一次函数的应用教学设计.doc

合集下载

一次函数的应用教学设计(通用2024)

一次函数的应用教学设计(通用2024)

03
典型应用案例解析
直线运动问题建模
01
02
03
匀速直线运动
通过一次函数描述物体的 位移与时间的关系,理解 速度作为斜率的物理意义。
变速直线运动
引入加速度概念,通过一 次函数表示速度与时间的 关系,进而分析位移、速 度、加速度之间的关系。
追及与相遇问题
运用一次函数模型解决两 物体在同一直线上运动的 追及和相遇问题,理解相 对速度的概念。
包括求解一次函数的问题、分析实际问题的数学模型等。
02 03
明确作业要求
在布置作业时,教师应该明确作业的要求,包括完成作业的时间、提交 作业的方式等。同时,教师也可以给出一些提示或建议,帮助学生更好 地完成作业。
及时批改和反馈
最后,教师应该及时批改学生的作业,并给出反馈意见。对于学生在作 业中出现的问题,教师应该及时指出并给出正确的指导,以便学生及时 纠正错误并加深对一次函数应用的理解。
斜率、截距实际意义
斜率实际意义
斜率 $k$ 表示了函数图像的倾斜程度,即函数值随自变量变化的快慢。在实际问题中,斜率往往代表了某种比例 或速率,如速度、加速度、增长率等。
截距实际意义
截距 $b$ 表示了函数图像与 $y$ 轴交点的纵坐标。在实际问题中,截距通常代表了某种初始状态或基准值,如 初始速度、初始高度、基准温度等。通过截距,我们可以了解函数在自变量为0时的取值情况。
规律总结
让学生通过实践操作,总结一次函数 图像的特点和性质,如斜率、截距对 图像的影响等。
操作步骤
指导学生输入一次函数表达式,绘制 出函数图像,并通过调整参数观察图 像变化规律。
成果展示:各组汇报探究成果,互相评价交流
汇报内容 每个小组选派一名代表,汇报本组的讨论成果和实践操作 结果。

《一次函数的应用》教学设计

《一次函数的应用》教学设计

《一次函数的应用》教学设计4.4.一次函数的应用(1)【情景引入】观看疫情期间生产口罩的视频活动目的:动态的视频可以很快的抓住学生的眼球,能够让学生快速地进入课堂。

同时与现实密切的生活实际问题,鼓励学生乐于去思考,让学生在课堂的开始充满求知的愿望。

【探究一】确定正比例函数表达式某厂家生产口罩,他的生产数量m(个)与生产天数n(天)之间的关系如图所示.(1)写出m与n之间的关系式;(2)8天后能生产多少个?活动目的:题目文字信息给出的较少,学生获取信息的方式只能通过图象。

视察图象会发现是一条过原点的直线,意味着这是一个正比例函数,这在上一节课的学习过程中已然知晓。

根据两点确定一条直线,直线过除远点以外的一个点,那么就可以确定直线的解析式。

探究一的问题设计与生活联系密切,图象给学生视觉冲击,通过小组合作发现,探究方法的过程,让学生感受合作学习的必要性。

同时,问题的设计会让学生思考出不同的方法,发散学生的思维。

【探究二】确定一次函数表达式某口罩厂家库存口罩5000个,为了供应国家需求,经过三天的生产,口罩数量到达9500个.已知口罩数量y(个)是生产天数x(天)的一次函数.请写出y与x之间的关系式,并求出经过十天的生产后,该厂家可以供应的口罩数量.活动目的:在实际问题的情境下,接着探究一故事的编排,厂家为了提供充足物资,连夜加班,口罩的生产数量继续增长。

