高聚物合成工艺学-第6章
聚合物合成工艺学每章重点整理

•
• •
• • • • •
• 高温聚合的特点:
• 溶液聚合的特点:
• • • • • • • • • • • • • • • • 优点:<1>与本体聚合相比,溶剂可作为传热介质使体系传热较易,温度容 易控制; <2>体系粘度较低,减少凝胶效应,可以避免局部过热; <3>易于调节产品的分子量及其分布。 缺点:a.单体浓度较低,聚合速率较慢,设备生产能力和利用率较低。 b.单体浓度低和向溶剂链转移的结果,使聚合物分子量较低。 c.使用有机溶剂时增加成本、污染环境。 d.溶剂分离回收费用高,除尽聚合物中残留溶剂困难。 a.溶剂对引发剂分解速度的影响:水作溶剂时对引发剂的分解速度影响小; 有机溶剂则有不同程度影响。某些有机极性溶剂对有机过氧化物有诱导分 解作用,加快聚合反应速度。 b.溶剂的链转移作用对分子量的影响:随着链转移常数Cs增大,聚合物分子 量逐渐降低。 c.溶剂对聚合物分子的支化与构型的影响:反应体系中有溶剂时,则可降低 向大分子进行链转移反应。 溶剂的选择应注意的问题:溶剂的活性:应当无阻聚或缓聚等不良影响以及 考虑对引发剂的诱导分解作用。
• 气相本体聚合——高压聚乙烯生产:
• • • • • • • • • 1)乙烯气相本体聚合的特点: 聚合热大、聚合转化率低、反应器内压力高、易发生链转移、存在一个压力 和氧浓度地临界关系。 2)影响乙烯聚合反应的主要因素: <1>压力的影响:操作压力:110~250MPa, 提高聚合体系的压力,通常将使聚合物速度增加,同时使聚乙烯分子链中的 支链增加,分子量降低,导致产品密度降低。 <2>温度的影响:操作温度:130℃~280℃, 温度升高将使聚合物的分子量相应降低,聚乙烯分子链中的支链度升高,使 产品的密度降低。 <3>引发剂的影响:引发剂的用量将影响聚合反应速率和分子量,引发剂用量 增加,聚合反应速率加快,分子量降低。生产上,引发剂用量通常为聚合物 质量的万分之一。 <4>链转移剂的影响:常用的链转移剂有丙烷、氢、丙烯等。 <5>单体纯度的影响:乙烯单体中杂质越多,会造成聚合物分子量降低,且会 影响产品各种性能,工业上,对乙烯的纯度要求超过99.95%。
大学功能高分子材料经典课件——高聚物膜

高聚物膜
(纳米)
10000
各种膜的分离特性
微滤
悬浮颗粒
超滤 纳滤 反渗透
大分子有机物
糖类等小分子有机物,二价盐 或多价盐 单价盐
水
膜的分类
按孔径大小:微滤膜、超滤膜、反渗透膜、纳滤膜 按膜结构:对称性膜、不对称膜、复合膜 按材料分:合成有机聚合物膜、无机材料膜
膜材料的特性
基本要求: – 耐压:膜孔小,要保持高通量就必须施加较高
(美国,明尼苏达)
纳滤的应用
行业 制药工业
食品工业
处理对象
母液中有效成分的回收 抗菌素的分离纯化 维生素的分离纯化
氨基酸的脱盐与纯化 乳清脱盐与浓缩 苛性碱回收
染料工业 活性染料的脱盐与回收
行业 化工行业
纯水制备 废水处理
处理对象 酸碱纯化、回收 电镀液中铜的回收
超高纯水 水的脱盐 地下水的净化 印染厂废水脱色 造纸厂废水净化
粒子
体粒子
溶质分子按大小 压力差(0.1-1MPa M=500~
筛分并精制
)
30万
水的分离与溶质 膜对水的选择透过 低分子、无
的浓缩
性及压力差(0.02 机离子
~0.1MPa)
反渗透
0.1 1.0
超滤
10
氢 无机离子 高分子 离 低分子 胶体 子 有机物 病毒
微滤
100
1000
