笑谓援曰:“卿遨游二帝闲 为唐军所败 看望伤病员 可喻权所 广明元年(880年) 作为预备队 群臣莫知 因此前来投奔 ?常遇春跟随刘聚拦路抢掠 李纲言绥复旧都 两河虽未敉宁 妄自尊大 威振北方 请召守将曹仁回驻宛城(今河南南阳宛城区) 贼见兵出其后 谷数万斛 如春秋时之孙武 李牧 匪伊舟航 字崇远 [71] 何事遣兵 自古奸臣皆外为恭顺而中藏祸心 毛泽东:古之人有行之者 就病死于柳河川 政治 公孙渊军乘雨出城 孟珙身为武将 司马懿乘机将他收捕 中和元年(881年) 大将兀沙惹被杀 王敦说:“要不是有陶侯 萧何曹参不涉经诰 可谓心贯白日 [82] [56] 司马衍 在北宋年间成书的《十七史百将传》 15.及蜀将羽围曹仁于樊 死在旦夕 《资治通鉴》此处记载取自裴注引用的《汉晋春秋》 (筝)五弦筑身也 ”援陈军向山而绕袭其后 “拥至城下 司马懿自荆州溯汉水出西城 主要成就 四库全 书本 暴师於外十馀年 可是陛下为人言所惑 夫人张氏薨 欲少味矣 军次丹口 帝曰:“百姓积聚皆在渭南 卿本佳人 赃无轻重 南阳公主 懿戮力尽节 每遇大事 马援又善相马 将在军 司马懿先生当初最大的目的 但金被灭后 然自知必死而守义者 功不足论 帝益怒 将金兵打败 闻吾举事 这时就密约宋军都统江海夹击襄阳蒙军 无为梁患者 宗泽下令说:“现在进退都是一死 故知贪于近者则遗远 其去亮果
人教版九年级上册数学《圆》单元综合检测(含答案)

人教版数学九年级上学期《圆》单元测试考试时间:100分钟;总分:120分一、单选题(每小题3分,共30分)1.(2019·全国初三课时练习)下列直线是圆的切线的是( )A.与圆有公共点的直线B.到圆心的距离等于半径的直线C.垂直于圆的半径的直线D.过圆直径外端点的直线2.(2019·全国初三课时练习)如图,PA、PB切⊙O于点A、B,PA=8,CD切⊙O于点E,交PA、PB于C、D两点,则△PCD的周长是( )A.8 B.18 C.16 D.143.(2019·台湾中考真题)如图,直角三角形ABC的内切圆分别与AB、BC相切于D点、E点,根据图中标示的长度与角度,求AD的长度为何?()A.32B.52C.43D.534.(2019·辽宁中考真题)如图,CB为⊙O的切线,点B为切点,CO的延长线交⊙O于点A,若∠A=25°,则∠C的度数是( )A.25°B.30°C.35°D.40°5.(2019·辽宁中考真题)如图,BC是O的直径,A,D是O上的两点,连接AB,AD,BD,若70ADB︒∠=,∠的度数是( )则ABCA.20︒B.70︒C.30︒D.90︒∆的内切圆的半径为( )6.(2019·湖南中考真题)如图,边长为23的等边ABCA.1 B.3C.2 D.237.(2019·山东初三期中)已知在△ABC中,∠ACB=90°,AC=6cm,BC=8cm,CM是它的中线,以C为圆心,5cm为半径作⊙C,则点M与⊙C的位置关系为( )A.点M在⊙C上B.点M在⊙C内C.点M在⊙C外D.点M不在⊙C内8.(2018·浙江初三期中)如图:在⊙O中,AD平分圆周角∠BAC,AE⊥BC,∠BAC=60°,∠OAD=16°,求∠C的度数为()A.50°B.30°C.44°D.45°∠为() 9.如图,CA为O的切线,A为切点,点B在O上,如果55∠=,那么AOBCABA.55B.90C.110D.12010.(2018·杭州市下沙中学初三月考)如图,AC是⊙O的直径,弦BD⊥AO于E,连接BC,过点O作OF⊥BC 于F,若BD=8cm,AE=2cm.则OF的长度是( )A. 5B. 6C. 2.5D.3二、填空题(每小题4分,共24分)11.(2019·山东初三期中)如图CD是⊙O的直径,弦AB⊥CD于E,如果CD=10,AB=8,那么CE的长为_____.12.(2019·江阴市敔山湾实验学校初三期中)如图,△ABC内接于⊙O,OD⊥BC于D,∠A=50°,则∠OCD 的度数是_____°.13.(2019·无锡市硕放中学初三期中)如图,AB是⊙O的切线,点B为切点,若∠A=30°,则∠AOB=_________.14.(2019·浙江初三期中)已知在圆O中,AB是直径,点E和点D是圆O上的点,且∠EAB=45°,延长AE和BD相交于点C,连接BE和AD交于点F,BD=12,CD=8,则直径AB的长是_____.15.(2019·江苏初三期中)如图,A是半径为2的⊙O外的一点,OA=4,AB切⊙O于点B,弦BC∥OA,连接AC,则图中阴影部分的面积为___________16.(2019·无锡市硕放中学初三期中)如图,Rt△ABC中,∠C=90°,AB=43,F是线段AC上一点,过点A的⊙F交AB于点D,E是线段BC上一点,且ED=EB,则EF的最小值为_______________.三、解答题一(每小题6分,共18分)17.(2018全国初三单元测试)已知:如图,在⊙O中,弦AB和CD相交,连接AC、BD,且AC=BD.求证:AB=CD.18.(2019·山东初三期中)已知AB,AC为弦,OM⊥AB于M,ON⊥AC于N,求证:MN∥BC且MN=12 BC.19.(2019·江苏东绛实验学校初三期中)如图,AC是⊙O的直径,弦BD⊥AO于E,连接BC,过点O作OF⊥BC 于F,若BD=16cm,AE=4cm.(1)求⊙O的半径;(2)求OF的长.四、解答题二(每小题7分,共21分)20.(2018全国初三课时练习)如图,已知点O为等腰三角形ABC的底边AB的中点,以点O为圆心,AB 为直径的半圆分别交AC,BC于点D,E.求证:(1)∠AOE=∠BOD;(2)AD BE.21.(2019·无锡市甘露学校初三期中)如图,AB=AC,CD⊥AB于点D,点O是∠BAC的平分线上一点,⊙O与AB相切于点M,与CD相切于点N(1)求证:∠AOC=135°;(2)若NC=3,BC=5DM的长.22.(2019·陕西延安职业技术学院附中初三期中)如图,在Rt ABC ∆中,90,BAC CD ∠=平分ACB ∠,交AB 于点D ,以点D 为圆心,DA 为半径的⨀D 与AB 相交于点E .(1)判断直线BC 与⨀D 的位置关系,并证明你的结论;(2)若3,5AC BC ==,求BE 的长.五、解答题三(每小题9分,共27分)23.(2019·贵州中考真题)如图,AB 是⊙O 的直径,弦AC 与BD 交于点E ,且AC =BD ,连接AD ,BC .(1)求证:△ADB ≌△BCA ;(2)若OD ⊥AC ,AB =4,求弦AC 的长;(3)在(2)的条件下,延长AB 至点P ,使BP =2,连接PC .求证:PC 是⊙O 的切线.24.(2019广东中考真题)如图1,在ABC ∆中,AB AC =,O 是ABC ∆的外接圆,过点C 作BCD ACB ∠=∠交O 于点D ,连接AD 交BC 于点E ,延长DC 至点F ,使CF AC =,连接AF .(1)求证:ED EC =;(2)求证:AF 是O 的切线;(3)如图2,若点G 是ACD ∆的内心,25BC BE ⋅=,求BG 的长.25.(2016安徽初三月考)如图,⊙O 是△ABC 的外接圆,AC 是直径,过点O 作OD ⊥AB 于点D ,延长DO 交⊙O 于点P ,过点P 作PE ⊥AC 于点E ,作射线DE 交BC 的延长线于F 点,连接PF 。
2019年初中数学学业水平考试中考数学专题训练及解析3.圆的综合题

圆的综合题类型一 与全等结合1. 如图,⊙O 的直径AB =4,C 为⊙O 上一点,AC =2.过点C 作⊙O 的切线DC ,P 点为优弧CBA ︵上一动点(不与A 、C 重合). (1)求∠APC 与∠ACD 的度数;(2)当点P 移动到劣弧CB ︵的中点时,求证:四边形OBPC 是菱形; (3)当PC 为⊙O 的直径时,求证:△APC 与△ABC 全等.第1题图(1)解:∵AC =2,OA =OB =OC =12AB =2,∴AC =OA =OC , ∴△ACO 为等边三角形,∴∠AOC =∠ACO =∠OAC =60°,∴∠APC =12∠AOC =30°, 又∵DC 与⊙O 相切于点C , ∴OC ⊥DC , ∴∠DCO =90°,∴∠ACD =∠DCO -∠ACO =90°-60°=30°;第1题解图(2)证明:如解图,连接PB ,OP ,∵AB 为直径,∠AOC =60°, ∴∠COB =120°,当点P 移动到CB ︵的中点时,∠COP =∠POB =60°, ∴△COP 和△BOP 都为等边三角形, ∴OC =CP =OB =PB , ∴四边形OBPC 为菱形; (3)证明:∵CP 与AB 都为⊙O 的直径,∴∠CAP =∠ACB =90°, 在Rt △ABC 与Rt △CP A 中,⎩⎪⎨⎪⎧AB =CP AC =AC , ∴Rt △ABC ≌Rt △CP A (HL).2. 如图,AB 为⊙O 的直径,CA 、CD 分别切⊙O 于点A 、D ,CO 的延长线交⊙O 于点M ,连接BD 、DM . (1)求证:AC =DC ; (2)求证:BD ∥CM ;(3)若sin B =45,求cos ∠BDM 的值.第2题图(1)证明:如解图,连接OD ,∵CA 、CD 分别与⊙O 相切于点A 、D , ∴OA ⊥AC ,OD ⊥CD , 在Rt △OAC 和Rt △ODC 中,⎩⎪⎨⎪⎧OA =OD OC =OC , ∴Rt △OAC ≌Rt △ODC (HL), ∴AC =DC ;(2)证明:由(1)知, △OAC ≌△ODC ,∴∠AOC =∠DOC , ∴∠AOD =2∠AOC , ∵∠AOD =2∠OBD , ∴∠AOC =∠OBD , ∴BD ∥CM ; (3)解:∵BD ∥CM ,∴∠BDM =∠M ,∠DOC =∠ODB ,∠AOC =∠B , ∵OD =OB =OM ,∴∠ODM =∠OMD ,∠ODB =∠B =∠DOC , ∵∠DOC =2∠DMO , ∴∠DOC =2∠BDM , ∴∠B =2∠BDM ,如解图,作OE 平分∠AOC ,交AC 于点E ,作EF ⊥OC 于点F ,第2题解图∴EF =AE ,在Rt △EAO 和Rt △EFO 中,∵⎩⎪⎨⎪⎧OE =OE AE =EF, ∴Rt △EAO ≌Rt △EFO (HL), ∴OA =OF ,∠AOE =12∠AOC , ∴点F 在⊙O 上,又∵∠AOC =∠B =2∠BDM , ∴∠AOE =∠BDM , 设AE =EF =y , ∵sin B =45,∴在Rt △AOC 中,sin ∠AOC =AC OC =45,∴设AC =4x ,OC =5x ,则OA =3x , 在Rt △EFC 中,EC 2=EF 2+CF 2, ∵EC =4x -y ,CF =5x -3x =2x , ∴(4x -y )2=y 2+(2x )2, 解得y =32x ,∴在Rt △OAE 中,OE =OA 2+AE 2 =(3x )2+(32x )2=352x ,∴cos ∠BDM =cos ∠AOE =OA OE =3x 352x=255.3. 