由题意可得出b的值,根据x、y值的确定,带入所设解析式求出具体表达式。

而在本题的思考过程中,部分学生可以将文字语言转换成图象语言,画出一次函数的图象,得出表达式。

教师对这部分学生要给予充分的肯定,八年级的学生思维相对活跃,可以有这样的思考说明上一节课的知识已经对后续的学习产生影响,进而得到提高。

小组同学各抒己见,总结出的结论可以相对全面。

思考:用待定系数法求一次函数表达式的步骤(1)(2)(3)(4)活动目的:通过两个探究问题的引入,教师板书规范步骤,学生通过视察得出求解这类问题的一般过程。

一次函数的应用(第2 课时) 教学设计

一次函数的应用(第2 课时) 教学设计

一次函数的应用(第2课时)
一、教学目标
(一)知识与技能:1.理解一次函数与一元-次方程的关系;2.会用函数的方法求解一元一次方程.
(二)过程与方法:经历探索一元一次方程与一次函数的内在联系的过程,体会数形结合的数学思想.
(三)情感态度与价值观:通过教学活动,让学生学会从不同角度认识事物本质的方法,建立自信心,提高学生自主合作探究学习的意识和能力,激发学生学习的兴趣,让学生体验数学的价值.
二、教学重点、难点
重点:1.对一次函数与一元-次方程的关系的理解;2.应用函数求解一元一次方程.
难点:对一次函数与一元一次方程的关系的理解.
三、教学过程。

一次函数的应用的教案

一次函数的应用的教案

一次函数的应用的教案教案标题:一次函数的应用教案目标:1. 理解一次函数的定义和特点;2. 掌握一次函数在实际问题中的应用方法;3. 培养学生解决实际问题的数学建模能力。

教学重点:1. 了解一次函数的图像和性质;2. 学会将实际问题转化为一次函数的应用问题;3. 掌握一次函数的应用解决方法。

教学难点:1. 将实际问题转化为一次函数的应用问题;2. 学生对于一次函数的应用解决方法的理解和运用。

教学准备:1. 教师准备:投影仪、教学PPT、教学板书;2. 学生准备:教材、作业本、铅笔、计算器。

教学过程:Step 1:导入(5分钟)教师通过引入实际生活中的问题,如购物、旅行等,引起学生对一次函数应用的兴趣,并激发他们思考一次函数在实际问题中的作用。

Step 2:概念讲解(10分钟)教师通过PPT或板书,介绍一次函数的定义和特点,包括函数的表达式、图像、斜率等,并与实际问题进行对比和解释。

Step 3:案例分析(15分钟)教师给出一些实际问题的案例,如物品价格与销量的关系、距离与时间的关系等,引导学生思考如何将这些问题转化为一次函数的应用问题,并通过图表和计算等方式解决。

Step 4:练习与讨论(15分钟)学生根据教师给出的练习题,分组进行讨论和解答,教师在过程中引导学生思考问题的解决方法和策略,并及时给予指导和反馈。

Step 5:拓展与应用(15分钟)学生通过小组合作的方式,选择一个实际问题进行数学建模,并运用一次函数的应用解决问题,最后展示和分享解决过程和结果。

Step 6:总结与评价(10分钟)教师对本节课的内容进行总结,并针对学生的表现进行评价和反馈,鼓励学生对一次函数的应用进行更深入的探究和应用。

Step 7:作业布置(5分钟)教师布置相关的课后作业,要求学生练习一次函数的应用解决方法,并思考更多实际问题的数学建模。

教学延伸:1. 学生可以通过自主学习,了解更多一次函数的应用领域,如经济学、物理学等;2. 学生可以通过查阅相关资料,了解一次函数在实际问题中的局限性和应用的局限性。

