最新雅礼中学理科实验班招生考试试题(数学)

合集下载

雅礼中学理科数学试题(八)+解析

雅礼中学理科数学试题(八)+解析
6 求四棱锥 P - ABCD 的体积.
3
20.(本小题满分 12 分)已知抛物线 C 的顶点是椭圆 该椭圆右焦点重合。 (Ⅰ)求抛物线 C 的方程;
x2 y2 1 的中心,且焦点与 43
(Ⅱ)若 P(a,0) 为 x 轴上一动点,过 P 点作直线交抛物线 C 于 A、B 两点。
(ⅰ)设 SAOB t tan AOB, 试问:当 a 为何值时,t 取得最小值,并求此最小值。
3.下列说法正确的是( )
A. a R," 1 1" 是 "a 1" 的必要不充分条件 a
B. “ p q 为真命题”是“ p q 为真命题”的必要不充分条件
C. 命题 "x R ,使得 x2 2x 3 0" 的否定是 "x R , x2 2x 3 0"
D.命题 p : "x R, sin x cos x 2 ",则 p 是真命题
4. 右侧程序框图所示的算法来自于《九章算术》.若输入 a 的值
为16 , b 的值为 24 ,则执行 该程序框图输出的结果为( )
A.6
B.7
C.8
D.9
5. 已知直线 a 与直线 b 垂直, a 平行于平面 ,则 b 与平面 的位置关系是( )
A. b //
B. b
C. b 与平面 相交 D.以上都有可能
1 b2
1
11. 如图,在 ABC 中, AD AB, BC 3BD, AD 1,
则 AC AD 的值为( )
A.1
B.2
C.3
D.4
12.已知抛物线 C : y2 8x 的焦点为 F ,准线为 l , P 是 l 上一点,直线 PF 与曲线 C 相

2024-2025学年湖南省长沙市雅礼中学高三上学期月考(三)数学试题(含答案)

2024-2025学年湖南省长沙市雅礼中学高三上学期月考(三)数学试题(含答案)

2024-2025学年湖南省长沙市雅礼中学高三上学期月考(三)数学试题一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.命题“存在x∈Z,x2+2x+m≤0”的否定是( )A. 存在x∈Z,x2+2x+m>0B. 不存在x∈Z,x2+2x+m>0C. 任意x∈Z,x2+2x+m≤0D. 任意x∈Z,x2+2x+m>02.已知集合A={ i , i2 , i3 ,i4 }(i是虚数单位),B={ 1 , −1 },则A∩B=( )A. { −1 }B. { 1 }C. { 1 , −1 }D. ⌀3.已知奇函数f(x)=(2x+m⋅2−x)cos x,则m=( )A. −1B. 0C. 1D. 124.已知m,l是两条不同的直线,α,β是两个不同的平面,则下列可以推出α⊥β的是( )A. m⊥l,m⊂β,l⊥αB. m⊥l,α∩β=l,m⊂αC. m//l,m⊥α,l⊥βD. l⊥α,m//l,m//β5.已知函数f(x)=4cos(ωx+φ)(ω>0)图象的一个最高点与相邻的对称中心之间的距离为5,则f(−6φπ)=( )A. 0B. 2φC. 4D. φ26.已知M是圆C:x2+y2=1上一个动点,且直线l1:mx−ny−3m+n=0与直线l2:nx+my−3m−n=0(m,n∈R,m2+n2≠0)相交于点P,则|PM|的取值范围是( )A. [3−1,23+1]B. [2−1,32+1]C. [2−1,22+1]D. [2−1,33+1]7.P是椭圆C:x2a2+y2b2=1(a>b>0)上一点,F1、F2是C的两个焦点,PF1⋅PF2=0;点Q在∠F1PF2的平分线上,O为原点,OQ//PF1,且|OQ|=b.则C的离心率为( )A. 12B. 33C. 63D. 328.设集合A={(x1,x2,x3,x4,x5)|x i∈{−1,0,1},i=1,2,3,4,5},那么集合A中满足条件“1≤|x1|+|x2|+|x3|+ |x4|+|x5|≤3”的元素个数为( )A. 60B. 90C. 120D. 130二、多选题:本题共3小题,共18分。

湖南省雅礼中学2023-2024学年高三上学期月考(二)数学试题(含答案)

湖南省雅礼中学2023-2024学年高三上学期月考(二)数学试题(含答案)

