第四章.中值定理与导数的应用

合集下载

四章节中值定理与导数应用

四章节中值定理与导数应用

9/26/2024
第四章 中值定理与导数应用
第20页
小结
罗尔定理、拉格朗日中值定理及柯西中值定理 之间旳关系;
Rolle f (a) f (b) Lagrange F ( x) x Cauchy
定理
中值定理
中值定理
注意定理成立旳条件; 注意利用中值定理证明等式与不等式旳环节.
嘉兴学院
9/26/2024
欲证: ( x1 , x2 ), 使 f ( ) f ( ) 0 只要证 e f ( ) e f ( ) 0
亦即 [ ex f (x ) ] x 0
作辅助函数F (x) ex f (x ) , 验证 F (x )在 [ x1 , x2 ]上满足
罗尔定理条件.
嘉兴学院
9/26/2024

F (x ) f (x )sin x
验证 F (x ) 在 [ 0, π ] 上满足罗尔定理条件.
嘉兴学院
9/26/2024
第四章 中值定理与导数应用
第22页
3. 若 f (x )可导, 试证在其两个零点间一定有
f (x ) f (x ) 旳零点.
提醒: 设 f (x1) f (x2 ) 0, x1 x2 ,
x+
嘉兴学院
9/26/2024
第四章 中值定理与导数应用
三、柯西(Cauchy)中值定理
第15页
柯西(Cauchy)中值定理 如果函数 f ( x)及F ( x) 满
足(1)在闭区间[a, b]上连续,
(2)在开区间(a, b)内可导,
(3) 对(a, b)内每一点均有F ' ( x) 不为零,那么在
f (x1 x2 ) f (x2 ) f (x1)

高等数学 中值定理

高等数学 中值定理

F ( x )=3 x 2 f ( x ) x 3 f ( x ) ,可以用罗尔定理证明. 提问 2:设 f ( x ) C [1, 2] , f ( x ) D (1, 2) ,且 f (2) 8 f (1) , (1, 2) , s .t . 3 f ( ) f ( ) 0 . 3 提示:构造函数 F ( x ) x f ( x ) , F ( x )=-3 x 2 f ( x ) x 3 f ( x ) ,
f ( x ) f ( x0 ) [或 f ( x ) f ( x0 ) ], x U ( x0 ) , O x 若 f ( x ) D ( x0 ) ,则 f ( x0 ) 0 . 证明:由于 f ( x ) f ( x0 ) f ( x ) f ( x0 ) 0 , x U ( x0 ) ,那么 f ( x ) f ( x0 ) f ( x0 ) lim 0 ,(因 x x0 0 ) x x0 x x0 f ( x ) f ( x0 ) f ( x0 ) lim 0 ,(因 x x0 0 ) , x x0 x x0 所以 f ( x0 ) 0 . 2.【罗尔 Rolle 定理】 y C 设 f ( x ) C [a , b ] , y f (x) f ( x ) D( a , b ) ,且 A B f (a ) f (b) ,
2
在区间 [ 1, 3] 上罗尔定理成立. 提示: f ( x ) x 2 x 3 ( x 3)( x 1) C [ 1, 3]
2
f ( x ) 2 x 2 D( 1, 3) , f ( 1) f (3) 0 满足罗尔定理的条件, 所以 1 ( 1, 3) ,使得 f (1) 0 例 2 不用求出 f ( x ) ( x 1)( x 2)( x 3) 的导数,试判 别方程 f ( x ) 0 有几个实根.以及根所在的范围. 解: 显然 f ( x) 在区间 [1, 2] , [2, 3] 上都连续, f ( x ) 在区间 (1, 2) , (2, 3) 内都可导,且 f (1) f (2) f (3) ,

《高等数学B》第四章中值定理及导数的应用第2节洛必达法则

《高等数学B》第四章中值定理及导数的应用第2节洛必达法则

《高等数学B》第四章中值定理及导数的应用第2节洛必达法则洛必达法则(L'Hôpital's rule)是一种常用于求解极限的方法,该方法是由法国数学家Guillaume de l'Hôpital在1696年提出的。