细菌 悬浊物 微细油珠
超滤膜:用于分子量为500至100万之间的分级。
膜材料有醋酸纤维素,聚酰亚胺,聚丙烯腈,聚醋 酸乙烯,丙烯酸盐与氯乙烯 共聚物等。
反渗透膜:醋酸纤维素膜、芳香族聚酰胺、聚苯并味 唑、磺化聚苯撑氧、聚酰胺羧酸、聚乙烯亚胺、聚甲 苯二异氰酸脂、氰乙基化聚乙烯亚胺。
聚合物合成工艺学

(4)分离过程:涉及未反应单体旳回收、脱除溶剂、催化剂,脱除 低聚物等过程与设备。
(5)聚合物后处理过程:涉及聚合物旳输送、干燥、造粒、均匀化、 贮存、包装等过程与设备。
(6)回收过程:主要是未反应单体和溶剂旳回收与精制过程及设备。 另外三废处理和公用工程如供电、供气、供水等设备。
(7) 发展清洁生产,注重可连续发展
(8) 增强技术创新能力,培养高素质人才
5. 高分子合成工业
(1) 基本原料:石油、天然气、煤炭等为原材料。
(2) 生产过程:涉及石油开采、石油炼制、基本有机合成、高 分子合成、高分子合成材料成型等工业部门,提供主要旳原料 -单体、溶剂、塑料添加剂等辅助原料。
(3) 高分子合成工业旳任务:将基本有机合成工业生产旳单体, 经过聚合反应合成高分子化合物,从而为高分子合成材料成型 工业提供基本原料。所以基本有机合成工业、高分子合成工业 和高分子合成材料成型工业是亲密相联络旳三个工业部门。
多数引起剂受热后有分解爆炸旳危险,干燥、纯粹旳过氧化物 易分解。所以工业上过氧化物采用小包装,贮存在低温环境中, 而且防火,防撞击。
常用旳催化剂烷基金属化合物很危险,易遇空气燃烧或遇水爆炸。 金属卤化物易水解生成腐蚀气体。
(3) 聚合过程
高分子化合物旳平均分子量、分子量分布以及其构造对高分子 合成材料旳物理机械性能产生重大影响,而且生产出来旳成品 不易进行精制提纯,所以对聚合工艺条件和设备旳要求很严格:
例2. 一种年产10万t合成纤维工厂相当于200多万亩棉田旳产量, 也相当于2023万多头绵羊旳年产毛量,我国如能年产100万t合 成纤维,可节省2023多万亩土地,可养活3000-4000万人口。
高聚物合成工艺学知识点总结

第一讲第一章绪论§1.1 高分子合成工业概述工艺学:研究将原料加工成产品的过程的科学,属技术科学,高聚物合成工艺学研究内容包括原料特点、生产原理、生产流程、操作条件、设备的构造和材料。
1. 分类:天然、半合成、合成天然橡胶经硫化制备橡胶制品,蛋白质改性产品乳酪素,纤维改性产品赛璐珞2. 高聚物的用途:皮革制品、纤维及其制品、纸张、橡胶制品、塑料制品、涂料、粘合剂、离子交换树脂、生物医学制品等。
3. 石油化工包括石油开采、石油炼制、基本有机合成、高分子合成、高分子材料成型加工,其中高分子合成工业起着承前启后的作用,以燕化为例阐述我国高分子化工的发展。
1959年开始顺丁橡胶的研究,主要是催化剂的研究,Ni, Co.Ni, Ti, Co,70年开始建设,是我国首个具有知识产权的大规模的化工装置。
§1.2高分子化合物的生产过程高分子合成工业的基本任务:将简单的有机化合物(单体),经聚合反应使之成为高分子化合物。
官能团:能够发生聚合反应的活性基团或原子。
单体:含有二或二以上官能团的能够发生聚合反应的有机化合物。
(请举例)因规模大、工艺复杂,故以线性加成聚合反应为主讲解高聚物生产过程。
高聚物的合成工艺过程包括:原料准备与精制过程、催化剂(引发剂)配制过程、聚合反应过程、分离过程、聚合物后处理过程、回收过程、三废处理过程。