大联考雅礼中学2024届高三月考试卷(二)数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.时量120分钟,满分150分.第Ⅰ卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若12z i =+,则()1z z +⋅=()A.24i --B.24i-+ C.62i- D.62i+【答案】C 【解析】【分析】根据复数的乘法运算和共轭复数的定义求解.【详解】()()()122i 12i 244i 2i 62i z z +⋅=+-=+-+=-.故选:C .2.全集U =R ,集合{2,3,5,7,9}A =,{4,5,6,8}B =,则阴影部分表示的集合是()A.{2,3,5,7,9}B.{2,3,4,5,6,7,8,9}C.{4,6,8}D.{5}【答案】C 【解析】【分析】根据给定的条件利用韦恩图反应的集合运算直接计算作答.【详解】韦恩图的阴影部分表示的集合为()U A B ð,而全集U =R ,集合{2,3,5,7,9}A =,{4,5,6,8}B =,所以(){4,6,8}U A B ⋂=ð.故选:C 3.函数()2log 22xxx x f x -=+的部分图象大致是()A. B.C. D.【答案】A 【解析】【分析】利用函数的奇偶性和特殊点即得.【详解】易知()2log 22xxx x f x -=+的定义域为{}0x x ≠,因为()()22log log 2222xxxxx x x f x x f x -----==-=-++,所以()f x 为奇函数,排除答案B ,D ;又()2202222f -=>+,排除选项C .故选:A .4.在边长为3的正方形ABCD 中,点E 满足2CE EB = ,则AC DE ⋅=()A.3 B.3- C.4- D.4【答案】A 【解析】【分析】建立直角坐标系,写出相关点的坐标,得到AC ,DE,利用数量积的坐标运算计算即可.【详解】以B 为原点,BC ,BA 所在直线分别为x ,y 轴,建立如图所示直角坐标系,由题意得()()()()0,3,1,0,3,0,3,3A E C D ,所以()3,3AC =- ,()2,3DE =--,所以()()()32333AC DE ⋅=⨯-+-⨯-=.故选:A.5.某校科技社利用3D 打印技术制作实心模型.如图,该模型的上部分是半球,下部分是圆台.其中半球的体积为3144πcm ,圆台的上底面半径及高均是下底面半径的一半.打印所用原料密度为31.5g/cm ,不考虑打印损耗,制作该模型所需原料的质量约为()(1.5 4.7π≈)A.3045.6gB.1565.1gC.972.9gD.296.1g【答案】C 【解析】【分析】由题意可知所需要材料的体积即为半球体积与圆台体积之和,先求出圆台的体积,再利用组合体的体积乘以打印所用原料密度可得结果.【详解】设半球的半径为R ,因为332π144πcm 3V R ==半球,所以6R =,由题意圆台的上底面半径及高均是3,下底面半径为6,所以((223113π6π363πcm 33V S S h =+=⋅+⋅+⨯=下上圆台,所以该实心模型的体积为3144π63π207πcm V V V =+=+=半球圆台,所以制作该模型所需原料的质量为207π 1.5207 4.7972.9g ⨯≈⨯=故选:C6.已知数列{} n a 为等比数列,其前n 项和为n S ,10a >,则“公比0q >”是“对于任意*n ∈N ,0n S >”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A 【解析】【分析】根据等比数列的通项公式以及前n 项和公式,分别验证充分性以及必要性即可得到结果.【详解】若10a >,且公比0q >,则110n n a a q -=>,所以对于任意*n ∈N ,0n S >成立,故充分性成立;若10a >,且12q =-,则()111112212111101323212n n nn n a S a a ⎡⎤⎛⎫--⎢⎥ ⎪⎡⎤⎡⎤⎝⎭⎢⎥⎛⎫⎛⎫⎣⎦==-=--⨯>⎢⎥⎢⎥ ⎪ ⎪⎛⎫⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦-- ⎪⎝⎭,所以由对于任意*n ∈N ,0n S >,推不出0q >,故必要性不成立;所以“公比0q >”是“对于任意*n ∈N ,0n S >”的充分不必要条件.故选:A7.若存在实数a ,对任意的x ∈[0,m ],都有(sin x -a )·(cos x -a )≤0恒成立,则实数m 的最大值为()A.4πB.2πC.34π D.54π【答案】C 【解析】【分析】根据已知不等式得到,要求y =sin x 和y =cos x 的图象不在y =a=2的同一侧,利用正弦函数、余弦函数图象的性质进行解答即可.【详解】在同一坐标系中,作出y =sin x 和y =cos x的图象,当m =4π时,要使不等式恒成立,只有a=2,当m >4π时,在x ∈[0,m ]上,必须要求y =sin x 和y =cos x 的图象不在y =a=2的同一侧.∴由图可知m 的最大值是34π.故选:C.8.已知函数()f x 的定义域为R ,()()()()2,24f x f x f f +=--=-,且()f x 在[)1,+∞上递增,则()10xf x ->的解集为()A.()()2,04,∞-⋃+ B.()(),15,∞∞--⋃+C.()(),24,-∞-+∞ D.()()1,05,∞-⋃+【答案】D 【解析】【分析】根据()()2f x f x +=-可得()f x 关于直线1x =对称,根据()()24f f -=-可得()()240f f -==,结合函数()f x 的单调性可得函数图象,根据图象列不等式求解集即可.【详解】解:函数()f x ,满足()()2f x f x +=-,则()f x 关于直线1x =对称,所以()()()244f f f -==-,即()()240f f -==,又()f x 在[)1,+∞上递增,所以()f x 在(),1-∞上递减,则可得函数()f x 的大致图象,如下图:所以由不等式()10xf x ->可得,20210x x -<<⎧⎨-<-<⎩或414x x >⎧⎨->⎩,解得10x -<<或5x >,故不等式()10xf x ->的解集为()()1,05,∞-⋃+.故选:D.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.对于实数a ,b ,c ,下列选项正确的是()A.若a b >,则2a ba b +>> B.若0a b >>,则a b>>C.若11a b>,则0a >,0b < D.若0a b >>,0c >,则b c ba c a+>+【答案】ABD 【解析】【分析】利用比较法、特例法逐一判断即可.【详解】对选项A ,因为a b >,所以022a b a b a +--=>,022a b a bb +--=>,所以2a ba b +>>,故A 正确;对选项B ,0a b >>1=>,所以a >因为1b =>b >,即a b >>,故B 正确;对选项C ,令2a =,3b =,满足11a b>,不满足0a >,0b <,故C 错误;对选项D ,因为0a b >>,0c >,所以()()()()()0a b c b a c c a b b c b a c a a a c a a c +-+-+-==>+++,故D 正确.故选:ABD .10.已知函数()2sin cos 2f x x x x =-+,则下列说法正确的是()A.()πsin 23f x x ⎛⎫=- ⎪⎝⎭B.函数()f x 的最小正周期为πC.函数()f x 的对称轴方程为()5πZ 12x k k π=+∈D.函数()f x 的图象可由sin 2y x =的图象向右平移π3个单位长度得到【答案】AB 【解析】【分析】利用二倍角公式及辅助角公式化简函数,再结合正弦函数的图像性质逐项判断.【详解】()211cos 21πsin cos sin 2sin 2cos 2sin 22222223x f x x x x x x x x +⎛⎫=-+=--=- ⎪⎝⎭,所以A 正确;对于B ,函数()f x 的最小正周期为2ππ2=,所以B 正确;对于C ,由ππ2π32x k -=+,k ∈Z ,得5ππ122k x =+,Z k ∈,所以函数()f x 的对称轴方程为5ππ122k x =+,Z k ∈,所以C 不正确;对于D ,sin 2y x =的图象向右平移π6个单位长度,得ππsin 2sin 263y x x ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,所以函数()f x 的图象可由sin 2y x =的图象向右平移π6个单位长度得到,所以D 不正确.故选:AB .11.设n S 是公差为d (0d ≠)的无穷等差数列{}n a 的前n 项和,则下列命题正确的是()A.若0d <,则1S 是数列{}n S 的最大项B.若数列{}n S 有最小项,则0d >C.若数列{}n S 是递减数列,则对任意的:*N n ∈,均有0nS <D.若对任意的*N n ∈,均有0n S >,则数列{}n S 是递增数列【答案】BD 【解析】【分析】取特殊数列判断A ;由等差数列前n 项和的函数特性判断B ;取特殊数列结合数列的单调性判断C ;讨论数列{}n S 是递减数列的情况,从而证明D.【详解】对于A :取数列{}n a 为首项为4,公差为2-的等差数列,2146S S =<=,故A 错误;对于B :等差数列{}n a 中,公差0d ≠,211(1)(222n n n d dS na d n a n -=+=+-,n S 是关于n 的二次函数.