【精品】SAS肯氏分析共20页

合集下载

sas数据分析案例

sas数据分析案例

sas数据分析案例SAS数据分析案例。

在实际工作中,数据分析是一项非常重要的工作。

SAS作为一种常用的数据分析工具,被广泛应用于各个行业中。

本文将通过一个实际案例来介绍SAS在数据分析中的应用。

案例背景:某电商公司希望了解其用户的购物行为,以便更好地制定营销策略和提升用户体验。

为了实现这一目标,他们收集了大量的用户购物数据,包括用户的基本信息、购买记录、浏览记录等。

数据准备:首先,我们需要对收集到的数据进行清洗和整理。

这包括去除重复数据、处理缺失值、统一数据格式等工作。

在SAS中,我们可以使用数据步和PROC SQL等工具来完成这些任务。

数据分析:一、用户购买行为分析。

我们可以通过对用户购买记录的统计分析,来了解用户的购买习惯和偏好。

比如,我们可以计算用户的购买频次、购买金额分布、购买时间分布等指标,从而找出用户的消费特点。

二、用户行为路径分析。

除了购买行为,用户在网站上的浏览行为也是非常重要的。

我们可以利用SAS的数据挖掘功能,对用户的浏览记录进行分析,找出用户的行为路径,了解用户在网站上的行为轨迹。

三、用户画像分析。

通过对用户的基本信息进行分析,我们可以建立用户的画像,包括用户的性别、年龄、地域分布等特征。

这些信息对于制定个性化营销策略非常有帮助。

结果呈现:在数据分析完成后,我们需要将分析结果进行可视化呈现。

SAS提供了丰富的图表和报表功能,可以将分析结果直观地展现出来,帮助决策者更好地理解数据。

结论与建议:通过对用户购物数据的分析,我们可以得出一些结论和建议,比如哪些产品更受用户欢迎、哪些时段用户购物活跃度更高、哪些地区的用户消费能力更强等。

这些结论可以为公司的营销策略和产品推广提供参考。

总结:本文通过一个实际案例,介绍了SAS在数据分析中的应用。

SAS作为一种强大的数据分析工具,可以帮助企业更好地理解和利用数据,从而实现商业目标。

以上就是关于SAS数据分析案例的全部内容,希望对大家有所帮助。

sas分析

sas分析

SAS数据分析论文关于1995-2010年城镇单位就业人员工资的分析摘要:利用SAS分析软件对城镇单位就业人员工资总额进行描述统计分析、单变量分析和回归性分析。

通过这几种数据分析我们可以从不同的角度来审视数据得到更多的有关研究对象的信息,对我们能够深入了解目标能起到积极作用,在这几个数据分析方法中尤为重要的是回归分析。

灵活运用此方法有助于我们对数据的理解。

研究步骤主要分为:收集相关的数据,进行编程录入,然后做各项分析,通过分析结果得出结论,得到研究目标。

背景介绍:在我国,将就业人员所属的单位主要分为国有单位,城镇单位以及其他类型的单位。

我国经济产业以国有单位为主,如银行业、保险业、石油化工、移动通信、电力行业、汽车、煤炭、钢铁等等。

在这些方面的发展上国家投入了大量的人力及物力来发展和建设。

城镇单位是指非国有的,具有地区代表的企业,由城镇根据当地的具体情况而建立的单位,如纺织业、渔业等等。

其他单位,主要包括私营单位,或合资企业,这些单位不由政府和单位进行过多的干涉,发展方向由企业的创建人设定,有很广泛的发展空间。

因为选择就业的单位不同,不同的企业类型有着不同的经营和管理模式,效益方面也存在很多差别,因为效益的不同,可能会对就业人员的工资情况也有着不同的影响,从而影响到就业人员的个人收入,和总体的工资总额。

因而,为了更好地了解不同的单位,是否会对工资总额带来较大的影响,作出以下分析一、数据的选取及预处理:本次分析是选取数据为1995-2010城镇单位就业人员工资总额。