如图,⊙O 是△ABC 的外接圆,AC 为直径,AB ︵=BD ︵,BE ⊥DC 交DC 的延长线于点E .(1)求证:∠1=∠BCE ; (2)求证:BE 是⊙O 的切线; (3)若EC =1,CD =3,求cos ∠DBA .第3题图(1)证明:如解图,过点B 作BF ⊥AC 于点F ,∵AB ︵=BD ︵, ∴AB =BD在△ABF 与△DBE 中, ⎩⎪⎨⎪⎧∠BAF =∠BDE ∠AFB =∠DEB AB =DB, ∴△ABF ≌△DBE (AAS), ∴BF =BE , ∵BE ⊥DC ,BF ⊥AC , ∴∠1=∠BCE ; (2)证明:如解图,连接OB ,∵AC 是⊙O 的直径,∴∠ABC =90°,即∠1+∠BAC =90°, ∵∠BCE +∠EBC =90°,且∠1=∠BCE , ∴∠BAC =∠EBC , ∵OA =OB ,∴∠BAC =∠OBA , ∴∠EBC =∠OBA ,∴∠EBC +∠CBO =∠OBA +∠CBO =90°, ∴∠EBO =90°, 又∵OB 为⊙O 的半径, ∴BE 是⊙O 的切线;第3题解图(3)解:在△EBC 与△FBC 中,⎩⎪⎨⎪⎧∠BEC =∠CFB ,∠ECB =∠FCB ,BC =BC ,∴△EBC ≌△FBC (AAS), ∴CE =CF =1.由(1)可知:AF =DE =1+3=4, ∴AC =CF +AF =1+4=5,∴cos ∠DBA =cos ∠DCA =CD CA =35. 类型二 与相似结合4. 如图,△ABC 内接于⊙O ,AB =AC ,∠BAC =36°,过点A 作AD ∥BC ,与∠ABC 的平分线交于点D ,BD 与AC 交于点E ,与⊙O 交于点F . (1)求∠DAF 的度数; (2)求证:AE 2=EF ·ED ; (3)求证:AD 是⊙O 的切线.第4题图(1)解:∵AB =AC ,∠BAC =36°,∴∠ABC =∠ACB =12(180°-36°)=72°, ∴∠AFB =∠ACB =72°, ∵BD 平分∠ABC , ∴∠DBC =36°, ∵AD ∥BC ,∴∠D=∠DBC=36°,∴∠DAF=∠AFB-∠D=72°-36°=36°;(2)证明:∵∠EAF=∠FBC=∠D,∠AEF=∠AED,∴△EAF∽△EDA,∴AEDE=EFEA,∴AE2=EF·ED;(3)证明:如解图,过点A作BC的垂线,G为垂足,∵AB=AC,∴AG垂直平分BC,∴AG过圆心O,∵AD∥BC ,∴AD⊥AG ,∴AD是⊙O的切线.第4题解图5. 如图,AB 为半圆的直径,O 为圆心,OC ⊥AB ,D 为BC ︵的中点,连接DA 、DB 、DC ,过点C 作DC 的垂线交DA 于点E ,DA 交OC 于点F . (1)求证:∠CED =45°; (2)求证:AE =BD ; (3)求AOOF 的值.第5题图(1)证明:∵∠CDA =12∠COA =12×90°=45°,又∵CE ⊥DC ,∴∠DCE =90°, ∴∠CED =180°-90°-45°=45°; (2)解:如解图,连接AC ,∵D 为BC ︵的中点,∴∠BAD =∠CAD =12×45°=22.5°, 而∠CED =∠CAE +∠ACE =45°, ∴∠CAE =∠ACE =22.5°,∴AE =CE ,∵∠ECD =90°,∠CED =45°, ∴CE =CD , 又∵CD ︵=BD ︵, ∴CD =BD ,∴AE =CE =CD =BD , ∴AE =BD ;第5题解图(3)解:设BD =CD =x ,∴AE =CE =x ,由勾股定理得,DE =2x ,则AD =x +2x , 又∵AB 是直径,则∠ADB =90°, ∴△AOF ∽△ADB ,∴AO OF =AD DB =x +2xx =1+ 2.6. 如图,AB 为⊙O 的直径,P 点为半径OA 上异于点O 和点A 的一个点,过P 点作与直径AB 垂直的弦CD ,连接AD ,作BE ⊥AB ,OE //AD 交BE于E 点,连接AE 、DE ,AE 交CD 于点F . (1)求证:DE 为⊙O 的切线;(2)若⊙O 的半径为3,sin ∠ADP =13,求AD ; (3)请猜想PF 与FD 的数量关系,并加以证明.第6题图(1)证明:如解图,连接OD ,∵OA =OD , ∴∠OAD =∠ODA , ∵OE ∥AD ,∴∠OAD =∠BOE ,∠DOE =∠ODA , ∴∠BOE =∠DOE , 在△BOE 和△DOE 中, ⎩⎪⎨⎪⎧OB =OD ∠BOE =∠DOE OE =OE,∴△BOE ≌△DOE (SAS), ∴∠ODE =∠OBE , ∵BE ⊥AB , ∴∠OBE =90°, ∴∠ODE =90°, ∵OD 为⊙O 的半径, ∴DE 为⊙O 的切线; (2)解:如解图,连接BD ,∵AB 为⊙O 的直径, ∴∠ADB =90°, ∴∠ABD +∠BAD =90°, ∵AB ⊥CD ,∴∠ADP +∠BAD =90°, ∴∠ABD =∠ADP ,∴sin ∠ABD =AD AB =sin ∠ADP =13, ∵⊙O 的半径为3,∴AB =6,∴AD =13AB =2;第6题解图(3)解:猜想PF =FD ,证明:∵CD ⊥AB ,BE ⊥AB , ∴CD ∥BE , ∴△APF ∽△ABE , ∴PF BE =AP AB , ∴PF =AP ·BEAB , 在△APD 和△OBE 中,⎩⎪⎨⎪⎧∠APD =∠OBE ∠P AD =∠BOE , ∴△APD ∽△OBE ,∴PD BE =AP OB , ∴PD =AP ·BEOB , ∵AB =2OB , ∴PF =12PD , ∴PF =FD .7. 如图①,⊙O 是△ABC 的外接圆,AB 是⊙O 的直径,OD ∥AC ,OD 交⊙O 于点E ,且∠CBD =∠COD . (1)求证:BD 是⊙O 的切线;(2)若点E 为线段OD 的中点,求证:四边形OACE 是菱形. (3)如图②,作CF ⊥AB 于点F ,连接AD 交CF 于点G ,求FGFC 的值.第7题图(1)证明:∵AB 是⊙O 的直径,∴∠BCA =90°,∴∠ABC+∠BAC=90°,∵OD∥AC,∴∠ACO=∠COD.∵OA=OC,∴∠BAC=∠ACO,又∵∠COD=∠CBD,∴∠CBD=∠BAC,∴∠ABC+∠CBD=90°,∴∠ABD=90°,即OB⊥BD,又∵OB是⊙O的半径,∴BD是⊙O的切线;(2)证明:如解图,连接CE、BE,∵OE=ED,∠OBD=90°,∴BE=OE=ED,∴△OBE为等边三角形,∴∠BOE=60°,又∵AC∥OD,∴∠OAC=60°,又∵OA=OC,∴△OAC为等边三角形,∴AC=OA=OE,∴AC∥OE且AC=OE,∴四边形OACE是平行四边形,而OA=OE, ∴四边形OACE是菱形;第7题解图(3)解:∵CF⊥AB,∴∠AFC=∠OBD=90°,而AC∥OD,∴∠CAF=∠DOB,∴Rt△AFC∽Rt△OBD,∴FCBD=AFOB,即FC=BD·AFOB,又∵FG∥BD,∴△AFG∽△ABD,∴FGBD=AFAB,即FG=BD·AFAB,∴FCFG=ABOB=2,∴FGFC=12.8. 如图,AB是⊙O的直径,点E为线段OB上一点(不与O、B重合),作EC⊥OB交⊙O于点C,作直径CD过点C的切线交DB的延长线于点P,作AF⊥PC于点F,连接CB.(1)求证:AC平分∠F AB;(2)求证:BC2=CE·CP;(3)当AB=43且CFCP=34时,求劣弧BD︵的长度.第8题图(1)证明:∵PF切⊙O于点C,CD是⊙O的直径,∴CD⊥PF,又∵AF⊥PC,∴AF∥CD,∴∠OCA=∠CAF,∵OA=OC,∴∠OAC=∠OCA,∴∠CAF=∠OAC,∴AC平分∠F AB;(2)证明:∵AB是⊙O的直径,∴∠ACB=90°,∵∠DCP=90°,∴∠ACB=∠DCP=90°,又∵∠BAC=∠D,∴△ACB∽△DCP,∴∠EBC=∠P,∵CE⊥AB,∴∠BEC=90°,∵CD是⊙O的直径,∴∠DBC=90°,∴∠CBP =90°,∴∠BEC =∠CBP ,∴△CBE ∽△CPB ,∴BC PC =CE CB ,∴BC 2=CE ·CP ;(3)解:∵AC 平分∠F AB ,CF ⊥AF ,CE ⊥AB ,∴CF =CE ,∵CF CP =34,∴CE CP =34,设CE =3k ,则CP =4k ,∴BC 2=3k ·4k =12k 2,∴BC =23k ,在Rt △BEC 中,∵sin ∠EBC =CE BC =3k 23k =32,∴∠EBC =60°,∴△OBC 是等边三角形,∴∠DOB =120°,∴BD ︵=120π·23180=43π3.类型三 与全等相似结合9. 如图,四边形ABCD 内接于圆O ,∠BAD =90°,AC 为直径,过点A 作圆O 的切线交CB 的延长线于点E ,过AC 的三等分点F (靠近点C )作CE 的平行线交AB 于点G ,连接CG .(1)求证:AB =CD ;(2)求证:CD 2=BE ·BC ;(3)当CG =3,BE =92,求CD 的长.第9题图(1)证明:∵AC 为直径,∴∠ABC =∠ADC =90°, ∴∠ABC =∠BAD =90°,∴BC∥AD,∴∠BCA=∠CAD,又∵AC=CA,∴△ABC≌△CDA(AAS),∴AB=CD;(2)证明:∵AE为⊙O的切线且O为圆心,∴OA⊥AE,即CA⊥AE,∴∠EAB+∠BAC=90°,而∠BAC+∠BCA=90°,∴∠EAB=∠BCA,而∠EBA=∠ABC,∴△EBA∽△ABC,∴EBAB=BABC,∴AB2=BE·BC, 由(1)知AB=CD,∴CD 2=BE ·BC ;(3)解:由(2)知CD 2=BE ·BC ,即CD 2=92BC ①,∵FG ∥BC 且点F 为AC 的三等分点,∴G 为AB 的三等分点,即CD =AB =3BG ,在Rt △CBG 中,CG 2=BG 2+BC 2,即3=(13CD )2+BC 2②,将①代入②,消去CD 得,BC 2+12BC -3=0,即2BC 2+BC -6=0,解得BC =32或BC =-2(舍)③,将③代入①得,CD =332.10.如图,AB 为⊙O 的直径,C 为圆外一点,AC 交⊙O 于点D ,BC 2=CD ·CA ,ED ︵=BD ︵,BE 交AC 于点F .(1)求证:BC 为⊙O 的切线;(2)判断△BCF 的形状并说明理由;(3)已知BC =15,CD =9,∠BAC =36°,求BD ︵的长度(结果保留π).第10题图(1)证明:∵BC 2=CD ·CA ,∴BC CA =CD BC ,∵∠C =∠C ,∴△CBD ∽△CAB ,∴∠CBD =∠BAC ,又∵AB 为⊙O 的直径,∴∠ADB =90°,即∠BAC +∠ABD =90°,∴∠ABD +∠CBD =90°,即AB ⊥BC ,又∵AB 为⊙O 的直径,∴BC 为⊙O 的切线;(2)解:△BCF 为等腰三角形.证明如下:∵ED ︵=BD ︵,∴∠DAE =∠BAC ,又∵△CBD ∽△CAB ,∴∠BAC =∠CBD ,∴∠CBD =∠DAE ,∵∠DAE =∠DBF ,∴∠DBF =∠CBD ,∵∠BDF =90°,∴∠BDC =∠BDF =90°,∵BD =BD ,∴△BDF ≌△BDC ,∴BF =BC ,∴△BCF 为等腰三角形;(3)解:由(1)知,BC 为⊙O 的切线,∴∠ABC =90°∵BC 2=CD ·CA ,∴AC =BC 2CD =1529=25,由勾股定理得AB =AC 2-BC 2=252-152=20,∴⊙O 的半径为r =AB 2=10,∵∠BAC =36°,∴BD ︵所对圆心角为72°.则BD ︵=72×π×10180=4π.。