当数列{}n S 有最小项,即n S 有最小值,n S 对应的二次函数有最小值,对应的函数图象开口向上,0d >,B 正确;对于C :取数列{}n a 为首项为1,公差为2-的等差数列,22n S n n =-+,122(1)2(1)(2)210n n S n n n n S n =-+++-+---=+<+,即1n n S S <+恒成立,此时数列{}n S 是递减数列,而110S =>,故C 错误;对于D :若数列{}n S 是递减数列,则10(2)n n n a S S n -=-<≥,一定存在实数k ,当n k >时,之后所有项都为负数,不能保证对任意*N n ∈,均有0n S >.故若对任意*N n ∈,均有0n S >,有数列{}n S 是递增数列,故D 正确.故选:BD12.如图所示,在棱长为2的正方体1111ABCD A B C D -中,点M ,N 分别为棱11B C ,CD 上的动点(包含端点),则下列说法正确的是()A.四面体11A D MN 的体积为定值B.当M ,N 分别为棱11B C ,CD 的中点时,则在正方体中存在棱与平面1A MN 平行C.直线MN 与平面ABCD 所成角的正切值的最小值为2D.当M ,N 分别为棱11B C ,CD 的中点时,则过1A ,M ,N 三点作正方体的截面,所得截面为五边形【答案】ACD 【解析】【分析】求出四面体的体积判断A ;把正方体的棱分成3类,再判断各类中的一条即可判断B ;作出线面角,并求出其正切表达式判断C ;利用线线、线面平行的性质作出截面判断D.【详解】点M ,N 在棱11B C ,CD 上运动时,M 到11A D 距离始终为2,N 到平面11A D M 的距离始终为2,所以四面体11A D MN 的体积11114222323N A MD V -=⨯⨯⨯⨯=恒为定值,A 正确;在正方体1111ABCD A B C D -中,棱可分为三类,分别是1111,,A A A B A D ,及分别与它们平行的棱,又1111,,A A A B A D 不与平面1A MN 平行,则在正方体1111ABCD A B C D -中,不存在棱与平面1A MN 平行,B 错误;正方体棱长为2,如图1,过M 作1MM BC ⊥于1M ,则有1MM ⊥平面ABCD ,于是MN 与平面ABCD 所成角即为1MNM ∠,于是11112tan MM MNM M N M N∠==,又1M N长度的最大值为MN 与平面ABCD所成角的正切值的最小值为2,C正确;如图2,取BC 中点M ',连接,AM MM '',有11////MM BB AA ',且11MM BB AA '==,则四边形1AA MM '是平行四边形,有1//AM A M ',过N 作AM '的平行线交AD 于点E ,此时14DE DA =,则1//EN A M ,即EN 为过1A ,M ,N 三点的平面与平面ABCD 的交线,连接1A E ,在BC 上取点F ,使得14CF CB =,同证1//AM A M '的方法得11//A E B F ,在棱1CC 上取点G ,使113CG CC =,连接MG 并延长交直线BC 于H ,则112CH C M CF ==,即11FH C M B M ==,而1//FH B M ,于是四边形1FHMB 是平行四边形,有11////MG B F A E ,则MG 为过1A ,M ,N 三点的平面与平面11BCC B 的交线,连接NG ,则可得五边形1A MGNE 即为正方体中过1A ,M ,N 三点的截面,D 正确.故选:ABD【点睛】方法点睛:作截面的常用三种方法:直接法,截面的定点在几何体的棱上;平行线法,截面与几何体的两个平行平面相交,或者截面上有一条直线与几何体的某个面平行;延长交线得交点,截面上的点中至少有两个点在几何体的同一平面上.第Ⅱ卷三、填空题:本题共4小题,每小题5分,共20分.13.若函数()ln f x x a x =-的图象在1x =处的切线斜率为3,则=a __________.【答案】2-【解析】【分析】求导,利用()13f '=求解即可.【详解】解:因为()ln f x x a x =-,所以()1a f x x'=-,又函数()ln f x x a x =-的图象在1x =处的切线斜率为3,则()1131af '=-=,所以2a =-.故答案为:2-14.在平面直角坐标系xOy 中,圆O 与x 轴的正半轴交于点A ,点B ,C 在圆O 上,若射线OB 平分AOC ∠,34,55B ⎛⎫⎪⎝⎭,则点C 的坐标为__________.【答案】724,2525⎛⎫- ⎪⎝⎭【解析】【详解】由题意可知圆O 1=,设AOB BOC α∠=∠=,由题意可知4sin 5α=,3cos 5α=,则点C 的横坐标为271cos 212sin 25αα⨯=-=-,点C 的纵坐标为241sin 22sin cos 25ααα⨯==.故答案为:724,2525⎛⎫-⎪⎝⎭.15.已知函数()f x 的定义域为R ,()e xy f x =+是偶函数,()3e x y f x =-是奇函数,则()f x 的最小值为_____________.【答案】【解析】【分析】由题意可得()e 2e xxf x -=+,再结合基本不等式即可得答案.【详解】解:因为函数()e xy f x =+为偶函数,则()()e e x x f x f x --+=+,即()()ee xx f x f x ---=-,①又因为函数()3e xy f x =-为奇函数,则()()3e3e xx f x f x ---=-+,即()()3e 3ex xf x f x -+-=+,②联立①②可得()e 2e xxf x -=+,由基本不等式可得()e 2e x x f x -=+≥=,当且仅当e 2e x x -=时,即当1ln 22x =时,等号成立,故函数()f x 的最小值为故答案为:16.已知菱形ABCD 中,对角线BD =,将ABD △沿着BD 折叠,使得二面角A BD C --为120°,AC =,则三棱锥A BCD -的外接球的表面积为________.【答案】28π【解析】【分析】将 ABD 沿BD 折起后,取BD 中点为E ,连接AE ,CE ,得到120AEC ∠=︒,在AEC △中由余弦定理求出AE 的长,进一步求出AB 的长,分别记三角形ABD △与BCD △的重心为G 、F ,记该几何体ABCD 的外接球球心为O ,连接OF ,OG ,证明Rt OGE △与Rt OFE 全等,求出OE ,再推出BD OE ⊥,连接OB ,由勾股定理求出OB ,即可得出外接球的表面积.【详解】将 ABD 沿BD 折起后,取BD 中点为E ,连接AE ,CE ,则AE BD ⊥,CE BD ⊥,所以AEC ∠即为二面角A BD C --的平面角,所以120AEC ∠=︒;设AE a =,则AE CE a ==,在AEC △中2222cos120AC AE EC AE CE =+-⋅⋅︒,即2127222a a a ⎛⎫=-⨯⨯⨯- ⎪⎝⎭解得3a =,即3AE =,所以AB ==所以ABD △与BCD △是边长为的等边三角形.分别记三角形ABD △与BCD △的重心为G 、F ,则113EG AE ==,113EF CE ==;即EF EG =;因为ABD △与BCD △都是边长为所以点G 是ABD △的外心,点F 是BCD △的外心;记该几何体ABCD 的外接球球心为O ,连接OF ,OG ,根据球的性质,可得OF ⊥平面BCD ,OG ⊥平面ABD ,所以 OGE 与OFE △都是直角三角形,且OE 为公共边,所以Rt OGE △与Rt OFE 全等,因此1602OEG OEF AEC ∠=∠=∠=︒,所以2cos 60EFOE ==︒;因为AE BD ⊥,CE BD ⊥,AE CE E =I ,且AE ⊂平面AEC ,CE ⊂平面AEC ,所以BD ⊥平面AEC ;又OE ⊂平面AEC ,所以BD OE ⊥,连接OB,则外接球半径为OB ==所以外接球表面积为2428S ππ=⨯=.故答案为:28π【点睛】思路点睛:求解几何体外接球体积或表面积问题时,一般需要结合几何体结构特征,确定球心位置,求出球的半径,即可求解;在确定球心位置时,通常需要先确定底面外接圆的圆心,根据球心和截面外接圆的圆心连线垂直于截面,即可确定球心位置;有时也可将几何体补型成特殊的几何体(如长方体),根据特殊几何体的外接球,求出球的半径.四、解答题:本题共6小题,共70分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤.17.已知正项数列{}n a 的前n 项和为n S ,且满足22n n n S a a =+.(1)求数列{}n a 的通项公式;(2)设24n n n b a a +=,数列{}n b 的前n 项和为n T ,证明:3n T <.【答案】(1)n a n =;(2)证明见解析.【解析】【分析】(1)利用,n n a S 的关系,结合已知条件以及等差数列的通项公式即可求得结果;(2)根据(1)中所求,利用裂项求和法求得n T ,即可证明.【小问1详解】依题意可得,当1n =时,2111122S a a a ==+,0n a >,则11a =;当2n ≥时,22n n n S a a =+,21112n n n S a a ---=+,两式相减,整理可得()()1110n n n n a a a a --+--=,又{}n a 为正项数列,故可得11n n a a --=,所以数列{}n a 是以11a =为首项,1d =为公差的等差数列,所以n a n =.【小问2详解】证明:由(1)可知n a n =,所以()42222n b n n n n ==-++,()44441324352n T n n =+++⋅⋅⋅+⨯⨯⨯+22222222222222132435462112n n n n n n =-+-+-+-⋅⋅⋅+-+-+---++2221312n n =+--<++,所以3n T <成立.18.在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c )sin a C C =-.(1)求A ;(2)若8a =,ABC ABC 的周长.【答案】(1)2π3(2)18【解析】【分析】(1)由正弦定理结合两角和的正弦公式化简可得出tan A 的值,结合角A 的取值范围可求得角A 的值;(2)利用三角形的面积公式可得出182b c bc ++=,结合余弦定理可求得b c +的值,即可求得ABC 的周长.