数据来源于国家统计局网站中国年鉴2011。

首先运行SAS软件并在编辑器内编辑如下内容,y,x1,x2,x3,x4分别表示为年份,工资合计,国有单位工资总额,城镇单位工资总额,其他单位工资总额。

(单位:亿元)方法一:(直接编辑内容)Data aa;Input y $ x1 $ x2 $ x3 $ x4;Cards;1995 8255.8 6172.6 1210.6 672.71996 9249.9 6893.3 1269.4 801.71997 9602.4 7323.9 1283.9 994.51998 9540.2 6934.6 1054.9 1550.71999 10155.9 7289.9 995.8 1870.12000 10954.7 7744.9 950.7 2259.12001 12205.4 8515.2 898.5 2791.72002 13638.1 9138.0 863.9 3636.22003 15329.6 9911.9 867.1 4550.62004 17615.0 11038.2 876.2 5700.62005 20627.1 12291.7 906.4 7429.02006 24262.3 13920.6 983.8 9357.92007 29471.5 16889.1 1108.1 11674.32008 35289.5 19487.9 1203.2 14598.42009 40288.2 21862.7 1273.3 17152.12010 47269.9 24886.4 1433.7 20949.7;Run;Proc print;Run;点击运行后得到如下数据输出:方法二:从外部导入数据(excel 数据导入方法)二、数据分析(一)描述统计分析:图中,col1表示工资总额的合计,col2表示国有单位工资总额,col3表示城镇单位工资总额,col4表示其他单位的工资,其他图均如此由上图分析可知:共取用了16年的数据,工资总额合计,国有单位工资总额,城镇单位工资总额,其他单位的工资总额的均值分别为19609.69,11881.31,1073.72,6624.33。

学会使用SAS进行数据分析

学会使用SAS进行数据分析

学会使用SAS进行数据分析引言:随着大数据时代的到来,数据分析成为了一项越来越重要的技能。

而SAS(Statistical Analysis System)作为业界著名的数据分析工具,具备强大的数据处理与分析能力,被广泛应用在各个行业中。

本文将介绍SAS的基本操作和常用功能,帮助读者初步学会使用SAS进行数据分析。

一、SAS的基本操作SAS作为一个统一的数据分析平台,具备了数据导入、数据清洗、数据分析、数据可视化等一系列功能,下面将介绍几个基本操作。

1. 数据导入:SAS支持多种数据格式,如CSV、Excel、SPSS等,可以通过简单的命令将数据导入到SAS中。

2. 数据清洗:在数据分析之前,我们通常需要对数据进行清洗,去除重复值、空值,以及进行数据转换等操作。

SAS提供了丰富的数据清洗函数,通过简单的命令就能实现。

3. 数据分析:SAS内置了大量的数据分析函数和算法,如描述统计、回归分析、聚类分析等,这些函数可以帮助用户快速进行数据分析并得出结论。

4. 数据可视化:通过SAS的图形模块,用户可以轻松地将数据进行可视化展示,如绘制直方图、散点图、折线图等。

这样可以更加直观地分析数据,并发现其中的规律和关联。

二、SAS常用功能除了基本操作之外,SAS还有一些常用功能,下面将介绍其中几个。

1. SAS Macro:宏是SAS中非常强大的功能,它可以在程序中定义和调用一系列命令,从而简化复杂的分析流程。

宏可以帮助用户提高工作效率,减少重复性工作。

2. 数据整合:在实际的数据分析中,我们通常需要从多个数据源中整合数据。

SAS提供了灵活的数据连接和合并操作,可以轻松实现数据整合。

3. 大数据处理:随着大数据时代的到来,传统的数据处理方式已经无法满足需求。

SAS提供了分布式计算的功能,可以进行高效的大数据处理,帮助用户更好地应对大数据挑战。

4. 数据挖掘:SAS也是一款强大的数据挖掘工具,它提供了各种经典的数据挖掘算法,如决策树、关联规则等。

SAS统计分析教程方法总结

SAS统计分析教程方法总结

对定量结果进行差异性分析1.单因素设计一元定量资料差异性分析1.1.单因素设计一元定量资料t检验与符号秩和检验T检验前提条件:定量资料满足独立性和正态分布,若不满足则进行单因素设计一元定量资料符号秩和检验。

1.2.配对设计一元定量资料t检验与符号秩和检验配对设计:整个资料涉及一个试验因素的两个水平,并且在这两个水平作用下获得的相同指标是成对出现的,每一对中的两个数据来自于同一个个体或条件相近的两个个体。

1.3.成组设计一元定量资料t检验成组设计定义:设试验因素A有A1,A2个水平,将全部n(n最好是偶数)个受试对象随机地均分成2组,分别接受A1,A2,2种处理。