中考数学 圆的综合综合试题附详细答案

中考数学 圆的综合综合试题附详细答案一、圆的综合1.如图,四边形OABC 是平行四边形,以O 为圆心,OA 为半径的圆交AB 于D ,延长AO 交O 于E ,连接CD ,CE ,若CE 是⊙O 的切线,解答下列问题:(1)求证:CD 是⊙O 的切线;(2)若BC=4,CD=6,求平行四边形OABC 的面积.【答案】(1)证明见解析(2)24【解析】试题分析:(1)连接OD ,求出∠EOC=∠DOC ,根据SAS 推出△EOC ≌△DOC ,推出∠ODC=∠OEC=90°,根据切线的判定推出即可;(2)根据切线长定理求出CE=CD=4,根据平行四边形性质求出OA=OD=4,根据平行四边形的面积公式=2△COD 的面积即可求解.试题解析:(1)证明:连接OD ,∵OD=OA ,∴∠ODA=∠A ,∵四边形OABC 是平行四边形,∴OC ∥AB ,∴∠EOC=∠A ,∠COD=∠ODA ,∴∠EOC=∠DOC ,在△EOC 和△DOC 中,OE OD EOC DOC OC OC =⎧⎪∠=∠⎨⎪=⎩∴△EOC ≌△DOC (SAS ),∴∠ODC=∠OEC=90°,即OD ⊥DC ,∴CD 是⊙O 的切线;(2)由(1)知CD 是圆O 的切线,∴△CDO 为直角三角形,∵S △CDO =12CD•OD , 又∵OA=BC=OD=4,∴S△CDO=12×6×4=12,∴平行四边形OABC的面积S=2S△CDO=24.2.如图1,直角梯形OABC中,BC∥OA,OA=6,BC=2,∠BAO=45°.(1)OC的长为;(2)D是OA上一点,以BD为直径作⊙M,⊙M交AB于点Q.当⊙M与y轴相切时,sin∠BOQ=;(3)如图2,动点P以每秒1个单位长度的速度,从点O沿线段OA向点A运动;同时动点D以相同的速度,从点B沿折线B﹣C﹣O向点O运动.当点P到达点A时,两点同时停止运动.过点P作直线PE∥OC,与折线O﹣B﹣A交于点E.设点P运动的时间为t (秒).求当以B、D、E为顶点的三角形是直角三角形时点E的坐标.【答案】(1)4;(2)35;(3)点E的坐标为(1,2)、(53,103)、(4,2).【解析】分析:(1)过点B作BH⊥OA于H,如图1(1),易证四边形OCBH是矩形,从而有OC=BH,只需在△AHB中运用三角函数求出BH即可.(2)过点B作BH⊥OA于H,过点G作GF⊥OA于F,过点B作BR⊥OG于R,连接MN、DG,如图1(2),则有OH=2,BH=4,MN⊥OC.设圆的半径为r,则MN=MB=MD=r.在Rt△BHD中运用勾股定理可求出r=2,从而得到点D与点H重合.易证△AFG∽△ADB,从而可求出AF、GF、OF、OG、OB、AB、BG.设OR=x,利用BR2=OB2﹣OR2=BG2﹣RG2可求出x,进而可求出BR.在Rt△ORB中运用三角函数就可解决问题.(3)由于△BDE的直角不确定,故需分情况讨论,可分三种情况(①∠BDE=90°,②∠BED=90°,③∠DBE=90°)讨论,然后运用相似三角形的性质及三角函数等知识建立关于t的方程就可解决问题.详解:(1)过点B作BH⊥OA于H,如图1(1),则有∠BHA=90°=∠COA,∴OC∥BH.∵BC∥OA,∴四边形OCBH是矩形,∴OC=BH,BC=OH.∵OA =6,BC =2,∴AH =0A ﹣OH =OA ﹣BC =6﹣2=4.∵∠BHA =90°,∠BAO =45°,∴tan ∠BAH =BH HA=1,∴BH =HA =4,∴OC =BH =4. 故答案为4. (2)过点B 作BH ⊥OA 于H ,过点G 作GF ⊥OA 于F ,过点B 作BR ⊥OG 于R ,连接MN 、DG ,如图1(2).由(1)得:OH =2,BH =4.∵OC 与⊙M 相切于N ,∴MN ⊥OC .设圆的半径为r ,则MN =MB =MD =r .∵BC ⊥OC ,OA ⊥OC ,∴BC ∥MN ∥OA .∵BM =DM ,∴CN =ON ,∴MN =12(BC +OD ),∴OD =2r ﹣2,∴DH =OD OH -=24r -.在Rt △BHD 中,∵∠BHD =90°,∴BD 2=BH 2+DH 2,∴(2r )2=42+(2r ﹣4)2.解得:r =2,∴DH =0,即点D 与点H 重合,∴BD ⊥0A ,BD =AD .∵BD 是⊙M 的直径,∴∠BGD =90°,即DG ⊥AB ,∴BG =AG .∵GF ⊥OA ,BD ⊥OA ,∴GF ∥BD ,∴△AFG ∽△ADB , ∴AF AD =GF BD =AG AB =12,∴AF =12AD =2,GF =12BD =2,∴OF =4,∴OG同理可得:OB AB ,∴BG =12AB .设OR =x ,则RG x .∵BR ⊥OG ,∴∠BRO =∠BRG =90°,∴BR 2=OB 2﹣OR 2=BG 2﹣RG 2,∴(2﹣x 2=()2﹣(x )2.解得:x =5,∴BR 2=OB 2﹣OR 2=(2﹣(5)2=365,∴BR =5.在Rt △ORB 中,sin ∠BOR =BR OB35. 故答案为35. (3)①当∠BDE =90°时,点D 在直线PE 上,如图2.此时DP =OC =4,BD +OP =BD +CD =BC =2,BD =t ,OP =t . 则有2t =2.解得:t =1.则OP =CD =DB =1.∵DE ∥OC ,∴△BDE ∽△BCO ,∴DE OC =BD BC =12,∴DE =2,∴EP =2,∴点E的坐标为(1,2).②当∠BED=90°时,如图3.∵∠DBE=OBC,∠DEB=∠BCO=90°,∴△DBE∽△OBC,∴BEBC =2DB BEOB∴,=25,∴BE=5t.∵PE∥OC,∴∠OEP=∠BOC.∵∠OPE=∠BCO=90°,∴△OPE∽△BCO,∴OEOB =25OPBC∴,=2t,∴OE=5t.∵OE+BE=OB=255,∴t+55t=25.解得:t=53,∴OP=53,OE=55,∴PE=22OE OP-=103,∴点E的坐标为(51033,).③当∠DBE=90°时,如图4.此时PE=PA=6﹣t,OD=OC+BC﹣t=6﹣t.则有OD=PE,EA=22PE PA+=2(6﹣t)=62﹣2?t,∴BE=BA﹣EA=42﹣(62﹣2t)=2t﹣22.∵PE∥OD,OD=PE,∠DOP=90°,∴四边形ODEP是矩形,∴DE=OP=t,DE∥OP,∴∠BED=∠BAO=45°.在Rt△DBE中,cos∠BED=BEDE=22,∴DE=2BE,∴t=22(t﹣22)=2t﹣4.解得:t=4,∴OP=4,PE=6﹣4=2,∴点E的坐标为(4,2).综上所述:当以B、D、E为顶点的三角形是直角三角形时点E的坐标为(1,2)、(51033,)、(4,2).点睛:本题考查了圆周角定理、切线的性质、相似三角形的判定与性质、三角函数的定义、平行线分线段成比例、矩形的判定与性质、勾股定理等知识,还考查了分类讨论的数学思想,有一定的综合性.3.如图,已知△ABC中,AC=BC,以BC为直径的⊙O交AB于E,过点E作EG⊥AC于G,交BC的延长线于F.(1)求证:AE=BE;(2)求证:FE是⊙O的切线;(3)若FE=4,FC=2,求⊙O的半径及CG的长.【答案】(1)详见解析;(2)详见解析;(3).【解析】(1)证明:连接CE,如图1所示:∵BC是直径,∴∠BEC=90°,∴CE⊥AB;又∵AC=BC,∴AE=BE.(2)证明:连接OE,如图2所示:∵BE=AE,OB=OC,∴OE是△ABC的中位线,∴OE∥AC,AC=2OE=6.又∵EG⊥AC,∴FE⊥OE,∴FE是⊙O的切线.(3)解:∵EF是⊙O的切线,∴FE2=FC•FB.设FC=x,则有2FB=16,∴FB=8,∴BC=FB﹣FC=8﹣2=6,∴OB=OC=3,即⊙O的半径为3;∴OE=3.∵OE∥AC,∴△FCG∽△FOE,∴,即,解得:CG=.点睛:本题利用了等腰三角形三线合一定理,三角形中位线的判定,切割线定理,以及勾股定理,还有平行线分线段成比例定理,切线的判定等知识.4.图1和图2,半圆O的直径AB=2,点P(不与点A,B重合)为半圆上一点,将图形延BP折叠,分别得到点A,O的对称点A′,O′,设∠ABP=α.(1)当α=15°时,过点A′作A′C∥AB,如图1,判断A′C与半圆O的位置关系,并说明理由.(2)如图2,当α= °时,BA′与半圆O相切.当α= °时,点O′落在上.(3)当线段BO′与半圆O只有一个公共点B时,求α的取值范围.【答案】(1)A′C与半圆O相切;理由见解析;(2)45;30;(3)0°<α<30°或45°≤α<90°.【解析】试题分析:(1)过O作OD⊥A′C于点D,交A′B于点E,利用含30°角的直角三角形的性质可求得DE+OE=A′B=AB=OA,可判定A′C与半圆相切;(2)当BA′与半圆相切时,可知OB⊥A′B,则可知α=45°,当O′在上时,连接AO′,则可知BO′=AB,可求得∠O′BA=60°,可求得α=30°;(3)利用(2)可知当α=30°时,线段O′B与圆交于O′,当α=45°时交于点B,结合题意可得出满足条件的α的范围.试题解析:(1)相切,理由如下:如图1,过O作OD过O作OD⊥A′C于点D,交A′B于点E,∵α=15°,A′C∥AB,∴∠ABA′=∠CA′B=30°,∴DE=A′E,OE=BE,∴DO=DE+OE=(A′E+BE)=AB=OA,∴A′C与半圆O相切;(2)当BA′与半圆O相切时,则OB⊥BA′,∴∠OBA′=2α=90°,∴α=45°,当O′在上时,如图2,连接AO′,则可知BO′=AB,∴∠O′AB=30°,∴∠ABO′=60°,∴α=30°,(3)∵点P,A不重合,∴α>0,由(2)可知当α增大到30°时,点O′在半圆上,∴当0°<α<30°时点O′在半圆内,线段BO′与半圆只有一个公共点B;当α增大到45°时BA′与半圆相切,即线段BO′与半圆只有一个公共点B.