【小问1详解】解:因为)sin aC C =-,)sin sin B AC C =-,①因为πA B C ++=,所以()sin sin sin cos cos sin B A C A C A C =+=+,sin sin sin A C A C =-,又因为A 、()0,πC ∈,sin 0C ≠sin 0A A =-<,所以tan A =,又因为()0,πA ∈,解得2π3A =.【小问2详解】解:由(1)知,2π3A =,因为ABC 内切圆半径为所以()11sin 22ABC S a b c A =++⋅△,即()82b c ++=,所以,182b c bc ++=②,由余弦定理2222π2cos3a b c bc =+-⋅得2264b c bc ++=,所以()264b c bc +-=③,联立②③,得()()22864b c b c +-++=,解得10b c +=,所以ABC 的周长为18a b c ++=.19.如图,在三棱柱111ABC A B C -中,11BC B C O = ,12BC BB ==,1AO =,160B BC ∠=︒,且AO ⊥平面11BB C C .(1)求证:1AB B C ⊥;(2)求二面角111A B C A --的正弦值.【答案】(1)证明见解析(2)7【解析】【分析】(1)根据线面垂直的性质和判断定理可得1B C ⊥平面1ABC ,从而即可证明1AB B C ⊥;(2)建立以O 为原点,分别以OB ,1OB ,OA 所在直线为x ,y ,z 轴的空间坐标系,利用空间向量求解即可.【小问1详解】证明:因为AO ⊥平面11BB C C ,1B C ⊂平面11BB C C ,所以1AO B C ⊥,因为1BC BB =,四边形11BB C C 是平行四边形,所以四边形11BB C C 是菱形,所以11BC B C ⊥.又因为1AO BC O ⋂=,AO ⊂平面1ABC ,1BC ⊂平面1ABC ,所以1B C ⊥平面1ABC ,因为AB ⊂平面1ABC ,所以1AB B C ⊥.【小问2详解】解:以O 为原点,分别以OB ,1OB ,OA 所在直线为x ,y ,z 轴建立如图所示的空间直角坐标系,如图所示,则)B,()10,1,0B ,()0,0,1A,()1C ,所以()10,1,1AB =-,)11C B =,)110,1A B AB ==-,设平面11AB C 的一个法向量为()1111,,n x y z =,则11111111100n AB y z n C B y ⎧⋅=-=⎪⎨⋅=+=⎪⎩ ,取11x =,可得1y =1z =,所以(11,n =u r,设平面111B C A 的一个法向量为()2222,,n x y z =,则211221112200n A B z n C B y ⎧⋅=-=⎪⎨⋅=+=⎪⎩ ,取21x =,可得2y =,2z =所以(21,n =,设二面角111A B C A --的大小为θ,因为1212121,1,1cos ,7n n n n n n ⋅⋅〈〉===⋅,所以sin 7θ==,所以二面角111A B C A --的正弦值为7.20.如图,已知椭圆2222:1(0)x y C a b a b+=>>上一点A ,右焦点为(c,0)F ,直线AF 交椭圆于B点,且满足||2||AF FB =,||2AB =.(1)求椭圆C 的方程;(2)若直线(0)y kx k =>与椭圆相交于,C D 两点,求四边形ACBD 面积的最大值.【答案】(1)22132x y+=;(2)【解析】【分析】(1)由已知得b =,由||2||AF FB =且||2AB =,知||AF a ==,即可求出椭圆C 的标准方程;(2)直线AF的方程为0y +-=,与椭圆联立求出3(,22B -,求出点,A B 到直线(0)y kx k =>的距离为1d =,2d =y kx =与椭圆方程结合弦长公式求出CD ,求出四边形ACBD 的面积121()2S CD d d =+,整理化简利用二次函数求出最值.【详解】(1)A Q 为椭圆C上一点,b ∴=又||2||AF FB =,||2AB =可得,||AF =,即a =所以椭圆C 的标准方程是22132x y +=.(2)由(1)知(1,0)F,A ,∴直线AF的方程为0y +-=,联立221320x y y ⎧+=⎪+-=,整理得:22462(3)0x x x x -=-=,解得:1230,2x x ==,∴3(,22B -设点A,3(,22B -到直线(0)y kx k =>的距离为1d 和2d ,则1d =,2d =直线(0)y kx k =>与椭圆相交于,C D 两点,联立22132x y y kx⎧+=⎪⎨⎪=⎩,整理得:22(32)6k x +=,解得:34x x ==34CD x ∴=-=∴设四边形ACBD 面积为S ,则121()2S CD d d =+=(0)2k =>.设)t k =++∞,则k t =-363636222S ∴==⋅⋅362=当18t =,即3t k ===+3k =时,四边形ACBD面积有最大值.【点睛】思路点睛:解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.21.如图所示,A BCP -是圆锥的一部分(A 为圆锥的顶点),O 是底面圆的圆心,23BOC π∠=,P 是弧BC 上一动点(不与B 、C 重合),满足COP θ∠=.M 是AB 的中点,22OA OB ==.(1)若//MP 平面AOC ,求sin θ的值;(2)若四棱锥M OCPB -的体积大于14,求三棱锥A MPC -体积的取值范围.【答案】(1)34(2)3,1212⎛ ⎝⎦【解析】【分析】(1)取OB 的中点N ,连接MN ,证明出//NP OC ,可得出3ONP π∠=,OPN θ∠=,然后在ONP △中利用正弦定理可求得sin θ的值;(2)计算得出四边形OCPB的面积3sin 264S πθ⎛⎫=+> ⎪⎝⎭,结合20,3πθ⎛⎫∈ ⎪⎝⎭可求得θ的取值范围,设三棱锥A MPC -的体积为2V ,三棱锥A BPC -的体积为3V ,计算得出2361133sin 2324V V πθ⎛⎫==+-⎢ ⎪⎝⎭⎣⎦,结合正弦型函数的基本性质可求得结果.【小问1详解】解:取OB 的中点N ,连接MN ,M 为AB 的中点,则//MN OA ,MN ⊄ 平面AOC ,AO ⊂平面AOC ,则//MN 平面AOC ,由题设,当//MP 平面AOC 时,因为MP MN M ⋂=,所以,平面//MNP 平面AOC ,NP ⊂ 平面MNP ,则//NP 平面AOC ,因为NP ⊂平面OBPC ,平面OBPC 平面AOC OC =,则//NP OC ,所以,3ONP BOC ππ∠=-∠=,OPN COP θ∠=∠=,在OPN 中,由正弦定理可得sin sin3ON OP πθ=,故sin3sin 4ON OP πθ==.【小问2详解】解:四棱锥M OCPB -的体积1111323V OA S S =⋅⋅=,其中S 表示四边形OCPB 的面积,则112111sin sin sin cos sin 2232222S OP OC OP OB πθθθθθ⎛⎫⎛⎫=⋅+⋅-=++ ⎪⎪ ⎪⎝⎭⎝⎭333sin 4426πθθθ⎛⎫=+=+ ⎪⎝⎭,所以,1131sin 3664V S πθ⎛⎫==+> ⎪⎝⎭,可得3sin 62πθ⎛⎫+> ⎪⎝⎭,203πθ<<,则5666πππθ<+<,故2363πππθ<+<,解得,62ππθ⎛⎫∈ ⎪⎝⎭.设三棱锥A MPC -的体积为2V ,三棱锥A BPC -的体积为3V ,由于M 是AB 的中点,则231112sin 2623V V OA S OB OC π⎛⎫==⋅-⋅ ⎪⎝⎭133333sin ,32412126πθ⎛⎛⎫=+-∈ ⎢ ⎪ ⎝⎭⎣⎦⎝⎦.22.混管病毒检测是应对单管病毒检测效率低下的问题,出现的一个创新病毒检测策略,混管检测结果为阴性,则参与该混管检测的所有人均为阴性,混管检测结果为阳性,则参与该混管检测的人中至少有一人为阳性.假设一组样本有N 个人,每个人患病毒的概率相互独立且均为()01p p <<.目前,我们采用K 人混管病毒检测,定义成本函数()Nf X KX K=+,这里X 指该组样本N 个人中患病毒的人数.(1)证明:()E f X N ≥⎡⎤⎣⎦;(2)若4010p -<<,1020K ≤≤.证明:某混管检测结果为阳性,则参与该混管检测的人中大概率恰有一人为阳性.公众号:高中试卷君【答案】(1)证明见解析(2)证明见解析【解析】【分析】(1)由均值的性质及基本不等式即可证明.(2)由二项分布的概率及条件概率化简即可证明.【小问1详解】由题意可得X 满足二项分布(),X B N p ,由()()E aX b aE X b +=+知,()()N N E f X K X E pN N K K K =+=+⋅≥⎡⎤⎣⋅⎦,当且仅当1Kp K=时取等号;【小问2详解】记P P =(混管中恰有1例阳性|混管检测结果为阳性),i P P =(混管中恰有i 例阳性)=()C 1K i i i K p p --,0,1,,i K = ,令()e 1xh x x =--,33210210x ---⨯<<⨯,则()e 1xh x '=-,当()3021,0x -⨯∈-时,()0h x '<,()h x 为单调递减,当()300,21x -∈⨯时,()0h x '>,()h x 为单调递增,所以()()00h x h ≥=,且()()332103210e 21010h ---⨯--⨯=--⨯-≈,()()332103210e 21010h --⨯-⨯=-⨯-≈,所以当33210210x ---⨯<<⨯,e 10x x --≈即e 1x x ≈+,两边取自然对数可得()ln 1x x ≈+,所以当4010p -<<,1020K ≤≤时,所以()()ln 11e e 1K K p Kp p Kp ---=≈≈-,则()()()()110111111111K K Kp K p Kp p P P K p P Kp p ---⎡⎤-⎣⎦==≈=--≈---.故某混管检测结果为阳性,则参与该混管检测的人中大概率恰有一人为阳性.。