北师大版八年级数学上册4.1一次函数的应用教学设计

北师大版八年级数学上册4.1一次函数的应用教学设计
(三)学生小组讨论
1.分组讨论:将学生分成若干小组,每组选择一个生活实例,讨论以下问题:“这个实例中,变量之间的关系是什么?”“如何用一次函数来表示这个关系?”“你能举出其他类似的生活实例吗?”
2.汇报交流:每个小组汇报讨论成果,其他小组进行评价、补充。教师适时给予点评,纠正错误,巩固知识点。
(四)课堂练习
1.注重基础知识的巩固,通过实例分析,帮助学生建立起一次函数与现实问题的联系,提高学生的知识迁移能力。
2.针对学生对一次函数图像和性质的理解差异,设计差异化教学活动,使学生在实践中逐步提高对函数图像的认识。
3.引导学生从实际问题中提炼数学模型,培养学生的数学抽象思维和建模能力,同时,关注学生在合作交流中的情感体验,提高学生的团队协作能力。
2.教师点评:教师对学生的总结进行点评,强调重点知识点,纠正错误观念。同时,对本节课的学习内容进行拓展延伸,如介绍一次函数在其他学科中的应用。
3.课后作业:布置课后作业,巩固所学知识。同时,鼓励学生继续关注生活中的一次函数实例,提高数学素养。
五、作业布置
为了巩固学生对一次函数的理解和应用能力,本次作业布置如下:
1.设计梯度性练习题:针对一次函数的定义、图像、性质等知识点,设计不同难度的练习题。让学生在解答过程中,巩固所学知识,提高解题能力。
2.小组合作解题:鼓励学生进行小组合作,共同解答练习题。教师巡回指导,关注学生解题思路和方法,及时解答学生疑问。
(五)总结归纳
1.学生总结:请学生谈谈对本节课一次函数的学习体会,包括一次函数的定义、图像、性质以及在实际问题中的应用。
三、教学重难点和教学设想
(一)教学重难点
1.重点:一次函数的定义及其图像特点,一次函数在实际问题中的应用。

《一次函数的应用》word教案 (公开课)2022年北师大版 (3)

《一次函数的应用》word教案 (公开课)2022年北师大版 (3)

第四章一次函数§4.4 一次函数的应用〔一〕一、教学目标1、能通过函数图象获取信息,开展形象思维。

2、能利用函数图象解决简单的实际问题,3、初步体会方程与函数的关系。

二、能力目标1、通过函数图象获取信息,培养学生的数形结合意识。

2、根据函数图象解决简单的实际问题,开展学生的教学应用能力。

3、通过方程与函数关系的研究,建立良好的知识联系。

三、情感目标通过函数图象解决实际问题,培养学生的数学应用能力,同时培养学生良好的环保意识和热爱生活的意识。

四、教学重点一次函数图象的应用五、教学过程1、新课导入在前几节课里,我们分别学习了一次函数,一次函数的图象,一次函数图象的特征,并且了解到一次函数的应用十分广泛,和我们日常生活密切相关,因此本节课我们一起来学习一次函数图象的应用。

2、讲授新课〔1〕由于持续高温和连日无雨,某水库的蓄水量随着时间的增加而减少,干旱持续时间t 〔天〕与蓄水量V〔万米3〕的关系如以以下列图所示,答复以下问题:①干旱持续10天,蓄水量为多少?连续干旱23天呢?②蓄水量小于400万米3时,将发生严重干旱警报。

干旱多少天后将发出严重干旱警报?③按照这个规律,预计持续干旱多少天水库将干涸?请大家根据图象答复以下问题,有困难的同学,请与同伴互相交流。

分析:〔1〕求干旱持续10天时的蓄水量,也就是求t等于10时所对应的V的值。

当t=10时,V 约为1000万米3。

同理可知当t为23天时,V约为750万米3。

〔2〕当蓄水量小于400万米3时,将发出严重干旱警报,也就是当V等于400万米3时,求所对应的t值。

t约为40天。

〔3〕水库干涸也就是V为0,所以求函数图象与横轴交点的横坐标即为所求。

当V为0时,所对应的t的值约为60天。

练一练某种摩托车的油箱最多可储油10升,加满油后,油箱中的剩余油量y〔升〕与摩托车行驶路程x (千米)之间的关系如以下列图。

根据图象答复以下问题:〔1〕一箱汽油可供摩托车行驶多少千米?〔2〕摩托车每行驶100千米消耗多少升汽油?〔3〕油箱中的剩余油量小于1升时,摩托车将自动报警,行驶多少千米后,摩托车将自动报警?分析:〔1〕函数图象与x轴交点的横坐标即为摩托车行驶的最长路程。