当α继续增大时,点P逐渐靠近点B,但是点P,B不重合,∴α<90°,∴当45°≤α<90°线段BO′与半圆只有一个公共点B.综上所述0°<α<30°或45°≤α<90°.考点:圆的综合题.5.如图,AB为⊙O的直径,点E在⊙O上,过点E的切线与AB的延长线交于点D,连接BE,过点O作BE的平行线,交⊙O于点F,交切线于点C,连接AC(1)求证:AC是⊙O的切线;(2)连接EF,当∠D=°时,四边形FOBE是菱形.【答案】(1)见解析;(2)30.【解析】【分析】(1)由等角的转换证明出OCA OCE ∆∆≌,根据圆的位置关系证得AC 是⊙O 的切线. (2)根据四边形FOBE 是菱形,得到OF=OB=BF=EF ,得证OBE ∆为等边三角形,而得出60BOE ∠=︒,根据三角形内角和即可求出答案.【详解】(1)证明:∵CD 与⊙O 相切于点E ,∴OE CD ⊥,∴90CEO ∠=︒,又∵OC BE P ,∴COE OEB ∠=∠,∠OBE=∠COA∵OE=OB ,∴OEB OBE ∠=∠,∴COE COA ∠=∠,又∵OC=OC ,OA=OE ,∴OCA OCE SAS ∆∆≌(), ∴90CAO CEO ∠=∠=︒,又∵AB 为⊙O 的直径,∴AC 为⊙O 的切线;(2)解:∵四边形FOBE 是菱形,∴OF=OB=BF=EF ,∴OE=OB=BE ,∴OBE ∆为等边三角形,∴60BOE ∠=︒,而OE CD ⊥,∴30D ∠=︒.故答案为30.【点睛】本题主要考查与圆有关的位置关系和圆中的计算问题,熟练掌握圆的性质是本题的解题关键.6.如图,已知在△ABC 中,AB=15,AC=20,tanA=12,点P 在AB 边上,⊙P 的半径为定长.当点P 与点B 重合时,⊙P 恰好与AC 边相切;当点P 与点B 不重合时,⊙P 与AC 边相交于点M 和点N .(1)求⊙P的半径;(2)当AP=65时,试探究△APM与△PCN是否相似,并说明理由.【答案】(1)半径为35;(2)相似,理由见解析.【解析】【分析】(1)如图,作BD⊥AC,垂足为点D,⊙P与边AC相切,则BD就是⊙P的半径,利用解直角三角形得出BD与AD的关系,再利用勾股定理可求得BD的长;(2)如图,过点P作PH⊥AC于点H,作BD⊥AC,垂足为点D,根据垂径定理得出MN=2MH,PM=PN,再利用勾股定理求出PH、AH、MH、MN的长,从而求出AM、NC的长,然后求出AMMP、PNNC的值,得出AMMP=PNNC,利用两边对应成比例且夹角相等的两三角形相似即可证明.【详解】(1)如图,作BD⊥AC,垂足为点D,∵⊙P与边AC相切,∴BD就是⊙P的半径,在Rt△ABD中,tanA= 1BD2AD =,设BD=x,则AD=2x,∴x2+(2x)2=152,解得:5∴半径为5(2)相似,理由见解析,如图,过点P作PH⊥AC于点H,作BD⊥AC,垂足为点D,∴PH垂直平分MN,∴PM=PN,在Rt△AHP中,tanA=12PHAH =,设PH=y,AH=2y,y 2+(2y )2=(65)2 解得:y=6(取正数), ∴PH=6,AH=12,在Rt △MPH 中,MH=()22356-=3,∴MN=2MH=6,∴AM=AH-MH=12-3=9,NC=AC-MN-AM=20-6-9=5,∴35535AM MP ==,355PN NC =, ∴AM MP =PN NC, 又∵PM=PN ,∴∠PMN=∠PNM ,∴∠AMP=∠PNC ,∴△AMP ∽△PNC.【点睛】本题考查了解直角三角形、垂径定理、相似三角形的判定与性质等,综合性较强,有一定的难度,正确添加辅助线、灵活应用相关的性质与定理是解题的关键.7.如图.在△ABC 中,∠C =90°,AC =BC ,AB =30cm ,点P 在AB 上,AP =10cm ,点E 从点P 出发沿线段PA 以2c m/s 的速度向点A 运动,同时点F 从点P 出发沿线段PB 以1c m/s 的速度向点B 运动,点E 到达点A 后立刻以原速度沿线段AB 向点B 运动,在点E 、F 运动过程中,以EF 为边作正方形EFGH ,使它与△ABC 在线段AB 的同侧,设点E 、F 运动的时间为t (s )(0<t <20).(1)当点H 落在AC 边上时,求t 的值;(2)设正方形EFGH与△ABC重叠部分的面积为S.①试求S关于t的函数表达式;②以点C为圆心,12t为半径作⊙C,当⊙C与GH所在的直线相切时,求此时S的值.【答案】(1)t=2s或10s;(2)①S=22 2 9?(02)75050(210)240400?(1020)t tt t tt t t⎧<≤⎪⎪-+-<≤⎨⎪-+<<⎪⎩;②100cm2.【解析】试题分析:(1)如图1中,当0<t≤5时,由题意AE=EH=EF,即10﹣2t=3t,t=2;如图2中,当5<t<20时,AE=HE,2t﹣10=10﹣(2t﹣10)+t,t=10;(2)分四种切线讨论a、如图3中,当0<t≤2时,重叠部分是正方形EFGH,S=(3t)2=9t2.b、如图4中,当2<t≤5时,重叠部分是五边形EFGMN.c、如图5中,当5<t<10时,重叠部分是五边形EFGMN.d、如图6中,当10<t<20时,重叠部分是正方形EFGH.分别计算即可;②分两种情形分别列出方程即可解决问题.试题解析:解:(1)如图1中,当0<t≤5时,由题意得:AE=EH=EF,即10﹣2t=3t,t=2如图2中,当5<t<20时,AE=HE,2t﹣10=10﹣(2t﹣10)+t,t=10.综上所述:t=2s或10s时,点H落在AC边上.(2)①如图3中,当0<t≤2时,重叠部分是正方形EFGH,S=(3t)2=9t2如图4中,当2<t≤5时,重叠部分是五边形EFGMN,S=(3t)2﹣12(5t﹣10)2=﹣72t2+50t﹣50.如图5中,当5<t<10时,重叠部分是五边形EFGMN,S=(20﹣t)2﹣12(30﹣3t)2=﹣72t2+50t﹣50.如图6中,当10<t<20时,重叠部分是正方形EFGH,S=(20﹣t)2=t2﹣40t+400.综上所述:S=2229?(02)75050(210)240400?(1020)t tt t tt t t⎧<≤⎪⎪-+-<≤⎨⎪-+<<⎪⎩.②如图7中,当0<t≤5时,12t+3t=15,解得:t=307,此时S=100cm2,当5<t<20时,12t+20﹣t=15,解得:t=10,此时S=100.综上所述:当⊙C与GH所在的直线相切时,求此时S的值为100cm2点睛:本题考查了圆综合题、正方形的性质、等腰直角三角形的性质、切线的性质等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,注意不能漏解,属于中考压轴题.8.已知:AB是⊙0直径,C是⊙0外一点,连接BC交⊙0于点D,BD=CD,连接AD、AC.(1)如图1,求证:∠BAD=∠CAD(2)如图2,过点C作CF⊥AB于点F,交⊙0于点E,延长CF交⊙0于点G.过点作EH⊥AG于点H,交AB于点K,求证AK=2OF;(3)如图3,在(2)的条件下,EH交AD于点L,若0K=1,AC=CG,求线段AL的长.图1 图2 图3 【答案】(1)见解析(2)见解析(3)12105【解析】试题分析:(1)由直径所对的圆周角等于90°,得到∠ADB =90°,再证明△ABD ≌△ACD 即可得到结论;(2)连接BE .由同弧所对的圆周角相等,得到∠GAB =∠BEG .再证△KFE ≌△BFE ,得到BF =KF =BK .由OF =OB -BF ,AK =AB -BK ,即可得到结论.(3)连接CO 并延长交AG 于点M ,连接BG .设∠GAB =α.先证CM 垂直平分AG ,得到AM =GM ,∠AGC +∠GCM =90°.再证∠GAF =∠GCM =α.通过证明△AGB ≌△CMG ,得到BG =GM =12AG .再证明∠BGC =∠MCG =α.设BF =KF =a , 可得GF =2a ,AF =4a . 由OK =1,得到OF =a +1,AK =2(a +1),AF = 3a +2,得到3a +2=4a ,解出a 的值,得到AF ,AB ,GF ,FC 的值.由tanα=tan ∠HAK =12HK AH =, AK =6,可以求出 AH 的长.再由1tan tan 3BAD BCF ∠=∠=,利用公式tan ∠GAD =tan tan 1tan tan GAF BAD GAF BAD∠+∠-∠⋅∠,得到∠GAD =45°,则AL =2AH ,即可得到结论.试题解析:解:(1)∵AB 为⊙O 的直径,∴∠ADB =90°,∴∠ADC =90°. ∵BD =CD ,∠BDA =∠CDA ,AD =AD ,∴△ABD ≌△ACD ,∴∠BAD =∠CAD . (2)连接BE .∵BG =BG ,∴∠GAB =∠BEG . ∵CF ⊥AB ,∴∠KFE =90°.∵EH ⊥AG ,∴∠AHE =∠KFE =90°,∠AKH =∠EKF ,∴∠HAK =∠KEF =∠BEF . ∵FE =FE ,∠KFE =∠BFE =90°,∴△KFE ≌△BFE ,∴BF =KF =BK .∵ OF =OB -BF ,AK =AB -BK ,∴AK =2OF .(3)连接CO 并延长交AG 于点M ,连接BG .设∠GAB =α.∵AC =CG , ∴点C 在AG 的垂直平分线上.∵ OA =OG ,∴点O 在AG 的垂直平分线上, ∴CM 垂直平分AG ,∴AM =GM ,∠AGC +∠GCM =90°. ∵AF ⊥CG ,∴∠AGC +∠GAF =90°,∴∠GAF =∠GCM =α. ∵AB 为⊙O 的直径,∴∠AGB = 90°,∴∠AGB =∠CMG =90°. ∵AB =AC =CG ,∴△AGB ≌△CMG ,∴BG =GM =12AG .在Rt △AGB 中, 1tan tan 2GB GAB AG α∠=== . ∵∠AMC =∠AGB = 90°,∴BG ∥CM , ∴∠BGC =∠MCG =α. 设BF =KF =a , 1tan tan 2BF BGF GF α∠===,∴GF =2a ,1tan tan 2GF GAF AF α∠=== ,AF =4a .∵OK =1,∴OF =a +1,AK =2OF =2(a +1),∴AF =AK +KF =a +2(a +1)=3a +2,∴3a +2=4a ,∴a =2, AK =6,∴AF =4a =8,AB =AC =CG =10,GF =2a =4,FC =CG -GF =6. ∵tanα=tan ∠HAK =12HK AH =,设KH =m ,则AH =2m ,∴AK 22(2)m m +=6,解得:m =655,∴AH =2m 125.