2023-2024学年湖南省长沙市雅礼中学高二(上)期中数学试卷【答案版】

2023-2024学年湖南省长沙市雅礼中学高二(上)期中数学试卷【答案版】

2023-2024学年湖南省长沙市雅礼中学高二(上)期中数学试卷一、单项选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合A={x|x2+x﹣2<0,x∈R},B={x||x﹣1|<1},则A∪B=()A.{x|﹣1<x<2}B.{x|0<x<1}C.{x|﹣2<x<2}D.{x|0<x<2}2.“m=﹣2”是“直线l1:mx+4y+2=0与直线l2:x+my+1=0平行”的()A.充要条件B.必要不充分条件C.充分不必要条件D.既不充分也不必要条件3.空气质量指数是评估空气质量状况的一组数字,空气质量指数划分为[0,50)、[50,100)、[100,150)、[150,200)、[200,300)和[300,500]六档,分别对应“优”、“良”、“轻度污染”、“中度污染”、“重度污染”和“严重污染”六个等级.如图是某市2月1日至14日连续14天的空气质量指数趋势图,则下面说法中正确的是()A.这14天中有5天空气质量为“中度污染”B.从2日到5日空气质量越来越好C.这14天中空气质量指数的中位数是214D.连续三天中空气质量指数方差最小是5日到7日4.在平面直角坐标系xOy中,直线x+2y﹣4=0与两坐标轴分别交于点A,B,圆C经过A,B,且圆心在y轴上,则圆C的方程为()A.x2+y2+6y﹣16=0B.x2+y2﹣6y﹣16=0C.x2+y2+8y﹣9=0D.x2+y2﹣8y﹣9=05.已知双曲线C:x2a2−y2b2=1的焦距为10,点P(2,1)在C的渐近线上,则C的方程为()A.x220−y25=1B.x25−y220=1C.x280−y220=1D.x220−y280=16.抛物线y2=2px(p>0)焦点为F,O为坐标原点,M为抛物线上一点,且|MF|=4|OF|,△MFO的面积为4√3,则抛物线方程为( ) A .y 2=6xB .y 2=8xC .y 2=16xD .y 2=152x 7.已知定义在R 上的函数f (x )满足f (x +y )=f (x )+f (y ),且当x <0时,f (x )>0.给出以下四个结论:①f (0)=0;②f (x )可能是偶函数;③f (x )在[m ,n ]上一定存在最大值f (n );④f (x ﹣1)>0的解集为{x |x <1}.共中正确的结论的个数为( ) A .1B .2C .3D .48.在焦点在x 轴椭圆中截得的最大矩形的面积范围是[72b 2,92b 2],则椭圆离心率的范围是( )A .[√297,√659]B .[√317,√679] C .[√337,√659] D .[√347,√699] 二、多项选择题:本题共4小题,每小题5分,共20分。

雅礼高一实验班招生考试数学试卷

雅礼高一实验班招生考试数学试卷

数学测试一考生注意:本试卷时量90分钟,满分100分一、填空题:(每小题5分,共50分)1112sin 452-⎛⎫--= ⎪⎝⎭。

2、已知实数,m n 满足2223418290,m n m n +--+=则m n +的平方根是 。

3、若12,x y +=的最小值等于 。

4、在ABC 中,高AD 和BE 交于点H ,且BH=AC ,则ABC ∠等于 度。

5、四条边长分别为1、2、3、4的梯形的面积是 。

6、已知实数,,0,3,||||||x y z x y z xyz x y z ++==++满足则的最小值为 。

7、平面上的n 条直线恰有2011个交点,则n 的最小值为 。

8、从长为1、2、3、4、5的5条线段中任取3条,能构成钝角三角形的概率是 。

9、如图,在ABC 中,90,,ACB AC BC P ∠==是ABC 内一点,PA=3,PB=1,PC=2,则BPC 的面积是 。

第9题图 第10题图10、如图所示,直径为d 的一只圆盘没有任何滑动的沿一个直径为3d 的铁环的内侧滚动,当圆盘的圆心返回到起始位置时,圆盘已围绕自己的圆心转了 圈。

二、解答题:(共50分)11、(10分)已知,a b 为正整数,关于x 的方程220x ax b -+=的两个实根为12,x x ,关于y 的方程220y ay b ++=的两个实根为12,y y 且1221104x y x y -=,求b 的最小值。

12、(10分)已知反比例函数2k y x=的图像与一次函数21y x =-的图像在第一象限内交于点A ,其中一次函数的图像过点()(),1,a b a b k ++和。

(1)求反比例函数的解析式;(2)请问在x 轴上是否存在点B ,使A O B 为等腰三角形?若存在,求出所有符合条件的B 点坐标;若不存在,请说明理由。

13、(12分)如图,⊙O 是ABC 的外接圆,点I 是他的内心,射线AI 、BI 各交对边于点D 、E ,射线AD 、BE 各交⊙O 于点M 、N ,求证:AM ID AN IB =。