一、原料准备与精制过程原料:单体、溶剂,主要是去离子水的贮存、洗涤、精制、干燥、调整浓度等过程和设备,方法:精馏1. 杂质的危害:1) 阻聚和链转移作用,降低分子量;2) 使催化剂中毒和分解,降低催化剂的催化作用;3) 缩聚过程中单官能物的封端作用,降低分子量;4)使聚合物产生色泽,降低产品质量,因此,要求单体纯度在99%以上。
2. 单体的贮存由于单体往往是易燃、易爆、有毒、自聚的有机化合物,因此在贮存过程中应注意如下问题:1) 防止与空气接触;2) 使贮罐不会产生过高压力;3) 防止泄漏;4)加阻聚剂;5) 贮罐远离反应装置;6) 最好使用耐压容器二、催化剂(引发剂)配制过程(聚合用催化剂、引发剂和助剂的制造、溶解、贮存、调整浓度等过程与设备。
高聚物合成工艺学题集--四川大学

第一章绪论1.试述高分子合成工艺学的主要任务。
高分子合成工业的基本任务:将简单的有机化合物〔单体〕,经聚合反应使之成为高分子化合物。
2.简述高分子材料的主要类型,主要品种以及发展方向。
分类:天然、半合成、合成天然橡胶经硫化制备橡胶制品,蛋白质改性产品乳酪素,纤维改性产品赛璐珞。
向耐候性,耐热性,耐水性,功能性,环保性合成高分子发展。
3.用方块图表示高分子合成材料的生产过程,说明每一步骤的主要特点及意义。
1)原料准备与精制过程特点:单体、溶剂等可能含有杂质,会影响到聚合物的原子量,进而影响聚合物的性能,须除去杂质意义:为制备良好的聚合物做准备2)催化剂配制过程特点:催化剂或引发剂的用量在反应中起到至关重要的作用,需仔细调制意义:控制反应速率,引发反应3)聚合反应过程特点:单体反应生成聚合物,调节聚合物的分子量等,制取所需产品意义:控制反应进程,调节聚合物分子量4)别离过程特点:聚合物众位反应的单体需回收,溶剂、催化剂须除去意义:提纯产品,提高原料利用率5)聚合物后处理过程特点:聚合物中含有水等,需干燥意义:产品易于贮存与运输6)回收过程特点:回收未反应单体与溶剂意义:提高原料利用率,降低成本,防止污染环境4.如何评价生产工艺合理及先进性。
1〕生产方式2〕产品性能:产品系列化3〕原料路线4〕能量消耗与利用5〕生产技术水平:降低生产技术费5.开发新产品或新工艺的步骤和需注意的问题有哪些?首先要了解材料应用的技术要求,提出聚合物的性能要求,根据性能要求明确聚合物分子组成及分子结构,然后拟定聚合配方及工艺措施,科学地解决合成性能及结构关系。
应注意高分子合成、结构及性能的关系;合成反应的理论和方法。
第二章生产单体的原料路线1.简述高分子合成材料的基本原料〔即三烯、三苯、乙炔〕的来源。
石油化工路线煤炭路线其他原料路线:主要是以农副产品或木材工业副产品为基本原料,直接用作单体或经化学方法加工为单体。
自农副产品中得到的最主要的单体是糠醛,以糠醛为原料可获得丙酮、苯酚、康醇和甲醛等。
聚合物合成工艺

植物、农副产品 糠醛、纤维素脂、纤维素醚等。
2.2.3 中国资源情况展望
煤炭资源丰富 石化基地:大型乙烯装置
第3章 自由基聚合生产工艺
本体聚合 乳液聚合 悬浮聚合 溶液聚合
3.1 自由基聚合工艺基础和本体聚合生产工艺
3.1.1 自由基聚合工艺基础
自由基聚合引发剂
1.特点:产品不能精制提纯,因此,对聚合反应工艺条件和设备 要求很严格;同一套装置要求生产不同牌号的产品。
2.聚合实施方法 自由基聚合:本体、乳液、悬浮、溶液 离子与配位聚合:本体、溶液
3.聚合反应的操作方式 间歇聚合:分批生产,适于小批量生产; 连续聚合:自动化程度高,质量稳定,适合大批量生产。