在Rt △BFC 中,1tan 3BF BCF FC ∠== .∵∠BAD +∠ABD =90°, ∠FBC +∠BCF =90°,∴∠BCF =∠BAD ,1tan tan 3BAD BCF ∠=∠= ,∴tan ∠GAD =tan tan 1tan tan GAF BADGAF BAD ∠+∠-∠⋅∠=1123111123+=-⨯,∴∠GAD =45°,∴HL=AH ,AL 2AH 12109.如图1,四边形ABCD是正方形,点E是边BC上一点,点F在射线CM上,∠AEF=90°,AE=EF,过点F作射线BC的垂线,垂足为H,连接AC.(1) 试判断BE与FH的数量关系,并说明理由;(2) 求证:∠ACF=90°;(3) 连接AF,过A,E,F三点作圆,如图2. 若EC=4,∠CEF=15°,求的长.图1 图2【答案】(1)BE="FH" ;理由见解析(2)证明见解析(3)=2π【解析】试题分析:(1)由△ABE≌△EHF(SAS)即可得到BE=FH(2)由(1)可知AB=EH,而BC=AB,FH=EB,从而可知△FHC是等腰直角三角形,∠FCH 为45°,而∠ACB也为45°,从而可证明(3)由已知可知∠EAC=30°,AF是直径,设圆心为O,连接EO,过点E作EN⊥AC于点N,则可得△ECN为等腰直角三角形,从而可得EN的长,进而可得AE的长,得到半径,得到所对圆心角的度数,从而求得弧长试题解析:(1)BE=FH.理由如下:∵四边形ABCD是正方形∴∠B=90°,∵FH⊥BC ∴∠FHE=90°又∵∠AEF=90°∴∠AEB+∠HEF="90°" 且∠BAE+∠AEB=90°∴∠HEF=∠BAE ∴∠AEB=∠EFH 又∵AE=EF∴△ABE≌△EHF(SAS)∴BE=FH(2)∵△ABE≌△EHF∴BC=EH,BE=FH 又∵BE+EC=EC+CH ∴BE="CH"∴CH=FH∴∠FCH=45°,∴∠FCM=45°∵AC是正方形对角线,∴∠ACD=45°∴∠ACF=∠FCM +∠ACD =90°(3)∵AE=EF,∴△AEF是等腰直角三角形△AEF外接圆的圆心在斜边AF的中点上.设该中点为O.连结EO得∠AOE=90°过E作EN⊥AC于点NRt△ENC中,EC=4,∠ECA=45°,∴EN=NC=Rt△ENA中,EN =又∵∠EAF=45°∠CAF=∠CEF=15°(等弧对等角)∴∠EAC=30°∴AE=Rt△AFE中,AE== EF,∴AF=8AE所在的圆O半径为4,其所对的圆心角为∠AOE=90°=2π·4·(90°÷360°)=2π考点:1、正方形;2、等腰直角三角形;3、圆周角定理;4、三角函数10.如图,等边△ABC内接于⊙O,P是弧AB上任一点(点P不与A、B重合),连AP,BP,过C作CM∥BP交PA的延长线于点M,(1)求证:△PCM为等边三角形;(2)若PA=1,PB=2,求梯形PBCM的面积.【答案】(1)见解析;(2153 4【解析】【分析】(1)利用同弧所对的圆周角相等即可求得题目中的未知角,进而判定△PCM为等边三角形;(2)利用上题中得到的相等的角和等边三角形中相等的线段证得两三角形全等,进而利用△PCM 为等边三角形,进而求得PH 的长,利用梯形的面积公式计算梯形的面积即可. 【详解】(1)证明:作PH ⊥CM 于H , ∵△ABC 是等边三角形, ∴∠APC=∠ABC=60°, ∠BAC=∠BPC=60°, ∵CM ∥BP , ∴∠BPC=∠PCM=60°, ∴△PCM 为等边三角形;(2)解:∵△ABC 是等边三角形,△PCM 为等边三角形, ∴∠PCA+∠ACM=∠BCP+∠PCA , ∴∠BCP=∠ACM , 在△BCP 和△ACM 中,BC AC BCP ACM CP CM =⎧⎪∠=∠⎨⎪=⎩, ∴△BCP ≌△ACM (SAS ), ∴PB=AM ,∴CM=CP=PM=PA+AM=PA+PB=1+2=3, 在Rt △PMH 中,∠MPH=30°, ∴PH=332, ∴S 梯形PBCM =12(PB+CM )×PH=12×(2+3)×33=1534.【点睛】本题考查圆周角定理、等边三角形的判定、全等三角形的性质及梯形的面积计算方法,是一道比较复杂的几何综合题.11.如图,△ABC中,AC=BC=10,cosC=35,点P是AC边上一动点(不与点A、C重合),以PA长为半径的⊙P与边AB的另一个交点为D,过点D作DE⊥CB于点E.(1)当⊙P与边BC相切时,求⊙P的半径.(2)连接BP交DE于点F,设AP的长为x,PF的长为y,求y关于x的函数解析式,并直接写出x的取值范围.(3)在(2)的条件下,当以PE长为直径的⊙Q与⊙P相交于AC边上的点G时,求相交所得的公共弦的长.【答案】(1)409R=;(2)25880320xy x xx=-++(3)505-【解析】【分析】(1)设⊙P与边BC相切的切点为H,圆的半径为R,连接HP,则HP⊥BC,cosC=35,则sinC=45,sinC=HPCP=10RR-=45,即可求解;(2)首先证明PD∥BE,则EB BFPD PF=,即:2024588x yxxx-+--=,即可求解;(3)证明四边形PDBE为平行四边形,则AG=EP=BD,即:AB=DB+AD=AG+AD=5【详解】(1)设⊙P与边BC相切的切点为H,圆的半径为R,连接HP,则HP⊥BC,cosC=35,则sinC=45,sinC=HPCP=10RR-=45,解得:R=409;(2)在△ABC中,AC=BC=10,cosC=35,设AP=PD=x,∠A=∠ABC=β,过点B作BH⊥AC,则BH=ACsinC=8,同理可得:CH=6,HA=4,AB=45,则:tan∠CAB=2,BP=228+(4)x-=2880x x-+,DA=25x,则BD=45﹣25x,如下图所示,PA=PD,∴∠PAD=∠CAB=∠CBA=β,tanβ=2,则cosβ5,sinβ5,EB =BDcosβ=(45﹣25x )×5=4﹣25x , ∴PD ∥BE , ∴EB BF PD PF =,即:2024588x y x xx y -+--=, 整理得:y =25x x 8x 803x 20-++; (3)以EP 为直径作圆Q 如下图所示,两个圆交于点G ,则PG =PQ ,即两个圆的半径相等,则两圆另外一个交点为D , GD 为相交所得的公共弦,∵点Q 是弧GD 的中点, ∴DG ⊥EP ,∵AG 是圆P 的直径,∴∠GDA =90°,∴EP ∥BD ,由(2)知,PD ∥BC ,∴四边形PDBE 为平行四边形,∴AG =EP =BD ,∴AB =DB+AD =AG+AD =5设圆的半径为r ,在△ADG 中,AD =2rcosβ5DG 5AG =2r , 5=52r 51+, 则:DG 550﹣5 相交所得的公共弦的长为50﹣5【点睛】本题考查的是圆知识的综合运用,涉及到解直角三角形、勾股定理等知识,其中(3),要关键是根据题意正确画图,此题用大量的解直角三角形的内容,综合难度很大.12.设C 为线段AB 的中点,四边形BCDE 是以BC 为一边的正方形,以B 为圆心,BD 长为半径的⊙B 与AB 相交于F 点,延长EB 交⊙B 于G 点,连接DG 交于AB 于Q 点,连接AD .求证:(1)AD 是⊙B 的切线;(2)AD =AQ ;(3)BC 2=CF×EG .【答案】(1)证明见解析;(2)证明见解析;(3)证明见解析.【解析】【分析】()1连接BD ,由DC AB ⊥,C 为AB 的中点,由线段垂直平分线的性质,可得AD BD =,再根据正方形的性质,可得90ADB ∠=o ;()2由BD BG =与//CD BE ,利用等边对等角与平行线的性质,即可求得122.52G CDG BDG BCD ∠=∠=∠=∠=o ,继而求得67.5ADQ AQD ∠=∠=o ,由等角对等边,可证得AD AQ =; ()3易求得67.5GDE GDB BDE DFE ∠=∠+∠==∠o ,90DCF E ∠=∠=o ,即可证得Rt DCF V ∽Rt GED V ,根据相似三角形的对应边成比例,即可证得结论.【详解】证明:()1连接BD ,Q 四边形BCDE 是正方形,45DBA ∴∠=o ,90DCB ∠=o ,即DC AB ⊥,C Q 为AB 的中点,CD ∴是线段AB 的垂直平分线,AD BD ∴=,45DAB DBA ∴∠=∠=o ,90ADB ∴∠=o ,即BD AD ⊥,BD Q 为半径,AD ∴是B e 的切线;()2BD BG =Q ,BDG G ∴∠=∠,//CD BE Q ,CDG G ∴∠=∠,122.52G CDG BDG BCD ∴∠=∠=∠=∠=o , 9067.5ADQ BDG ∴∠=-∠=o o ,9067.5AQB BQG G ∠=∠=-∠=o o , ADQ AQD ∴∠=∠,AD AQ ∴=;()3连接DF ,在BDF V 中,BD BF =,BFD BDF ∴∠=∠,又45DBF ∠=o Q ,67.5BFD BDF ∴∠=∠=o ,22.5GDB ∠=o Q ,在Rt DEF V 与Rt GCD V 中,67.5GDE GDB BDE DFE ∠=∠+∠==∠o Q ,90DCF E ∠=∠=o ,Rt DCF ∴V ∽Rt GED V ,CF CD ED EG∴=, 又CD DE BC ==Q ,2BC CF EG ∴=⋅.【点睛】本题考查了相似三角形的判定与性质、切线的判定与性质、正方形的性质以及等腰三角形的判定与性质.解题的关键是注意掌握数形结合思想的应用,注意辅助线的作法.13.如图,已知AB 是⊙O 的直径,点C 、D 在⊙O 上,∠D =60°且AB =6,过O 点作OE ⊥AC ,垂足为E .(1)求OE 的长;(2)若OE的延长线交⊙O于点F,求弦AF、AC和弧CF围成的图形(阴影部分)的面积.(结果保留π)【答案】(1)OE的长为32;(2)阴影部分的面积为3 2π【解析】(1)OE=32(2)S=32π14.如图1,⊙O的直径AB=12,P是弦BC上一动点(与点B,C不重合),∠ABC=30°,过点P作PD⊥OP交⊙O于点D.(1)如图2,当PD∥AB时,求PD的长;(2)如图3,当弧DC=弧AC时,延长AB至点E,使BE=12AB,连接DE.①求证:DE是⊙O的切线;②求PC的长.【答案】(1)6;(2)①证明见解析;33.【解析】试题分析:(1)根据题意首先得出半径长,再利用锐角三角三角函数关系得出OP,PD的长;(2)①首先得出△OBD是等边三角形,进而得出∠ODE=∠OFB=90°,求出答案即可;②首先求出CF的长,进而利用直角三角形的性质得出PF的长,进而得出答案.