一次函数的应用教案

一次函数的应用教案

一次函数的应用教案教案标题:一次函数的应用教学目标:1. 理解一次函数的概念及其特点;2. 掌握一次函数在实际问题中的应用方法;3. 培养学生应用一次函数解决实际问题的能力。

教学重点:1. 一次函数的定义及其特点;2. 一次函数在实际问题中的应用。

教学难点:1. 学生能够将实际问题转化为一次函数的表达式;2. 学生能够利用一次函数解决实际问题。

教学准备:1. 教师准备一些具体的实际问题,如物品价格、路程与时间等方面的问题;2. 准备教学示意图、教学PPT或者黑板。

教学过程:Step 1: 引入学习(5分钟)1. 引导学生回顾一次函数的定义及其特点;2. 提问:一次函数在实际问题中有什么应用?Step 2: 教学示范(15分钟)1. 选择一个具体的实际问题,如某商店商品的价格问题;2. 引导学生思考,如何利用一次函数解决该问题;3. 通过一个实际问题的解决过程,展示如何将问题转化为一次函数的表达式,并求解。

Step 3: 学生练习(20分钟)1. 学生根据教师提供的实际问题,分组进行解题练习;2. 教师巡回指导,帮助学生解决问题;3. 鼓励学生用不同的方法解决问题,并进行比较分析。

Step 4: 总结归纳(10分钟)1. 教师引导学生总结一次函数在实际问题中的应用方法;2. 学生针对所学内容进行总结,并讨论解决实际问题的思路。

Step 5: 拓展练习(10分钟)1. 学生完成教师提供的拓展练习题;2. 学生交换答案,并进行讨论。

Step 6: 归纳复习(5分钟)教师对本节课的内容进行归纳复习,并布置下节课的预习任务。

教学延伸:1. 学生可以通过查阅相关资料,寻找更多实际问题,并尝试利用一次函数进行解决。

2. 学生可以参与数学建模比赛,利用一次函数解决实际问题,锻炼应用数学知识的能力。

教学评价:1. 学生在练习中的表现;2. 学生对于一次函数在实际问题中的应用方法的理解程度;3. 学生参与拓展练习及讨论的积极程度。

4.4.1一次函数的应用(教案)