4.聚合反应器 管式、塔式、釜式、特殊形式 反应热排除方式:夹套冷却、内冷管冷却、反应物料部分闪蒸、反 应介质预冷、回流冷凝器冷却等。 搅拌器形式:平桨式、旋桨式、涡轮式、锚式、螺带式
1.3.5 聚合物后处理过程
后处理过程主要是脱除水分和有机溶剂的干燥过程。 1 合成树脂:采用气流干燥、沸腾干燥;干燥后得到的粉
状树脂,一般要添加稳定剂、润滑剂等添加剂,经混 炼、造粒制得粒状料(PVC除外)。 2 合成橡胶:采用箱式干燥机、挤压膨胀干燥机干燥。干 燥后进入压块机压制成25kg大块。
3.3.2 聚合工艺
常用釜式反应器、半连续操作。
3.3.3 后处理
聚合物溶液:脱除单体,浓缩或稀释至要求的固含量。 固体聚合物:真空蒸发脱单体、有机溶剂; 水溶液:干燥机脱水。
▲3.4 乳液聚合生产工艺
▲应用:合成树脂如PVC、聚醋酸乙烯、聚丙烯酸酯等; 合成橡胶如SBR、NBR、CR。
▲特点: 优点:聚合反应热清除较容易; 反应体系粘度低; 分散体系的稳定性优良,可连续操作; 产品乳液可直接用作涂料、粘合剂、表面处理剂。 缺点:分离过程较复杂,产生大量废水,直接干燥能耗大; 聚合物杂质含量较高。
高聚物合成工艺学

4、分离过程
聚合结束,对产物中聚合物、未反应单体、催化剂、 反应介质进行分离
5、 聚合物后处理过程
合成树脂:粉状树脂-------干燥-------旋风分离器-------稳定 剂-------混炼-------造粒-------冷却--------粒状塑料-------均匀 化-------包装--------商品 合成橡胶:粒状合成橡胶----干燥-----压块-----包装-----商品
6、 回收过程 主要回收单质、溶剂
6+1 辅助环节 回收能量 稳定生产 三废处理 产品贮运
三、 三废处理及废物利用
废气-密闭 废液-交换 废渣-焚烧沉降
废旧塑料回收利用途径:
1、作为材料再生循环利用 2、做为化学品循环利用 3、做为能源回收利用
聚物生产方法,生产工艺过程,工艺设备等 基本知识。
第一章 绪论
高分子合成工业概述 1、高分子合成材料
{ { 高分子材料 天然高分子 天然高分子改性 合成高分子 有机材料聚合
2、发展简史 古代 部分合成 油漆、浆糊
现代 起源---天然高聚物的化学加工工业
典型标志:
① 天然橡胶-----橡胶制品 1839年 ②第一种塑料---赛璐珞(樟脑增塑硝酸纤维素)
1、原料准备与精制过程
单体纯度 99%以上 ① 单体中杂质对聚合物反应产生链转移反应 ② 使催化剂产生中毒,活性降低分解 ③ 影响产品的颜色、光泽度、黑点 单体贮存设备考虑问题: ①防止与空气接触产生易爆炸的混合物或 产生过氧化物,提供氮气保护 ②保证储罐在任何情况下不会因压力过高而爆炸 ③防止有毒易燃单体在运输过程中泄漏 ④防止单体自聚,加一定阻聚剂 ⑤贮罐远离反应装置,减少火灾危险ຫໍສະໝຸດ 2、催化剂(引发剂)配制过程
高聚物合成工艺学总结

名词解释浊点:非离子表面活性剂被加热到一定温度,溶液由透明变为浑浊,出现此现象时的温度称为浊点,乳液聚合在浊点以下进行均缩聚:一种单体参加的缩聚反应共缩聚:均缩聚体系和混缩聚体系加入其它单体进行缩聚三相点:离子型乳化剂在一定温度下会同时存在乳化剂真溶液、胶束和固体乳化剂三相态,此温度点称三相点。
乳液聚合在三相点以上进行。
离子聚合:乙烯基单体,二烯烃单体以及一些杂环化合物在某些离子的作用下进行的聚合反应称之为离子聚合反应。