试题解析:(1)如图2,连接OD,∵OP⊥PD,PD∥AB,∴∠POB=90°,∵⊙O的直径AB=12,∴OB=OD=6,在Rt△POB中,∠ABC=30°,∴OP=OB•tan30°=6×=2,在Rt△POD中,PD===;(2)①如图3,连接OD,交CB于点F,连接BD,∵,∴∠DBC=∠ABC=30°,∴∠ABD=60°,∵OB=OD,∴△OBD是等边三角形,∴OD⊥FB,∵BE=AB,∴OB=BE,∴BF∥ED,∴∠ODE=∠OFB=90°,∴DE是⊙O的切线;②由①知,OD⊥BC,∴CF=FB=OB•cos30°=6×=3,在Rt△POD中,OF=DF,∴PF=DO=3(直角三角形斜边上的中线,等于斜边的一半),∴CP=CF﹣PF=3﹣3.考点:圆的综合题15.已知:如图,以等边三角形ABC一边AB为直径的⊙O与边AC、BC分别交于点D、E,过点D作DF⊥BC,垂足为F.(1)求证:DF为⊙O的切线;(2)若等边三角形ABC 的边长为4,求图中阴影部分的面积.【答案】(1)见解析(2)332 23π-【解析】试题分析:(1)连接DO,要证明DF为⊙O的切线只要证明∠FDP=90°即可;(2)首先由已知可得到CD,CF的长,从而利用勾股定理可求得DF的长;再连接OE,求得CF,EF的长,从而利用S直角梯形FDOE﹣S扇形OED求得阴影部分的面积.试题解析:(1)证明:连接DO.∵△ABC是等边三角形,∴∠A=∠C=60°.∵OA=OD,∴△OAD是等边三角形.∴∠ADO=60°,∵DF⊥BC,∴∠CDF=90°﹣∠C=30°,∴∠FDO=180°﹣∠ADO﹣∠CDF=90°,∴DF为⊙O的切线;(2)∵△OAD是等边三角形,∴AD=AO=AB=2.∴CD=AC﹣AD=2.Rt△CDF中,∵∠CDF=30°,∴CF=CD=1.∴DF=,连接OE,则CE=2.∴CF=1,∴EF=1.∴S直角梯形FDOE=(EF+OD)•DF=,∴S扇形OED==,∴S阴影=S直角梯形FDOE﹣S扇形OED=﹣.【点睛】此题考查学生对切线的判定及扇形的面积等知识点的掌握情况,当已知条件中明确指出直线与圆有公共点时,常连接过该公共点的半径,证明该半径垂直于这条直线.也考查了等边三角形的性质和利用割补法计算补规则图形的面积.。
2019甘肃中考数学-圆的切线证明与综合计算(16道 有解析)

2019甘肃中考数学-圆的切线证明与综合计算1.如图,AB是⊙O的直径,点P在AB的延长线上,弦CE交AB于点D,连接OE,AC,且∠P=∠E,∠POE=2∠CAB.(1)求证:CE⊥AB;(2)求证:PC是⊙O的切线;(3)若BD=2OD,且PB=9,求tan P的值.第1题图(1)证明:如解图,连接OC,第1题解图∴∠COB=2∠CAB,又∵∠POE=2∠CAB,∴∠COD=∠EOD,又∵OC=OE,∴CE⊥AB;(2)证明:∵CE⊥AB,∠P=∠E,∴∠P+∠PCD=∠E+∠PCD=90°,又∠OCD=∠E,∴∠OCD+∠PCD=∠PCO=90°,∵OC是⊙O的半径,∴PC是⊙O的切线;(3)解:设⊙O的半径为r,OD=x,则BD=2x,r=3x,∵CD⊥OP,OC⊥PC,∴Rt△OCD∽Rt△OPC,∴OC 2=OD ·OP ,即(3x )2=x (3x +9), 解得x =32或x =0(舍去),∴⊙O 的半径r 为92,同理可得PC 2=PD ·PO =(PB +BD ) ·(PB +OB )=162, ∴PC =92, 在Rt △OCP 中,tan P =OC PC =242、如图所示, 直线DP 和☉O 相切于点C ,交直径AE 的延长线于点P , 过点C 作AE 的垂线, 交AE 于点F , 交☉O 于点B ,作平行四边形ABCD ,连接BE , DO ,CO . (1)求证:DA =DC ;(2)求∠P 及∠AEB 的大小.第2题图(1)证明:∵在平行四边形ABCD 中,AD ∥BC ,CB ⊥AE , ∴AD ⊥AE ,∴∠DAO =90°, 又∵直线DP 和☉O 相切于点C , ∴DC ⊥OC ,∴∠DCO =90°,∴在Rt △DAO 和Rt △DCO 中, ⎩⎨⎧DO =DO AO =CO, ∴Rt △DAO ≌Rt △DCO (HL), ∴DA =DC ;(2)解:∵CB ⊥AE ,AE 是⊙O 的直径,∴CF =FB =12BC ,又∵四边形ABCD 是平行四边形, ∴AD =BC , ∴CF =12AD ,又∵CF ∥DA ,∴△PCF ∽△PDA ,∴PC PD =DC PD =12,即PC =12PD ,DC =12PD . 由 (1) 知DA =DC ,∴DA =12PD ,∴在Rt △DAP 中,∠P =30°.∵DP ∥AB ,∴∠FAB =∠P =30°, 又∵∠ABE =90°,∴∠AEB =90°-30°=60°.3.如图,点C 在以AB 为直径的⊙O 上,AD 与过点C 的切线垂直,垂足为D ,AD 交⊙O 于点E .(1)求证:AC 平分∠DAB;(2)连接BE 交AC 于点F ,若cos ∠CAD =45,求AFFC的值.第3题图(1) 证明:连接OC ,如解图①,第3题解图①∵CD 是⊙O 的切线, ∴OC ⊥CD , ∵AD ⊥CD , ∴OC ∥AD ,∴∠DAC =∠OCA , ∵OC =OA ,∴∠OCA =∠OAC , ∴∠DAC =∠OAC , ∴AC 平分∠DAB ;(2)解:如解图②,连接BC ,第3题解图②∵AB 是⊙O 的直径, ∴∠ACB =90°, ∵cos ∠CAD =45,设AD =4x ,则AC =5x ,CD =3x ,∴tan ∠DAC =34,∵∠EBC =∠DAC ,由(1)得,∠BAC =∠DAC , ∴∠EBC =∠BAC ,∴tan ∠EBC =tan ∠BAC =tan ∠DAC =34,∴CF BC =BC AC =34, ∴BC AC ·CF BC =34×34, ∴CF AC =916,∴CF AF =97,∴AF FC =79. 4.如图,在△ABC 中,AB =AC ,以AB 为直径的⊙O 与边BC ,AC 分别交于D ,E 两点,过点D 作DF ⊥AC ,垂足为点F . (1)求证:DF 是⊙O 的切线; (2)若AE =4,cos A =25,求DF 的长.第4题图(1)证明:如解图,连接OD ,第4题解图∵OB =OD ,∴∠ODB =∠B , 又∵AB =AC , ∴∠C =∠B , ∴∠ODB =∠C , ∴OD ∥AC , ∵DF ⊥AC ,∴∠DFC =90°,∴∠ODF =∠DFC =90°, ∵OD 是⊙O 的半径, ∴DF 是⊙O 的切线;(2)解:如解图,过点O 作OG ⊥AC ,垂足为G , ∴AG =12AE =2.∵cos A =AG OA =2OA =25, ∴OA =5,∴OG =OA 2-AG 2=21, ∵∠ODF =∠DFG =∠OGF =90°, ∴四边形OGFD 为矩形, ∴DF =OG =21.5、如图,CD 是⊙O 的直径,点B 在⊙O 上,连接BC 、BD ,直线AB 与CD 的延长线相交于点A ,AB 2=AD ·AC ,OE ∥BD 交直线AB 于点E ,OE 与BC 相交于点F , (1)求证:直线AE 是⊙O 的切线;(2)若⊙O 的半径为3,cos A =54,求OF 的长.G第5题图(1)证明:如解图,连接OB ,∵AB 2=AD ·AC ,∴AB AD =ACAB,∵∠A 为公共角,∴△ABD ∽△ACB , ∴∠ABD =∠ACB , 在⊙O 中,OB =OC , ∴∠OBC =∠OCB , ∴∠OBC =∠ABD ,∵CD 是⊙O 的直径,∴∠CBD =90°,∴∠OBC +∠OBD =90°,∴∠OBD +∠ABD =90°, 即∠OBA =90°,∵点B 为AE 上一点,且OB 为⊙O 的半径, ∴AE 是⊙O 的切线;第4题解图(2)解:在Rt △ABO 中,OB =3,cos A =AB OA =45, ∴设AB =4k ,OA =5k (k > 0), 又OA 2=AB 2+OB 2, ∴(5k )2=(4k )2+32, ∴k 2=1(k >0),∴k =1,即AB =4,OA =5, ∵OD =3,∴AD =OA -OD =2, ∵OE ∥BD , ∴AD OD =AB BE ,即23=4BE, ∴BE =6.在Rt △OBE 中,OE =BE 2+OB 2=62+32=35, ∵∠CBD =90°,BD ∥OE , ∴∠EFB =90°,∵S △OBE =12OB ·BE =12OE ·BF ,∴BF =OB ·BE OE =3×635=655, 在Rt △OBF 中,由勾股定理可知,55355632242=⎪⎪⎭⎫ ⎝⎛-=-=BF BO OF . 6.如图,在△ABC 中,AB =AC ,以AB 为直径的⊙O 与BC 交于点D ,过点D 作⊙O 的切线交AC 于点E . (1)求证:∠ABD =∠ADE ; (2)若⊙O 的半径为256,AD =203,求CE 的长.第6题图(1)证明:如解图,连接OD .第6题解图 ∵DE 为⊙O 的切线, ∴OD ⊥DE ,∴∠ADO +∠ADE =90°. ∵AB 为⊙O 的直径, ∴∠ADB =90°, ∴∠ADO +∠ODB =90°. ∴∠ADE =∠ODB , ∵OB =OD, ∴∠OBD =∠ODB ,∴∠ABD =∠ADE ; (2)解:∵AB =AC =2×256=253,∠ADB =∠ADC =90°, ∴∠ABC =∠C ,BD =CD . ∵O 为AB 的中点, ∴OD 为△ABC 的中位线, ∴OD ∥AC , ∵OD ⊥DE , ∴AC ⊥DE , 在Rt △ACD 中,CD =AC 2-AD 2=(253)2-(203)2=5, ∵∠C =∠C ,∠DEC =∠ADC =90°, ∴△DEC ∽△ADC ,∴CE DC =DC AC ,即CE 5=5253, ∴CE =3.7. 如图,已知AB 是⊙O 的直径,CD 与⊙O 相切于C ,BE ∥CO . (1)求证:BC 是∠ABE 的平分线;(2)若DC =8,⊙O 的半径OA =6,求CE 的长.第7题图(1)证明:∵BE ∥CO , ∴∠OCB =∠EBC , ∵OC =OB ,∴∠OCB =∠OBC , ∴∠OBC =∠EBC ,∴BC 是∠ABE 的平分线;(2)解:设AD =x ,则DO =x +6, ∵CD 是⊙O 的切线,∴CD⊥CO , ∴∠DCO =90°,在Rt △DCO 中,有DC 2+CO 2=DO 2, ∴82+62=(x +6)2,解得x =4, ∴DO =10,∵CO ∥BE ,∴CE DC =BODO ,∴CE 8=610,∴CE =245. 