冲刺实验班湖南雅礼中学2021中考提前自主招生数学模拟试卷(1)附

冲刺实验班湖南雅礼中学2021中考提前自主招生数学模拟试卷(1)附

冲刺实验班湖南雅礼中学2021中考提前自主招生数学模拟试卷(1)附绝密★启用前重点高中提前招生模拟考试数学试卷(1)学校:___________姓名:___________班级:___________考号:___________注意事项:1.答题前核对不好自己的姓名、班级、考号等信息2.恳请将答案恰当核对在答题卡上第ⅰ卷(选择题)一.选择题(共10小题,每题4分后)1.以下等式中,不一定设立的就是()a.=2b.c.a=d.2.中国人民银行许可中国外汇交易中心发布,2021年1月14日银行间外汇市场人民币汇率中间价为:1美元对人民币6.0930元,某上市公司所持美元资产为980万美元,用科学记数法则表示其美元资产约合成人民币为()元(留存两位有效数字)a.5.97×107b.6.0×107c.5.97×108d.6.0×1083.如图,一条信息可通过网络线由上(a点)往下(沿箭头方向)向各站点传送,例如信息要到b2点可由经a1的站点送达,也可由经a2的站点送达,共有两条传送途径,则信息由a点传达到d3的不同途径中,经过站点b3的概率为()a.b.c.d.4.未知x+y=a.b.,|x|+|y|=5c.,则xy的值()d.5.二次函数y=ax2+bx+c的图象如图所示(a、b、c为常数),则函数y=(4acb2)x+abc和y=在同一平面直角坐标系则中的图象,可能将就是()试卷第1页,总7页a.b.c.d.6.关于x的一元二次方程mx2+()a.mc.且m≠0b.且m≠0d.0x+1=0存有两个不成正比的同号实数根,则m的值域范围就是7.由于货源紧缺,小王、小李两名商贩连续两次以不同的价格在同一公司购进了a 型香米,两次的购买单价分别为a、b(a<b,单位:元/千克),小王的采购方式为:每次购进c千克大米;小李的采购方式为:每次购进d元的大米(d>c),若只考虑采购单价,下列结论正确的是()a.小王合算c.一样合算b.小李不划算d.无法确定谁更合算8.函数y=|x2+2x3|图象的草图如图所示,则关于x的方程|x2+2x3|=a(a为常数)的根的情况,叙述错误的就是()a.方程可能没有实数根b.方程可能将存有三个互不成正比的实数根c.若方程只有两个实数根,则a的取值范围为:a=0d.若方程存有四个实数根,记作x1、x2、x3、x4,则x1+x2+x3+x4=49.如图,de是△abc的中位线,f为de上一点,且ef=2df,bf的延长线交ac于点h,cf试卷第2页,总7页的延长线交ab于点g,则s四边形agfh:s△bfc=()a.1:10b.1:5c.3:10d.2:5的中点,弦de⊥ab,垂足为点f,10.例如图,ab就是⊙o的直径,ac就是⊙o的弦,点d就是de交ac于点g,eh为⊙o的切线,交ac的延长线于h,af=3,fb=,则tan∠deh=()a.b.c.d.第ⅱ卷(非选择题)二.填空题(共10小题,每题4分)11.计算:(π3.14)022×+(tan60°2)2021(4sin30°+)2021+=.12.已知实数x,y满足方程(x24x+6)(9y2+6y+6)=10,则yx=.13.例如图,正方体(图1)的进行图例如图2右图,在图1中m、n分别就是fg、gh的中点,cm、cn、mn就是三条线段;恳请在图2中画出来cm、cn、mn这三条线段.14.如图,在正方形abcd中,e、f分别为ab、bc的中点,连结ce交db、df于g、h,则eg:gh:hc=.试卷第3页,总7页15.已知直线l1:y=xa3和直线l2:y=2x+5a相交于点a(m,n),其中a为常数,且m>n>0,化简|1a|=.16.在平面直角坐标系内有两点a、b,其坐标为a(1,1),b(2,4),点m为x轴上的一个动点,若要使mbma的值最大,则点m的坐标为.17.若y关于x的函数y=(a2)x22(2a1)x+a(a为常数)的图象与坐标轴只有两个相同交点,则a可行的值.18.如图,已知圆o的面积为3π,ab为圆o的直径,∠aoc=80°,∠bod=20°,点p为直径ab上任意一点,则pc+pd的最小值是.19.未知两个反比例函数y=,y=,第一象限内的点p1、p2、p3、…、p2021在反比例函数y=的图象上,它们的横坐标分别为x1、x2、x3、…、x2021,纵坐标分别是1、3、5、…,共2021个连续奇数,过p1、p2、p3、…、p2021分别作y轴的平行线,与y=的图象交点依次为q1(x'1,y'1)、q2(x'2,y'2)、…、q2021(x'2021,y'2021),则p2021q2021的长度是.20.将连续正整数按以下规律排列,则位于第7行第7列的数x是.试卷第4页,总7页三.解答题(共6小题,共70分)21.若关于x的不等式组只有4个整数求解,谋a的值域范围.22.跃壮五金商店准备从宁云机械厂购进甲、乙两种零件进行销售.若每个甲种零件的进价比每个乙种零件的进价少2元,且用80元购进甲种零件的数量与用100元购进乙种零件的数量相同.(1)谋每个甲种零件、每个乙种零件的市场价分别为多少元?(2)若该五金商店本次购进甲种零件的数量比购进乙种零件的数量的3倍还少5个,购进两种零件的总数量不超过95个,该五金商店每个甲种零件的销售价格为12元,每个乙种零件的销售价格为15元,则将本次购进的甲、乙两种零件全部售出后,可使销售两种零件的总利润(利润=售价进价)超过371元,通过计算求出跃壮五金商店本次从宁云机械厂购进甲、乙两种零件有几种方案?请你设计出来.23.例如图,oa和ob就是⊙o的半径,并且oa⊥ob.p就是oa上任一一点,bp的延长线缴⊙o于点q,点r在oa的延长线上,且rp=rq.(1)澄清:rq就是⊙o的切线;(2)当ra≤oa时,试确定∠b的取值范围;(3)求证:ob2=pb?pq+op2.24.例如图1,在平面直角坐标系则中,边长为1的正方形oabc的顶点b在y轴的也已半轴上,o为座标原点.现将正方形oabc绕点o按顺时针方向转动,转动角为θ(0o≤θ≤45o).(1)当点a落在y轴正半轴上时,谋边bc在转动过程中所划过的面积;(2)若线段ab与y轴的交点为m(如图2),线段bc与直线y=x的交点为n.当θ=22.5°时,求此时△b mn内切圆的半径;(3)设立△mnb的周长为l,先行推论在正方形oabc转动的过程中l值与否发生变化,并表明理试卷第5页,总7页。

雅礼中学高一理科实验班招生数学

雅礼中学高一理科实验班招生数学

雅礼中学高一理科实验班选拔考试数学试卷一、选择题(每小题5分,共30分。

每小题均给出了A 、B 、C 、D 的四个选项,其中有且只有一个选项是正确的,不填、多填或错填均得0分)1、有一正方体,六个面上分别写有数字1、2、3、4、5、6,有三个人从不同的角度观察的 结果如图所示。

如果记6的对面的数字为a ,2的对面的数字为b ,那么b a +的值为A .3B .7C .8D .112、右图是某条公共汽车线路收支差额y 与乘客量x 的图像(收支差额=车票收入-支出费用) 由于目前本条线路亏损,公司有关人员提出两条建议:建议(1)是不改变车 票价格,减少支出费用;建议(2)是不改变支出费用,提高车票价格。