(单体在阳离子或阴离子作用下,活化为带正电荷或带负电荷的活性离子,再与单体连锁聚合形成高聚物的化学反应,统称为离子型聚合反应)配位聚合:是烯烃单体的碳-碳双键与引发剂活性中心的过渡元素原子的空轨道配位,然后发生位移使单体分子插入到金属-碳之间进行链增长的一类聚合反应。
混缩聚(异缩聚物):两种单体参加的缩聚反应逐步加成聚合反应:某些单体分子的官能团可以按逐步反应的机理相互加成而获得聚合物,但又不析出小分子副产物,这种反应称为逐步加成聚合反应。
扩链反应:预聚物通过末端活性基因的反应使分子相互连结而增大分子量的过程均相本体聚合:指生成的聚合物溶于单体(如苯乙烯、甲基丙烯酸甲酯)。
非均相本体聚合:指生成的聚合物不溶解在单体中,沉淀出来成为新的一相(如氯乙烯)。
HLB值:亲水亲油平衡值用来衡量乳化剂分子中亲水部分和亲油部分对其性质所做贡献大小的物理量。
HLB值越大表明亲水性越大;反之亲油性越大。
"临界胶束浓度"(CMC):表面活性剂分子形成胶束时的最低浓度.从结构而言,疏水基团越大,则CMC值越小。
在烃基带有极性基团时,CMC值增大。
萃取精馏:是用来分离恒沸点混合物或组分挥发度相近的液体混合物的特殊精馏方法。
基本原理是,液体的混合物中加入较难挥发的第三组分溶剂,以增大液体混合物中各组分的挥发度的差异,使挥发度相对地变大的祖坟可以由精馏塔顶馏出,挥发度相对地变小的组分则与加入的溶剂在塔底流出。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
b. 三羟基聚氧化丙烯醚:甘油为起始剂,KOH为催化剂,使环 氧丙烷开环聚合得到。
c. 四羟基聚氧化丙烯醚:乙二胺为起始剂,KOH为催化剂,使 环氧丙烷开环聚合得到。
常用聚醚多元醇的种类
聚醚多元醇分子中端羟基数与起始剂分子中的羟基数相等。
起始剂可以调节聚醚多元醇分子量。
(2)聚酯多元醇
聚酯多元醇通常由二元酸与过量的多元醇反应而成,分子量为 1000-3000。聚酯多元醇也可由内酯(如己内酯)开环聚合而得到。 常见聚酯多元醇的组成和用途
异氰酸酯与脲反应
O R NCO + NH C NH 100℃ O O
R NH C N C NH
反应特点:产物缩二脲为支链或交联结构。
(3)异氰酸酯的自聚反应
a. 异氰酸酯二聚
高温下则二聚体会发生分解
b. 异氰酸酯三聚
三聚体在150一200℃时仍很稳定(与二聚体不同)。可制取优异的 油漆涂料及耐温、阻燃的埂质泡沫塑料。
1. 聚氨酯的类型
生成的树脂非常坚韧,应用少。
二元异氰酸酯与短链二元醇
(1)线型聚氨酯 二元异氰酸酯与长链二元醇
具有弹性的高聚物
(2)嵌段型聚氨酯 利用聚酯或聚醚型HO——OH长链,先生成预聚体,再经扩链 反应而得到聚酯或聚醚型嵌段的聚氨酯。
一级交联型:通过化学键进行交联。 (3)交联型聚氨酯
二级交联型:某些极性基团的‘氢键’交联。
(3)第尔斯-阿德尔(Diels-Alder)反应是双键间的逐步加成,可制取 耐高温材料,近年来受到了人们的重视。 最早是由环戊二烯 制得的低聚物:
由1,2,4,5—四次甲基环已烷与对苯醌反应:
O
O
O O O O x
O
O
O
O
可溶性梯型高聚物 该高聚物能结晶,能溶解,但不熔化,具有很高的耐热性,在 900℃时只失重30%。
(3)一些特殊类型的异氰酸酯
a. 聚合型异氰酸酯:毒性小,较稳定,可提高PU的支化及交联度。
TDI三聚体
TDI与三羟甲基丙烷(TMP)加成物
b. 隐蔽型异氰酸酯:加热可释出异氰酸酯,方便贮存。
氨基甲酸苯酯
2. 多羟基化合物