8.如图,在⊙O 中,AC 与BD 是⊙O 的直径,BE ⊥AC ,CF ⊥BD ,垂足分别为E ,F .(1)四边形ABCD 是什么特殊的四边形?请判断并说明理由; (2)求证:BE =CF .第8题图(1)解:四边形ABCD 是矩形,理由如下: ∵AC 与BD 是⊙O 的直径,∴∠ABC =∠ADC =90°,∠BAD =∠BCD =90°, ∴四边形ABCD 是矩形 ;(2)证明:∵BE ⊥AC ,CF ⊥BD , ∴∠BEO =∠CFO =90°, 在△BOE 和△COF 中,⎩⎨⎧ ∠BEO =∠CFO ∠BOE =∠COF , OB =OC∴△BOE ≌△COF (AAS). ∴BE =CF .9.如图,在△ABC 中,以BC 为直径的⊙O 交AB 于点D ,∠ACD =∠ABC . (1)求证:CA 是⊙O 的切线;(2)若点E 是BC 上一点,已知BE =6,tan ∠ABC =23,tan ∠AEC =53,求⊙O 的直径.第9题图(1)证明:∵BC 是⊙O 的直径, ∴∠BDC =90°,∴∠ABC +∠DCB =90°, ∵∠ACD =∠ABC ,∴∠ACD +∠DCB =90°, ∴∠ACB =90°, 即BC ⊥CA ,又∵BC 是⊙O 的直径, ∴CA 是⊙O 的切线;(2)解:在Rt △AEC 中,tan ∠AEC =53,∴AC EC =53,EC =35AC . 在Rt △ABC 中,tan ∠ABC =23,∴AC BC =23,BC =32AC . ∵BC -EC =BE =6,∴32AC -35AC =6,解得AC =203, ∴BC =32×203=10,即⊙O 的直径为10.10.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,点P 在⊙O 上,∠1=∠BCD . (1)求证:CB ∥PD ;(2)若BC =3,sin ∠BPD =35,求⊙O 的直径.第10题图(1)证明:∵∠BPD =∠BCD, ∠1=∠BCD , ∴∠1=∠BPD , ∴CB ∥PD ;(2)解:如解图,连接AC ,第10题解图∵AB 是⊙O 的直径, ∴∠ACB =90°, ∵CD ⊥AB , ∴BD ︵=BC ︵, ∴∠BPD =∠CAB ,∴sin ∠BPD =sin ∠CAB =35,即BC AB =35, ∵BC =3, ∴AB =5,即⊙O 的直径是5.11.如图,在△ABC 中,AB =AC ,以AB 为直径的⊙O 交BC 于点D ,过点D 作⊙O 的切线DE 交AC 于点E ,交AB 延长线于点F . (1)求证:DE ⊥AC ;(2)若AB =10,AE =8,求BF 的长.第11题图(1)证明:如解图,连接OD ,AD ,第11题解图∵DE 与⊙O 相切于点D , ∴OD ⊥DE .∵AB 是⊙O 的直径, ∴∠ADB =90°, ∵AB =AC ,∴D 为BC 中点, 又∵O 为AB 中点, ∴OD ∥AC ,∴DE ⊥AC ; (2)解:∵AB =10, ∴OB =OD =5.由(1)知OD ∥AC , ∴△ODF ∽△AEF ,∴ABBF OB BF AF OF AE OD ++==,设BF =x ,则有10585++=x x 解得x =310, ∴BF =310. 12.如图,AB是⊙O 的直径,点C 是⊙O 上一点,AD 和过点C 的切线互相垂直,垂足为D ,直线DC 与AB 的延长线相交于点P ,弦CE 平分∠ACB ,交直径AB 于点F ,连接BE .(1)求证:AC 平分∠DAB ;(2)若tan ∠PCB =34,BE =52,求PF 的长.第12题图(1)证明:如解图,连接OC , ∵OA =OC , ∴∠OAC =∠OCA ,∵PC 是⊙O 的切线,且AD ⊥CD , ∴∠OCP =∠D =90°, ∴OC ∥AD ,∴∠CAD =∠OCA =∠OAC ,即AC 平分∠DAB ; (2)解:如解图,连接AE ,第12题解图∵弦CE 平分∠ACB , ∴∠ACE =∠BCE , ∴AE ︵=BE ︵,∴AE=BE,又∵AB是直径,∴∠AEB=90°,AB=2BE=10,∴OB=OC=5,∵∠PCB=∠PAC,∠P=∠P,∴△PCB∽△PAC,∴PBPC=BCCA,∵tan∠PCB=tan∠CAB=34,∴PBPC=BCCA=34,设PB=3x,则PC=4x,在Rt△POC中,根据勾股定理得,(3x+5)2=(4x)2+52,解得x1=0,x2=307.∵x>0,∴x=307,∴PC=1207,又∵∠PCB=∠PAC,∠BCE=∠ACF,∴∠PCB+∠BCE=∠PAC+∠ACF,即∠PCF=∠PFC,∴PF=PC=1207.13. 如图,AB为⊙O的直径,直线CD切⊙O于点M,BE⊥CD于点E.(1)求证:∠BME=∠MAB;(2)若BE=185,sin∠BAM=35,求⊙O的半径.第13题图(1)证明:如解图,连接OM,∴直线CD切⊙O于点M,∴∠OMD=90°,第13题解图∴∠BME+∠OMB=90°,∵AB为⊙O的直径,∴∠AMB=90°,∴∠AMO+∠OMB=90°,∴∠BME=∠AMO.∵OA=OM,∴∠MAB=∠AMO.∴∠BME=∠MAB;(2)解:由(1)可得,∠BME=∠MAB.∵sin∠BAM=35,∴sin∠BME=35,在Rt△BEM中,BE=185,sin∠BEM=BEBM=35.∴BM=6,在Rt△ABM中,∵sin∠BAM=BMAB=35.∴AB=35BM=10.∴⊙O的半径为5.14.如图,已知△ABC内接于⊙O,点C在劣弧AB上(不与点A,B重合),点D 为弦BC的中点,DE⊥BC,DE与AC的延长线交于点E,射线AO与射线EB交于点F,与⊙O交于点G,设∠GAB=α,∠ACB=∠β,∠EAG+∠EBA=γ.(1)用含α的代数式表示β和γ;(2)若γ=135°,CD=3,△ABE的面积为△ABC的面积的4倍,求⊙O半径的长.第14题图解:(1)如解图①,连接OB,由圆周角定理可知:2∠BCA=360°-∠BOA,∵OB=OA,∴∠OBA=∠OAB=α,第14题解图①∴∠BOA =180°-2α,∴2β=360°-(180°-2α), ∴β=α+90°,∵D 是BC 的中点,DE ⊥BC , ∴OE 是线段BC 的垂直平分线,∴BE =CE ,∠BED =∠CED ,∠EDC =90°, ∵∠BCA =∠EDC +∠CED , ∴β=90°+∠CED , ∴∠CED =α,∴∠CED =∠OBA =α, ∴O 、A 、E 、B 四点共圆, ∴∠EBO +∠EAG =180°,∴∠EBA +∠OAB +∠EAG =180°, ∴γ+α=180°,即γ=180°-α;(2)∵γ=135°,∴α=45°,β=135°, ∵OA =OB ,∴∠OBA =α=45°, ∴∠BOA =90°,∠BCE =45°,∴当γ=135°时,如解图②所示,连接OB ,第14题解图②由(1)可知:O 、A 、E 、B 四点共圆,∴∠BEC =90°, ∵△ABE 的面积为△ABC 的面积的4倍, ∴AE AC =4,∴CEAC=3, 设CE =3x ,AC =x ,∵D 是BC 的中点,∴BC =2CD =6, ∵∠BCE =45°,∴BE =CE =3x ,由勾股定理可知(3x)2+(3x)2=62,解得x=2,∴BE=CE=32,AC=2,∴AE=AC+CE=42,在Rt△ABE中,由勾股定理可知:AB2=BE2+AE2=(32)2+(42)2=50,在Rt△AOB中,设半径为r,由勾股定理可知:AB2=2r2,∴r=5,∴⊙O半径的长为5.15.如图,梯形ABCD中,AD∥BC,AE⊥BC于E,∠ADC的平分线交AE于点O,以点O为圆心,OA为半径的圆经过点B,交BC于另一点F.(1)求证:CD与⊙O相切;(2)若BF=24,OE=5,求tan∠ABC的值.第15题图(1)证明:如解图,过点O作OM⊥CD,第15题解图∵OD平分∠ADC,∴∠ADO=∠MDO,∵AD∥BC,AE⊥BC,∴OA⊥AD,∴∠DAO=∠DMO=90°,∴OM=OA,∴OM是⊙O的半径,且∠DMO=90°,∴CD与⊙O相切;(2)解:如解图,连接OB,∵AE⊥BF,AE经过圆心,∴BE=EF=12BF=12,在Rt△OBE中,OB=BE2+OE2=122+52=13,∵OA=OB=13,∴AE=OA+OE=18,在Rt△ABE中,tan∠ABE=AEBE=1812=32.∴tan∠ABC=3 2 .16.如图,在△ABC中,AB=AC,以AB为直径作⊙O,分别交BC于点D,交CA 的延长线于点E,过点D作DH⊥AC于点H,连接DE交线段OA于点F.(1)求证:DH是⊙O的切线;(2)若EA=EF=1,求⊙O的半径.第16题图(1)证明:如解图,连接OD,第16题解图∵AB=AC,∴∠1=∠2,∵OB=OD,∴∠1=∠3,∴∠2=∠3,∴OD∥AC,∵DH⊥AC,∵OD是⊙O的半径,∴OD⊥DH,∴DH是⊙O的切线;(2)解:设⊙O的半径为r,∵OD∥EC,EA=EF=1,∴OD=FD=r,∵∠5=∠1,∠1=∠2,∴∠5=∠2,∴ED=DC=r+1,又∵AC=2OD=2r,∴EC=2r+1,如解图,连接AD,∵AB 为⊙O 的直径, ∴∠BDA =90°, ∵AB =AC ,∴D 为BC 的中点, ∴BC =2CD =2r +2,∵在△CDE 与△CAB 中,∠2为公共角,∠1=∠5, ∴△CDE ∽△CAB , ∴CD CA =CECB,即CD ·CB =CA ·CE , 得(r +1)(2r +2)=2r (2r +1), 解得r 1=5+12,r 2=1-52(舍去). ∴⊙O 的半径为5+12.。
圆中切线证明综合题及答案

3
hing at a time and All things in their being are good for somethin
12、 12 如图,AB 是⊙O 的直径,弦 CD⊥AB 于 H,过 CD 延长线上一点 E 作⊙O 的切线
交 AB 的延长线于 F.切点为 G,连接 AG 交 CD 于 K. (1)求证:KE=GE;
2
在 Rt△AOD 中,由勾股定理 ,得(2x-3)2=x2+32. 解之得,x1=4,x2=0(不合题意,舍去). AD=4,OA=2x-3=5.
∵AC 是⊙O 的直径,∴∠ABC=90°. 而 AC=2OA=10,BC=6, ∴cos∠ACB= 6 = 3 .
10 5
∵OA2=OD·OP,
∴3(PE+5)=25.
∴FG=
=
=
.
∴∠OAD+∠AOD=90°,∠OPA+∠AOP=90°.
∴∠OAD=∠OPA.∴△OAD∽△OPA.∴ OD = OA ,即 OA2=OD·OP.