下面 给出四个图像(如图所示)则A .①反映了建议(2),③反映了建议(1)B .①反映了建议(1),③反映了建议(2)C .②反映了建议(1),④反映了建议(2)D .④反映了建议(1),②反映了建议(2)3、已知函数))((3n x m x y ---=,并且b a ,是方程0))((3=---n x m x 的两个根,则 实数b a n m ,,,的大小关系可能是A .n b a m <<<B .b n a m <<<C .n b m a <<<D .b n m a <<<4、记n S =n a a a +++Λ21,令12nnS S S T n+++=L ,称n T 为1a ,2a ,……,n a 这列数的“理想数”。

已知1a ,2a ,……,500a 的“理想数”为2004,那么8,1a ,2a ,……,500a 的“理想数”为A .2004B .2006C .2008D .20105、以半圆的一条弦BC (非直径)为对称轴将弧BC 折叠后1 1xyOA 1 1x yO A 1 1 xyO y1 1xO A A 1 1xyO ① ② ③④OD CBAFE D CBAxyE ODCBA 与直径AB 交于点D ,若32=DB AD ,且10=AB ,则CB 的 长为A . 54B .34C . 24D .46、某汽车维修公司的维修点环形分布如图。

湖南省长沙市雅礼中学2024-2025学年七上数学期中考试试卷(含答案)

湖南省长沙市雅礼中学2024-2025学年七上数学期中考试试卷(含答案)

湖南省长沙市雅礼中学2024-2025学年七上数学期中考试试卷考生注意:本试卷共3道大题,25道小题,满分120分,时量120分钟.一.选择题(共10小题,满分30分,每小题3分) 1.712−的相反数是( ) A .712B .712−C .127D .127−2.2024年6月2日6时23分,"嫦娥六号"着陆器在月球背面预定着陆区域成功着陆.月球与地球之间的距离约为380000千米,将380000用科学记数法表示为( )A .60.3810⨯B .63.810⨯C .43810⨯D .53.810⨯ 3.下列各种关系中,成反比例关系的是( ) A .书的总页数一定,未读的页数与已读的页数 B .小麦的总产量一定,每公顷产量与种植面积 C .圆柱底面积一定,圆柱的体积与高 D .同学的年龄一定,他们的身高与体重4.10月20日,2024长沙马拉松暨全国半程马拉松锦标赛(第四站)在长沙鸣枪,小雅参加了半程马拉松(21.0975公里).请用四舍五入法把21.0975精确到0.01,所得到的近似数为( ) A .21.10 B .21.09 C .21.1 D .21.097 5.下列计算正确的是( ) A .2a a a +=B .3265x x x −=C .22234a b ba a b −=−D .235325x x x +=6.若|2009||2010|0a b −++=,则2024()a b +的值为( ) A .0 B .1C .1−D .20247.下列说法中正确的个数有( )①a −表示负数;②小于1−的数的倒数大于其本身;③单项式223x yπ−的系数为23−;④一个有理数不是整数就是分数. A .0个 B .1个 C .2个 D .3个8.已知关于x 的多项式()4323243643x mx x x x nx −−−−−−不含3x 和2x 项,则( )A .4m =−,3n =−B .4m =,3n =C .4m =−,3n =D .4m =,3n =−9.小明在超市买回若干个相同的纸杯,他把纸杯整齐地叠放在一起.如图①,3个纸杯的高度为11cm ;如图②,5个纸杯的高度为13cm .若把n 个这样的纸杯叠放在一起,则高度为( ) A .(10)cm n + B .(8)cm n + C .(25)cm n + D .(23)cm n +(第9题图) (第10题图)②①13cm11cm10.如图所示的运算程序中,若开始输入的x 值为48,我们发现第一次输出的结果为24,第二次输出的结果为12,....,则第2012次输出的结果为( ) A .3B .6C .200632 D .10033310032+⨯二.填空题(共6小题,满分18分,每小题3分) 11.化简:|2|−−=.12.点A 、B 在数轴上对应的数分别为2−和5,则A 、B 两点间的距离为.13.比较大小:34−56−.(填">"或"<") 14.小强购买绿、橙两种颜色的珠子串成一条手链,已知绿色珠子m 个,每个2元,橙色珠子n 个,每个5元,那么小强购买珠子需花费元.15.如果单项式13a x y +与32b x y 是同类项,那么a b +=.16.某数学老师在课外活动中做了一个有趣的游戏:首先发给A 、B 、C 三个同学相同数量的扑克牌(假定发到每个同学手中的扑克牌数量足够多),然后依次完成以下三个步骤: 第一步,A 同学拿出五张扑克牌给B 同学; 第二步,C 同学拿出三张扑克牌给B 同学;第三步,A 同学手中此时有多少张扑克牌,B 同学就拿出多少张扑克牌给A 同学. 请你确定,最终B 同学手中剩余的扑克牌的张数为.三.解答题(共9小题,满分72分) 17.(6分)计算:233(4)16(2)−−−−÷−18.(6分)计算: (1)2252x xy yx x −++;(2)()()22426m m m m +−+.19.(6分)先化简,再求值:5()()22222251x y xy xy x y −−+−,其中12x =,1y =−. 20.(8分)某食品厂从生产的袋装食品中抽取20袋,检测每袋的质量是否符合标准,超过或不足的部分分(1)这批样品的质量比标准质量多还是少?多或少几克?(2)若每袋标准质量为450克,则抽样检测的总质量是多少? 21.(8分)有理数a 、b 、c 在数轴上的位置如图. (1)判断正负,用"<"或">"填空: c b−0;a b +0.(2)化简:||||||c b a b a b −+−−+.22.(9分)整体代换是数学的一种思想方法,例如:20x x +=,则21186x x ++=;我们将2x x +作为一个整体代入,则原式011861186=+=. 仿照上面的解题方法,完成下面的问题: (1)若230x x +−=,则22021x x ++=;(2)如果6a b +=,求2()4421a b a b +−−+的值;(3)若2222a ab +=,228b ab +=,求22232a b ab −−的值. 23.(9分)滴滴打车是目前国内最受欢迎的网约车平台之一,为了给用户提供便捷、安全的出行服务,滴滴打车制定了一套收费规则:①起步价:滴滴打车的起步价为10元,乘客预约用车、取消订单等情况都会收取起步价. ②里程费:起步里程3公里,超过3公里的部分,将按1.5元/公里的标准收取里程费用. ③时长费:起步时间8分钟,超过8分钟的部分,将按0.25元/分钟的标准收取时长费用.(注:车费由里程费、时长费、起步价构成,其中里程费按行车的实际里程计算;时长费按行车的实际时间计算.) (1)若小爱同学乘坐滴滴打车,行车里程为2.8公里,行车时间为5分钟,需付车费元.(2)若小爱同学乘坐滴滴打车,行车里程为a (3a >)公里,行车时间为b (8b >)分钟,则应付车费多少元?(3)若小爱同学从家出发,乘坐滴滴打车到杭州体育馆观看亚运会,行车里程为18公里,行车时间为20分钟,则需付车费多少元?24.(10分)如图,实数a 、b 、c 在数轴上表示的点分别是点A 、B 、C ,且a 、b 、c 满足||4a =,6a b +=−,0ab >,c 是最小的正整数.(1)请直接写出a =,b =,c =.(2)若点B 沿数轴向右运动,速度是2个单位长度/秒,当t 为何值时,O ,B ,C 三点满足其中一点到另外两个点的距离相等?(点O 为坐标原点)(3)在(2)的条件下,若点A 沿数轴向左运动,速度为1个单位长度/秒,点C 向右运动,速度为4个单位长度/秒,问运动t 秒后,23AB BC −的值是否随着时间t 的变化而变化?若不变化,求这个不变的值;若变化,求这个值的变化范围.("BC "表示点B 和点C 之间的距离,"AB "表示点A 和点B 之间的距离)CBA25.(10分)日常生活中,我们使用的数是十进制数,数的进位方法是"逢十进一",十进制的基数是十,而计算机使用的数是二进制数,即数的进位方法是"逢二进一",二进制的基数是二.二进制只使用数字0,1,如二进制数1101记为21101(),21101()通过式子321212021⨯+⨯+⨯+可以转换为十进制数13,即322(1101)121202113=⨯+⨯+⨯+=. (1)将二进制数210101()转换为十进制数.(2)二进制的加法运算是一种基本运算,它和十进制数的加法原理类似,只是运算的基数不同.在二进制数的加法运算中,我们需要将两个二进制数按位相加,并且需要考虑进位的情况.二进制数的基本规则:000+=;011+=;1110+=(二进制进位).举个例子,我们来计算二进制数2(1011)和2(110)的加法:22(1011)(110)+.从最低位开始相加,101+=,没有进位;1110+=,这里需要进位;101+=,没有进位;1110+=,这里也需要进位,最终的结果是210001().请计算:()2210101(1101)+;(请把计算或探究过程写出来) (3)请类比十进制的运算,进一步研究二进制的运算, ①计算:221110(11)⨯(),(请把计算或探究过程写出来) ②计算:2222(1101012)(1010)(110101)(1001)−+⨯,并把结果转化为十进制的数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A B C E F O 长沙市雅礼中学理科实验班招生试题 数 学 考生注意:本卷满分120分,考试时间150分钟。