再设每种处理下观测的定量指标数为k,当k=1时,属于一元分析的问题;当k≥2时,属于多元分析的问题。

在成组设计中,因2组受试对象之间未按重要的非处理因素进行两两配对,无法消除个体差异对观测结果的影响,因此,其试验效率低于配对设计。

T检验分析前提条件:独立性、正态性和方差齐性。

1.4.成组设计一元定量资料Wil coxon秩和检验不符合参数检验的前提条件,故选用非参数检验法,即秩和检验。

1.5.单因素k(k>=3)水平设计定量资料一元方差分析方差分析是用来研究一个控制变量的不同水平是否对观测变量产生了显著影响。

这里,由于仅研究单个因素对观测变量的影响,因此称为单因素方差分析。

方差分析的假定条件为:(1)各处理条件下的样本是随机的。

(2)各处理条件下的样本是相互独立的,否则可能出现无法解析的输出结果。

(3)各处理条件下的样本分别来自正态分布总体,否则使用非参数分析。

(4)各处理条件下的样本方差相同,即具有齐效性。

1.6.单因素k(k>=3)水平设计定量资料一元协方差分析协方差分析(Analysis of Covariance)是将回归分析与方差分析结合起来使用的一种分析方法。

在这种分析中,先将定量的影响因素(即难以控制的因素)看作自变量,或称为协变量(Covariate),建立因变量随自变量变化的回归方程,这样就可以利用回归方程把因变量的变化中受不易控制的定量因素的影响扣除掉,从而,能够较合理地比较定性的影响因素处在不同水平下,经过回归分析手段修正以后的因变量的样本均数之间的差别是否有统计学意义,这就是协方差分析解决问题的基本计算原理。

培训课件SAS统计分析及应用.ppt

培训课件SAS统计分析及应用.ppt

每列叫做一个变量〔Variable〕
SAS数据集等价于关系数据库系统中的一个表, 实际上一个SAS数据集有时也称作一个表。 在数据库术语中一个观测称作一个记录,一 个变量称作一个域。
在C0401数据集中:
有 5个观测,分别代表5个学生的情况,
每个学生有5个数据,
分别为姓名、性别、数学成绩、语文成绩、
.。
12
• 程序是文本,可在任何文本编辑工具中输入 Windows中的记事本
• Word也可输入这样包含中文的程序
• 输入后使用复制复制、粘贴命令将输入的程序粘 贴到SAS系统程序窗口。
• 〔即在记事本中复制输入的程序,然后在SAS系统 程序窗口中使用粘贴命令,把程序复制到SAS中〕。
• 运行此程序,只要用鼠标单击工具栏的提交 〔Submit〕图标 ,或用Run菜单下的Submit命令, 或者直接按下F8键〔Windows XP)或者F6 〔Windows 7),就可运行程序。如果选中某一段程 序,然后进展调用,那么系统只执行被选中的局部。
SAS程序与其它编程语言相似,采用缩进格式,使得 源程序构造清楚,容易读懂。
SAS程序的程序注释有以下两种格式:
注释语句:以星号“*〞开场,可占多行,以分号“;〞 完毕。~
注释段落:用“/*〞和“*/〞包括起来的任何字符,可 占多行。
程序中要有适当的注释,使程序的可读性强。
.。
18
四、SAS程序的数据步
语句完毕。通常情况下,过程语句与数据步中的语句不同,数 据步中的语句不能用在过程步中。
• 过程步语句一般以某一个关键字开头,比方VAR、BY、 TABLES、WEIGHT等,语句中有一些有关说明,如果有选择 项的话要写在斜杠后。