(1)聚醚多元醇 聚醚多元醇常用的是由单体环氧乙烷、环氧丙烷、四氢呋喃开环 聚合而成,采用碱性催化剂KOH和醇(或胺) 。 a. 二羟基聚氧化乙烯醚:由丁二醇为起始剂,KOH为催化剂,使 环氧乙烷开环聚合而得。
40年代,制得了合成纤维贝纶U(Perlon U)。 50年代,得到聚氨酯弹性体、弹性纤维和泡沫塑料。
60年代,聚氨酯涂料和粘合剂等开始应用。
我国聚氨酯工业起始于20世纪50年代末,1959年上海市轻工 业研究所开始聚氨酯泡沫塑料的研究。
2. 聚氨酯的反应式
由两官能团的二元异氰酸酯和二元醇反应:
氨基甲酸酯基团(氨酯键)
第五节 聚氯酯泡沫塑料
泡沫塑料是以树脂为基础,采用化学的或物理的方法在其内部 产生无数小气孔而制成的塑料。
1. 聚氨酯泡沫塑料的分类
Mc值 :体型结构大分子中交联点间的分子量的大小。
Mc↓,交联密度↑ ,泡沫塑料的硬度及机械强度↑。
2. 聚氨酯泡沫塑料合成原理
(1)成泡原理 a. 泡沫的形成:在成泡剂的作用下,产生泡沫。
a. 手工发泡:计量加入反应物,经高速搅拌混合数秒后,立即倾 入模具内进行发泡成型。 优点:设备简单、适应性强,适用于批数少,产品规格变化大的 生产。缺点:产率低,仅使用于少量物料的生产。
b. 浇铸法 (模塑法):均匀的发泡混合料定量地注入金属模具内进 行发泡,预熟化,然后脱模,再加热充分熟化。
c. 喷涂法:借助压力使各组分在喷枪内混匀,然后喷涂于施工物 表面上进行现场发泡成型。
(1)异氰酸酯合成
a. 伯胺光气化法: 缺点:毒性大,副反应多。
b. 一氧化碳法: 必须在高温(160-220℃)、高压下进行,需贵金属做催化剂。
(2)常用的异氰酸酯
a. 甲苯二异氰酸酯(TDI)
甲苯
二硝化,还原
二胺
光气化反应
TDI
常见的三种TDI混合物 为TDI—100、 TDI—80 及TDI—65。
异氰酸酯与酚反应
R NCO + 异氰酸酯与羧酸反应 Ar OH 150℃ 分解 R NH CO Ar
异氰酸酯与羧酸反应
R NCO + Ar OH
异氰酸酯与羧酸反应
O R NCO + R' C OH R' + CO2 O O R' R NH C O C
R NH CO
异氰酸酯与酰氨反应
O R NCO + R' C NH2 100℃ 反应活性低 O O R' R NH C NH C
第二步:预聚体进行扩链和交联。 扩链反应:预聚物通过末端活性基因的反应使分子相互连结而增 大分子量的过程。PU树脂扩链剂主要为水、二元醇或二元胺。
二元醇
二元胺
异氰酸酯指数(R)
0<R<1,分子扩链,端基为—OH R=1, 分子无限扩链,端基为—NCO及—OH 分子不扩链,端基为—NCO 1<R<2,分子扩链,端基为—NCO R=2,
3. 原料
(1)异氰酸酯:TDI、MDI、PAPI (2)聚醚或聚酯多元醇: 软泡要求Mc值大,故须采用分子量较大的多元醇(f=2-3)。 硬泡要求Mc值小,故须采用分子量较小的多元醇(f= 3-8)。
(3)催化剂:常用混合催化剂。
(4)发泡剂:水或低沸点卤代烃。
(5)泡沫稳定剂:降低原料各组分的表面张力,增加互溶性及稳定 发泡过程,有利于得到均匀的泡沫微孔结构。
有机硅泡 沫稳定剂
Si—O—C型
(6)开孔剂:直链烃或脂环烃(如聚丙烯、聚丁二烯及液体石蜡等) 。
开孔型泡沫塑料
闭孔型泡沫塑料
缓冲和吸音性能良好
隔热性良好
(7)其他助剂:阻燃剂及防老剂、稳定剂、增强剂和着色剂等。
4. 生产工艺
(1) 操作过程:一步法和两步法。 聚氨酯泡沫塑科生产方法的比较