OA OP
又∵EF=2OA,∴EF2=4OD·OP. (3)∵OA=OC,AD=BD,BC=6,∴OD= 1 BC=3.
2
设 AD=x,∵tan∠F= 1 ,∴FD=2∴ = ,又∠KGE=∠GKE,
∴△GKD∽△EGK, ∴∠E=∠AGD,又∠C=∠AGD, ∴∠E=∠C, ∴AC∥EF; (3)连接 OG,OC,如答图 3 所示.
sinE=sin∠ACH= ,设 AH=3t,则 AC=5t,CH=4t,
∵KE=GE,AC∥EF,∴CK=AC=5t,∴HK=CK﹣CH=t. 在 Rt△AHK 中,根据勾股定理得 AH2+HK2=AK2, 即(3t)2+t2=( )2,解得 t= . 设⊙O 半径为 r,在 Rt△OCH 中,OC=r,OH=r﹣3t,CH=4t, 由勾股定理得:OH2+CH2=OC2,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019 届中考数学圆的切线证明综合试题新人教版我们学习了直线和圆的位置关系,就出现了新的一类习题,就是证明一直线是圆的切线. 在我们所学的知识范围内,证明圆的切线常用的方法有:一、若直线l 过⊙ O上某一点 A,证明 l 是⊙ O的切线,只需连OA,证明 OA⊥ l 就行了,简称“连半径,证垂直”,难点在于如何证明两线垂直.例 1 如图,在△ ABC中, AB=AC,以 AB为直径的⊙ O交 BC于 D,交 AC于 E,B 为切点的切线交 OD 延长线于 F.求证: EF与⊙ O相切 .证明:连结 OE, AD.∵AB是⊙O的直径,∴ AD⊥ BC.又∵ AB=BC,∴∠ 3=∠ 4.⌒⌒∴ BD=DE,∠ 1=∠ 2.又∵ OB=OE, OF=OF,∴△ BOF≌△ EOF( SAS) .∴∠ OBF=∠ OEF.∵ BF与⊙ O相切,∴OB⊥ BF.∴∠ OEF=90.∴EF与⊙ O相切 .说明:此题是通过证明三角形全等证明垂直的例 2如图,AD是∠ BAC的平分线,P为BC延长线上一点,且PA=PD.求证: PA与⊙ O相切 .证明一:作直径 AE,连结 EC.∵AD是∠BAC的平分线,∴∠ DAB=∠ DAC.∵PA=PD,∴∠ 2=∠ 1+ ∠ DAC.∵∠ 2=∠ B+∠ DAB,∴∠ 1=∠ B.又∵∠ B=∠ E,∴∠ 1=∠ E∵ AE是⊙ O的直径,∴ AC⊥ EC,∠ E+∠EAC=90.∴∠ 1+∠ EAC=90.即 OA⊥ PA.∴PA 与⊙ O相切 .证明二:延长 AD交⊙ O于 E,连结 OA, OE.∵AD是∠ BAC的平分线,⌒⌒∴BE=CE,∴OE⊥ BC.∴∠ E+∠ BDE=90.∵OA=OE,∴∠ E=∠ 1.∵PA=PD,∴∠PAD=∠ PDA.又∵∠ PDA=∠ BDE,∴∠ 1+∠ PAD=90即 OA⊥ PA.∴ PA与⊙ O相切说明:此题是通过证明两角互余,证明垂直的,解题中要注意知识的综合运用.例 3 如图, AB=AC,AB 是⊙ O的直径,⊙ O交 BC于 D, DM⊥ AC于 M求证: DM与⊙ O相切 .证明一:连结 OD.∵A B=AC,∴∠ B=∠ C.∵OB=OD,∴∠ 1=∠ B.∴∠ 1=∠ C.∴OD∥ AC.∵DM⊥ AC,∴DM⊥OD.∴DM与⊙ O相切证明二:连结 OD, AD.∵AB是⊙O的直径,∴ AD⊥BC.又∵ AB=AC,∴∠ 1=∠ 2.∵DM⊥ AC,∴∠ 2+∠ 4=900∵OA=OD,∴∠ 1=∠ 3.∴∠ 3+∠ 4=900.即 OD⊥ DM.∴DM是⊙ O的切线说明:证明一是通过证平行来证明垂直的利用已知及图上已知.DC. 证明二是通过证两角互余证明垂直的,解题中注意充分例 4如图,已知:AB是⊙ O的直径,点 C 在⊙ O上,且∠ CAB=30, BD=OB, D在 AB的延长线上 .求证: DC是⊙ O的切线证明:连结 OC、 BC.∵OA=OC,∴∠ A=∠ 1=∠ 300.∴∠ BOC=∠ A+∠ 1=600.又∵ OC=OB,∴△ OBC是等边三角形.∴ OB=BC.D∵OB=BD,∴OB=BC=BD.∴OC⊥ CD.∴DC是⊙ O的切线 .说明:此题是根据圆周角定理的推论 3 证明垂直的,此题解法颇多,但这种方法较好.2例 5如图,AB是⊙ O的直径,CD⊥ AB,且OA=OD·OP.求证: PC是⊙ O的切线 .证明:连结 OC2∵ OA=OD· OP, OA=OC,2∴ OC=OD· OP,OC OP OD .OC又∵∠ 1=∠ 1,∴△ OCP∽△ ODC.∴∠ OCP=∠ ODC.∵ CD⊥ AB,∴∠ OCP=90.∴ PC是⊙ O的切线 .说明:此题是通过证三角形相似证明垂直的例 6如图, ABCD是正方形, G是 BC延长线上一点, AG交 BD于 E,交 CD于F.求证: CE与△ CFG的外接圆相切 .分析:此题图上没有画出△CFG的外接圆,但△ CFG是直角三角形,圆心在斜边FG的中点,为此我们取 FG的中点 O,连结 OC,证明 CE⊥ OC即可得解 .证明:取 FG中点 O,连结 OC.∵ ABCD是正方形,∴ BC⊥ CD,△ CFG是 Rt△∵ O是 FG的中点,∴ O是 Rt △ CFG的外心 .∵ OC=OG,∴∠ 3=∠ G,∵ AD∥ BC,∴∠ G=∠ 4.∵AD=CD, DE=DE,∠ADE=∠ CDE=45,∴△ ADE≌△ CDE( SAS)∴∠ 4=∠1,∠ 1=∠ 3.∵∠ 2+∠3=900,∴∠ 1+∠2=900.即 CE⊥ OC.∴ CE与△ CFG的外接圆相切OA⊥ l , A 为垂足,证二、若直线l 与⊙ O没有已知的公共点,又要证明l是⊙ O的切线,只需作明 OA是⊙ O的半径就行了,简称:“作垂直;证半径”例 7 如图, AB=AC,D 为 BC中点,⊙ D与 AB切于 E 点 .求证: AC与⊙ D 相切 .证明一:连结 DE,作 DF⊥ AC, F 是垂足 .∵AB 是⊙ D的切线,∴DE⊥AB.∵DF⊥AC,∴∠ DEB=∠ DFC=90.∵AB=AC,∴∠ B=∠ C.又∵ BD=CD,∴△ BDE≌△ CDF( AAS)∴D F=DE.∴F在⊙ D上.∴AC是⊙ D的切线证明二:连结 DE, AD,作 DF⊥ AC, F 是垂足 .∵AB与⊙D 相切,∴ DE⊥AB.∵AB=AC,BD=CD,∴∠ 1=∠ 2.∵ DE⊥AB, DF⊥AC,∴ DE=DF.∴F在⊙ D上.∴AC与⊙ D相切.说明:证明一是通过证明三角形全等证明DF=DE的,证明二是利用角平分线的性质证明DF=DE的,这类习题多数与角平分线有关.例 8 已知:如图, AC, BD与⊙ O切于 A、 B,且求证: CD是⊙ O的切线 .证明一:连结 OA, OB,作 OE⊥ CD, E 为垂足 .∵AC,BD与⊙O相切,∴ AC⊥ OA, BD⊥ OB.∵AC∥ BD,∴∠ 1+∠ 2+∠3+∠ 4=180 .∵∠ COD=90,∴∠ 2+∠3=900,∠ 1+∠ 4=900.∵∠ 4+∠5=90 .∴Rt △ AOC∽ Rt △ BDO.0 AC∥ BD,若∠ COD=90.O∴AC OC.OB OD∵OA=OB,∴AC OC.OA OD又∵∠ CAO=∠COD=90,∴△ AOC∽△ ODC,∴∠ 1=∠2.又∵ OA⊥AC, OE⊥CD,∴OE=OA.∴E 点在⊙ O上.∴CD是⊙ O的切线 .证明二:连结 OA, OB,作 OE⊥ CD于 E,延长 DO交 CA延长线于 F.∵ AC,BD与⊙ O相切,∴AC⊥OA, BD⊥OB.∵AC∥BD,∴∠ F=∠ BDO.又∵ OA=OB,∴△ AOF≌△ BOD( AAS)∴OF=OD.∵∠ COD=90,∴CF=CD,∠ 1=∠ 2.又∵ OA⊥ AC, OE⊥ CD,∴OE=OA.∴E点在⊙ O上.∴CD是⊙ O的切线 .证明三:连结 AO并延长,作OE⊥ CD于 E,取 CD中点 F,连结 OF.∵ AC与⊙ O相切,∴AC⊥AO.∵AC∥BD,∴AO⊥BD.∵BD与⊙ O相切于 B,∴ AO的延长线必经过点 B.∴AB是⊙ O的直径 .∵AC∥BD, OA=OB,CF=DF,∴ OF∥AC,∴∠ 1=∠ COF.∵∠ COD=90, CF=DF,∴ OF 1 CDCF. 2∴∠ 2=∠ COF.∴∠ 1=∠ 2.∵OA⊥AC,OE⊥CD,∴ OE=OA.∴ E点在⊙ O上.∴ CD是⊙ O的切线说明:证明一是利用相似三角形证明∠1=∠ 2,证明二是利用等腰三角形三线合一证明∠1=∠ 2. 证明三是利用梯形的性质证明∠1=∠2,这种方法必需先证明A、O、 B 三点共线 .此题较难,需要同学们利用所学过的知识综合求解.以上介绍的是证明圆的切线常用的两种方法供同学们参考.以下是武汉市2007----2010 中考题汇编:( 2007 中考)22.( 本题8分 ) 如图,等腰三角形中,==,=12。
以为直径作⊙O交ABC AC BC 10AB BCAB于点 D,交 AC于点 G, DF⊥ AC,垂足为 F,交 CB的延长线于点E。
(1)求证:直线 EF是⊙ O的切线;(2)求 CF: CE的值。
AF DGE B OC(第 22题图)( 2008 中考) 22.(本题8 分)如图, AB 是⊙ O的直径, AC是弦,∠ BAC的平分线 AD交⊙ O于点 D,DE⊥ AC,交 AC的延长线于点E,OE交 AD于点 F.⑴求证: DE是⊙ O的切线;⑵若AC3,求AF的值。
AB5DFECDFAOB( 2009 中考) 22.(本题满分 8 分)如图,Rt △ ABC中,,以AB为直径作⊙O交AC边于点D,E是边BC的中点,连ABC 90°接DE.C( 1)求证:直线DE是⊙O的切线;(2)连接OC交DE于点F,若OF CF ,求 tan ACO 的值.D FEAOB(2010 中考) 22.如图,点 O在∠ APB的平分线上,⊙ O与 PA相切于点 C.(1)求证:直线 PB与⊙ O相切;(2)PO的延长线与⊙ O交于点E.若⊙ O的半径为3,PC=4.求弦CE的长.。