《SAS统计分析介绍》PPT课件

《SAS统计分析介绍》PPT课件

精选ppt
19
FORMAT语句可以为变量输出规定一个输出格式,比如 proc print data=score;
format math 5.1 chinese 5.1;
run;
使得列出的数学、语文成绩宽度占5位,带一位小数。 事实上,在生成数据集的DATA步中也可以用FORMAT语句规 定变量的输出格式,用LABEL 语句规定变量的标签,用LENGTH 语句规定变量的存贮长度,用ATTRIB语句同时规定变量的各属 性。在数据步中规定的变量属性是附属于数据集本身的,是永 久的;在过程步中规定的变量属性(标签、输出格式等)只用 于此过程的本次运行。
关 分 析
定性资料 ( R*C表)
双向无序 双向有序、属性不同
双向有序、属性相同
直线相关分析 Spearman秩相关 c2检验 Spearman秩相关、线性趋势检验 一致性检验(kappa系数的假设检验)
一个应变量,一个自变量:直线回归分析
回 归
应变量为连续型定量变量,服从正态分 布
一个应变量,多个自变量:多重线性回归 分析
在VAR后面给出变量列表:
VAR 变量名1 变量名2 … 变量名n;
变量名列表可以使用省略的形式,如X1-X3,
math-chinese等。
如果数据集中有几个变量依次为
math,english,chinese,则
var math-chinese 与
var math english chinese 等价。
5.304312 标准误差均 值
3645 584713.9 72.40189 0.56804 263832.5
0.140937
99% 95% 90% 75% Q3 50% 中位数

sas分析报告

sas分析报告

sas分析报告:分析报告sas sas结果分析如何用sas显著性分析sas结果读取篇一:sas统计分析报告《统计软件》报告聚类分析和方差分析在统计学成绩分析中的应用班级:精算0801班姓名:张倪学号:2008111500 报告2011年11月指导老师:郝际贵成绩:目录一、背景及数据来源.................................................... 1 二、描述性统计分析.................................................... 2 三、聚类分析................................................................ 4 四、方差分析................................................................ 6 五、结果分析与结论. (8)聚类分析和方差分析在统计学成绩分析中的应用一、背景及数据来源SAS 系统全称为Statistics Analysis System,最早由北卡罗来纳大学的两位生物统计学研究生编制,并于1976年成立了SAS软件研究所,正式推出了SAS软件。

SAS是用于决策支持的大型集成信息系统,但该软件系统最早的功能限于统计分析,至今,统计分析功能也仍是它的重要组成部分和核心功能。

SAS 系统是一个组合软件系统,它由多个功能模块组合而成,其基本部分是BASE SAS模块。

BASE SAS模块是SAS系统的核心,承担着主要的数据管理任务,并管理用户使用环境,进行用户语言的处理,调用其他SAS模块和产品。

也就是说,SAS系统的运行,首先必须启动BASE SAS模块,它除了本身所具有数据管理、程序设计及描述统计计算功能以外,还是SAS系统的中央调度室。

它除可单独存在外,也可与其他产品或模块共同构成一个完整的系统。

SAS详解3

SAS详解3

16.2 16.3
CATMOD 程序在分析中所用到的统计模型 .......................................................... 26
如何撰写 PROC CATMOD 程序............................................................................. 30
返回总目录
目录
第 14 章 SAS 系统内两种处理类别数据程序概述.................................................................... 3
14.1 14.2
两种分析类别数据的程序........................................................................................... 3 名 词 解 释................................................................................................................. 3
类别第数三据部的分处理
第 14 章 SAS 系统内两种处理类别数据程序概述
14.1 两种分析类别数据的程序 本章介绍两个可用来分析类别数据的统计程序
一是 PROC FREQ
另一个是 PROC
CATMOD 现分别简介其功能如下
PROC FREQ 程序 采用的文件是一个样本 一个或多个类别变量 画次数分配表或列联表 (Contingency Tables) 算出几种 (检定的) 统计值 如 2 检定 费契尔的精确性测试 (Fisher's Exact Test) 相关系数 若读者指定执行分等简单的随机抽样 (Stratified Simple Random Sampling) 则 FREQ 程序可算出 CMH 统计值 (Cochran-Mantel-Haenszel)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

31、只有永远躺在泥坑里的人,才不会再掉进坑里。——黑格尔 32、希望的灯一旦熄灭,生活刹那间变成了一片黑暗。——普列姆昌德 33、希望是人生的乳母。——科策布 34、形成天才的决定因素应该是勤奋。——郭沫若 35、学到很多东西的诀窍,就是一下子不要学很多。——洛克
【精品】SAS肯氏分析
26、机遇对于有准备的头脑有特别的 亲和力 。 27、自信是人格的核心。
28、目标的坚定是性格中最必要的力 量泉源 之一, 也是成 功的利 器之一 。没有 它,天 才也会 在矛盾 无定的 迷径中 ,徒劳 无功。- -查士 德斐尔 爵士。 29、困难就是机遇。
相关文档
最新文档