一、填空题(请将最后答案填写在横线上。

每小题3分,本大题满分60分)
1.在一次数学活动中,黑板上画着如图所示的图形,活动前老师在准备的四张纸片上分别写有如下四个等式中的一个等式:①AB=DC ;②∠ABE=∠DCE ;③AE=DE ;④∠A=∠D ;小明同学闭上眼睛从四张纸片中随机抽取一张,再从剩下的纸片中随机抽取另一张,则以已经抽取的两张纸片上的等式为条件,使△BEC 不能构成等腰三角形的概率是______________.
2.如图,“L ”形纸片由六个边长为1的小正方形组成,过A 点切一刀,刀痕是线段EF.若阴影部分面积是纸片面积的一半,则EF 的长为________ ______.
3. 如图,AB 是半圆O 的直径,C 、D 是半圆上的两个动点,且CD ∥AB,若半圆的半径为1,则梯形ABCD 周长的最大值是 。

4. 已知2152522=---x x ,则221525x x -+-的值为 。

5. 一次函数y =kx +b 的图象过点P (1,4),且分别与x 轴和y 轴的正半轴交于点A ,B . 点O 为坐标原点.当△AOB 面积最小时,k 和b 的值分别为 。

6. 如图,直线b kx y +=1过点A (0,2),且与直线mx y =2交于点P (1,m ),则关于
x 的不等式组mx >kx +b >mx -2的解集是______________。

7. 已知实数a 满足2008a -+2009a -=a ,那么a -20082值是 。

8. 如图,以Rt △ABC 的斜边BC 为一边在△ABC 的同侧作正方形BCEF ,设正方形的中心为O ,连结AO ,如果AB =4,AO =26,那么AC 的长等于 。

9.设,,,321x x x … ,2007x 为实数,且满足321x x x …2007x =321x x x -…2007x =321x x x -…2007x =…=321x x x …20072006x x -=1,则2000x 的值是 .
B A O x y
10. 在Rt △ABC 中,∠C =900,AC =3,BC =4.若以C 点为圆心, r 为半径 所作的圆与斜边AB 只有一个公共点,则r 的取值范围是___________ . 11. 已知a 、b 、c 满足
2a b c a b 6102b 2⨯+++(+1)(-)+-=,则代数式a +c 的值是 。

12.如果三位数abc (表示百位数字为a,十位数字为b,个位数字为c 的三位数),且满足b <a 或b <c ,则称这个三位数为“凹数”。

那么,从所有三位数中任意取出一个恰好是“凹数”的概率是
13. 如图,已知在圆O 中,直径MN=10,正方形ABCD 的四个顶点分别在半径OM ,OP 以及圆O 上,并且∠
POM=45°,则AB 的长为 .
14. 直线)0(>=a ax y 与双曲线x y 3=
交于),(11y x A 、),(22y x B 两点,则代数式122134y x y x -的值是 .
15. 设0>>b a ,且ab b a 322=+,b
a b a -+那么的值为_________。

16. 如图,△ABC 中,BE,DC 是△ABC 的内角平分线,DE=3,A,D,F,E 四点共圆,则△DEF 的内接圆半径为______。

17. 如图, 正方形ABCD 中, AB=AG ,EF ⊥AG , 若EG=4, FG=6, BM=23, 则MN=__ ____。

18. 设i=1,2,3,...,n, 且0<i x <1, i i x x x x x x ++++=+++...19...2121, 则n 的最小整数解为______。

19. 抛物线c bx ax y ++=2, 交y 轴于一点A(0,1),交x 轴于M(0,1x ),N )0,(2x , 且210x x <<,过点A 的直线交x 轴于点C, 交抛物线于另一点B,且AMN BMN S S △△2
5=
. 若△CAN 为等腰直角三角形,则抛物线的解析式为______。

20. 29222=++y xy x 的整数解共有______组。

二、解答题(请写出详细的解答或证明过程。

本大题共4小题,满分60分)
21.(本小题满分10分)已知关于x 的方程02=++a cx x 的两整数根恰好比方程02=++b ax x 的两根都
大1,求c b a ++的值。

22.(本小题满分10分)如图(6),已知抛物线C :422+-=x x y 和
直线l :82+-=x y .直线)0(>=k kx y 与抛物线C 交于两个不同
的点A 、B ,与直线l 交于点P ,分别过A 、B 、P 作x 轴的垂线,
设垂足分别为111,,P B A .
(1)证明: 1
11211OP OB OA =+; (2)是否存在实数k ,使811=+B B A A ,如果存在,求出此时k 的值,
如果不存在,请说明理由.
23.(本小题满分10分)已知a 、b 、c 均为正数,且满足如下两个条件:
⎪⎩⎪⎨⎧=-++-++-+=++4132ab c b a ac b a c bc
a c
b
c b a
证明:以a
、b 、c 为三边长可构成一个直角三角形.
24.(本小题满分15分)已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO .
求证:CD =GF .
25.(本小题满分15分)在平面直角坐标中,边长为2的正方形OABC 的两顶点A 、C 分别在y 轴、x 轴的正半轴上,点O 在原点.现将正方形OABC 绕O 点顺时针针旋转,旋转角为θ,当A 点第一次落在直线y=x 上时停止旋转.旋转过程中,AB 边交直线y=x 于点M ,BC 边交轴于点N (如图).
(1)求边AB 在旋转过程中所扫过的面积;
(2)设△MBN 的周长为p ,在旋转正方形OABC 的过程中,p 值是否有变化?请证明你的结论;
(3)当旋转角θ为多少度时,△OMN 的面积最小,并求出此时△BMN 内切圆的半径.
A F
G C E B O D。

相关文档
最新文档