4.4.1一次函数的应用(教案)
2.数学建模:使学生掌握利用一次函数对现实问题进行建模的方法,提高他们运用数学知识解决实际问题的能力。
3.逻辑推理:引导学生运用一次函数相关知识进行逻辑推理,培养他们分析问题、解决问题的逻辑思维能力。
4.数学抽象:培养学生从实际问题中抽象出数学模型,理解并运用一次函数的概念及其性质。
5.数学表达:通过一次函数图像的绘制和解释,提高学生的数学表达能力,使他们能够清晰、准确地描述数学问题和解答过程。
6.团队合作:鼓励学生在解决问题时进行合作交流,培养他们的团队协作能力和沟通能力。
三、教学难点与重点
1.教学重点
(1)一次函数的定义及其图像特点:y=kx+b(k≠0,k、b为常数),强调k、b的物理意义,斜率k代表直线的倾斜程度,截距b代表直线与y轴的交点。
-通过实例让学生理解k、b在图像中的具体表现,如:当k>0时,图像呈现上升趋势;当k<0时,图像呈现下降趋势;b>0时,图像与y轴正向相交;b<0时,图像与y轴负向相交。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“一次函数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
(2)一次函数在实际问题中的应用:行程问题、价格问题、速度与时间问题等,掌握将实际问题转化为一次函数模型的方法。
-以行程问题为例,讲解如何根据速度和时间计算路程,以及如何利用一次函数图像分析物体的运动状态。
(3)一次函数图像的绘制方法:掌握根据实际问题绘制一次函数图像的步骤,包括确定坐标轴、标定关键点、绘制直线等。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)根据图彖,请分别求出当0WxW50和x>50时,y与x的函数解析式;
(2)请回答:当每月用电量不超过50度时,收费标准是;当每月用电量
超过50度时,收费标准是•
四、课堂小结
师:本节课我们学习了什么内容?
学生冋答,教师总结:
1.知道分段函数的概念与特征.
2.会作分段函数的图象.
3.对于实际问题,初步了解如何根据函数解析式和图象描出它的现实意义.
教师提示:应分段表示,我们把这样的函数叫做分段函数,各个函数要注明取值范围.
师:应该怎样分情况讨论呢?
学生思考,讨论.
师:用水量不超过8n?和超过8nf时的收费方法是不同的,但是应怎样分段呢?
生:分为0WxW8和x>8两段.
师:哪位同学能写出这两种情况下的函数解析式?
学生举手.
教师找一名学生板演,然后集体订正得到:
一次函数的应用
教学目标
【知识与技能】
学会用待定系数法求一次函数的解析式来解决实际问题,建立实际问题的函数模型.
【过程与方法】
经历对实际问题建立数学模型的过程,体验待定系数法的作用和一次函数模型的价值.
【情感、态度与价值观】
1.通过让学生经历用一次函数来解决实际问题、建立实际问题的函数模型的过程,使他 们感受到数学的用途和与生活的紧密联系.
【难点】
建立实际问题的数学模型.
教学过程
一、创设情境,导入新知
师:一次函数的图像有哪些特点,说明一次函数有哪些性质?
(学生回答)
师:我们在上节课学习了待定系数法,大家还记得是怎么用的吗?
生:设出解析式,然后把已知点的处标代入解方程或方程组,解得系数值,进而得到解析 式.
师:很好!我们这节课就用它来解决一些实际问题.
教学反思
本节课介绍了分段函数,分段函数在实际生活屮经常用到,因为一个函数不是在所有的 自变量可以取到的范围内可以通用,所以经常需要对自变量的范围分段讨论对应的函数.分 段函数的画法就是分别画出各个适用范围的一段.通过本节课的学习让学生进一步理解自变 量的取值范围的意义,在做题特别是解应用题时养成分情况讨论的习惯和意识.
二、共同探究,获取新知
教师多媒体出示.
【例】 为节约用水,某城市制定以下用水收费标准:每户每月用水不超过时,每立方 米收取1元外加0.3元的污水处理费;超过8代时,超过部分每立方米收収1.5元外加1.2元的污 水处理费.设一户每月用水量为xnf,应缴水费y元.
(1)给出y关于x的函数关系式.
(2)画出上述函数图象.
2.让学生参与到教学活动中,提高学习数学及运用数学的积极性.
学情分析
学生学习了一次函数的图像和性质,用待定系数法确定一次函数解析式,已能够熟练的 确定一次函数的解析式,并运用相关性质解决问题。学生已经学习了方程和不等式解决实际 问题,具备分析实际问题的能力。
重点难点
【重点】
用一次函数知识来解决实际问题.
(3)该市一户某月若用水量为x二51『或x二10nf时,求应缴水费.
(4)该市一户某月缴水费26.6元,求该户这月用水量.
师:你能写出y与x的函数关系式吗?
学生讨论后回答.
生:用水量超过8n?时与不超过8n?时计算方法是不同的,所以要分类讨论.当不超过8的寸, 每立方米收费为(1+0.3)元;当超过8n?时,超过部分每立方米收费(1. 5+1.2)元.
生:能.
师:你是怎样计算的?
生:因为26. 6>1.3X&所以用水量超过了8皿把y二26.6代入第二个式子,求出x.
师:对,现在请大家具体算一下.
学生计算后回答.
生:2. 7练习新知
教师多媒体岀示:
例2、为了缓解用电紧张矛盾,某电力公司特制定了新的用电收费标准,每月用电量/ (度)与应付电费y(元)的关系如图所示。
y=
师:很好!你们能画出它的图象吗?
生:能.
教师找一名学生板演,其余同学在下面画,最后讨论纠正得到:
师:若一户某月的用水量为5m〔你怎样求他应该缴多少水费?
生:因为5〈&所以把x=5代入第一个式子.
师:对,你们求一下是多少?
学生计算后回答.
师:若一用户缴了26.6元的水费,你能算出这户人家的用水量吗?
相关文档
最新文档