(2)发泡成型工艺
例如,异氰酸酯与醇的反应,无催化剂参与的反应机理:
当R为吸电子基,R’含推电子基时,有利于亲核加成反应进行。 各类含活泼氢化合物与异氰酸酯反应活性次序为
初级反应
(
2 异 氰 酸 酯 与 含 活 泼 氢 化 合 物 的 反 应
)
因为各个反应产物中仍含有活泼氢原子,可与过量的异氰酸酯 进一步发生反应。
催化机理:发生亲核反应,叔胺与R’NCO生成过渡状态络合物, 在其它醇分子进攻下生成聚氨酯并释出催化剂叔胺分子。
(2) 有机锡类化合物:二丁基锡二月桂酸酯、辛酸亚锡等。
(3) 混合催化剂 a. 采用“胺-有机锡” 混合催化剂,调节链 增长与发泡反应的速 率。 两类催化制的相对活性
b. ‘协同效应’使催化效果比单一催化剂要提高很多。
(4)丙烯酰胺在催化剂下的加成聚合反应
n CH2=CH—CO—NH2
[-CH2—CH2—CO—NH-]n
在石油、造纸、自来水等工业和领域应用广泛。
第二节 聚氨酯的合成原理 1. 聚氨酯(Po1yurethane, PU)的发展
1937,德国Bayer合成第一种聚氨酯热塑性塑料Durthane U。
2.聚氨酯的结构与性能关系
a. 光稳定性: ONC— R—NCO中的R为脂肪族链光稳定性好。 b. 内聚能:酯基的内聚能大于醚基,所以聚酯二元醇PU链间的作 用力较大,耐热性、机械强度较高。
几种基团的内聚能
c. 存在交联结构赋予PU分子一些独特的性能。
d. 耐热稳定性
耐热性次序为:酯、醚 >> 脲、氨基甲酸酯 >>脲基甲酸酯 、缩二脲
2,4—异构体
TDI
2,6—异构体
用TDI所制得的PU机械性能较好,但TDI其沸点低,毒性较大。
不同品种TDI的主要性质
2,4—位TDI的活性大于2,6—位
b. 4,4’—二苯基甲烷二异氰酸酯(MDI)
MDI
MDI易二聚,毒性低,一般在低温下贮存。
c. 多苯基多亚甲基多异氰酸酯(PAPI) PAPI是粗制MDI,分子量大,沸 点高,毒性低。分子中含有较多 的异氰酸酯基团,制得的PU交联 密度高,链刚性较大。
3. 扩链剂
(1)二元醇类 低分子量的脂肪族和芳香族的二元醇,如乙二醇、1,4-丁二醇、三 羟甲基丙烷和对苯二酚二羟乙基醚等。 对苯二酚二羟乙基醚
(2)二元胺类 常用的是芳香族胺类,如联苯胺、3,3’-二氯联苯二胺和3,3’-二氯4,4’-二苯基甲烷二胺(MOCA)。 MOCA
4. 催化剂
(1) 叔胺类:三乙胺、三乙醇胺、三亚乙基二胺、丙二胺、N,N二甲基苯胺等。
次级反应
次级反应的活性较小,能形成支化或交联,是合成非线型聚氨 酯材料的基本反应。
与醇的反应 异氰酸酯与醇反应能力: 伯醇>仲醇>叔醇 芳香族二异氰酸酯与醇类反应活性:当第一个NCO起反应后, 会使第二个末反应的NCO基活性降低。 与水的反应
对泡沫塑料 十分重要。
异氰酸酯与胺反应
R NCO + R' NH2 快 R NH CO NH R'
●由于反应中没有小分子副产物析出,高聚物的化学组成与单体 的化学组成相同。
●几种逐步加成聚合反应 (1)聚脲反应通式
线型聚脲由于熔化温度高且热稳定性差,没有广泛的使用。
(2)某些烯类化合物的逐步加成聚合反应,如双烯烃和二硫醇
n CH2 = CH—R—CH=CH2 + n HS—R’—SH
[CH2 — CH2—R—CH2—CH2—S—R’—S]n 产物为聚硫橡胶,它对有机物稳定,用于耐油套管和化工设备
多元异氰酸酯
+
多羟基化合物及 端羟基聚醚、聚酯