洛必达法则适用于形如$\frac{0}{0}$或$\frac{\infty}{\infty}$的极限。

具体来说,如果对于函数$f(x)$和$g(x)$,当$x \to a$时,$f(x)$和$g(x)$分别趋于0或无穷大,且$f'(x)$和$g'(x)$都存在(其中$f'(x)$和$g'(x)$分别表示$f(x)$和$g(x)$的导数),则有:$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a}\frac{f'(x)}{g'(x)}$$其中,等式右边的极限表示对$\frac{f'(x)}{g'(x)}$求导后再取$x \to a$的极限。

这个法则的推导基于泰勒展开的思想。

我们知道,对于充分光滑(即具有连续的导数)的函数,它在其中一点周围可以用泰勒级数展开。

假设$f(x)$和$g(x)$在$a$的邻域内都可展开,则有:$$f(x) = f(a) + f'(a)(x-a) + \frac{1}{2}f''(a)(x-a)^2 +\cdots$$$$g(x) = g(a) + g'(a)(x-a) + \frac{1}{2}g''(a)(x-a)^2 +\cdots$$根据极限的定义,我们希望求解的极限是$x \to a$时的极限,因此可以将$x-a$看作一个无穷小量。

我们忽略展开式中的高阶无穷小量,得到:$$\lim_{x \to a} \frac{f(x)}{g(x)} \approx \lim_{x \to a}\frac{f(a) + f'(a)(x-a)}{g(a) + g'(a)(x-a)}$$将$a$代入极限中,我们可以得到:$$\lim_{x \to a} \frac{f(a)}{g(a)}$$上述结果是前提条件$f(a)=g(a)=0$下的结果,而当$f(a) \neq 0$或$g(a) \neq 0$时,我们可以对$\frac{f(x)}{g(x)}$做除法的等价变形,具体来说,我们可以将除法变化为乘法,然后再求极限。

第四章 中值定理及其应用

第四章 中值定理及其应用
证:令F ( x) f ( x) g( x),
则F( x) f ( x) g( x) 0.
F( x) C, 即f ( x) g( x) C.
上页 下页 返回
例3、证明 arcsin x arccos x (1 x 1).
2
证:(arcsin x arccos x) 1 1 x2
由f ( x)、g( x)在[a,b]上满足拉格朗日中值定理条件,
f ( ) f (b) f (a) (1)
ba
g( ) g(b) g(a) (2)
ba
(1) (2)得: f ( ) f (b) f (a) . 这样证可以吗? g( ) g(b) g(a)
分析:条件中比罗尔 b a y
定理少了第三个条件.
C
y f (x)
M
B
由于直线AB对应的函数为
A
N
g(x)
f (a)
f
(b) b
f a
(a)
(
x
a).o
a
x
D
bx
且从图中可知 f ( x)与g( x)在x a及x b的值相等,
故G( x) f ( x) g( x)在[a,b]上满足罗尔定理的条件.
证: f ( x)在[a,b]上连续, o a
bx
f ( x)在[a,b]上必取得最大值 M 和最小值 m.
(1) 若 M m,则f ( x) C,所以在(a,b)内,有 f ( x) 0.
(a,b),有f ( ) 0,故结论成立.
上页 下页 返回
3、罗尔定理:设f ( x)在[a,b]上连续,在(a,b)内可导
2
2
故 arcsin x arccos x (1 x 1).

微分中值定理与导数应用.ppt

微分中值定理与导数应用.ppt
拉格朗日中值公式又称有限增量公式. 拉格朗日中值定理又称有限增量定理.
定理 如果函数 f (x) 在区间 I 上的导数恒为零, 那末 f (x) 在区间 I 上是一个常数.
第一节 中值定理
例2 证明 arcsin x arccos x (1 x 1). 2
证 设 f ( x) arcsin x arccos x, x [1,1]
f (b) F (b)
f (a) F (a)
f '( F '(
). )
第一节 中值定理
证: 作辅助函数
( x) f ( x) f (a) f (b) f (a) [F ( x) F (a)]. F(b) F(a)
( x) 满足罗尔定理的条件, 则在(a, b)内至少存在一点,使得 () 0.
弦AB方程为 y f (a) f (b) f (a) ( x a).
ba 曲线 f ( x) 减去弦 AB,
所得曲线a, b两端点的函数值相等.
第一节 中值定理
作辅助函数
F ( x) f ( x) [ f (a) f (b) f (a) ( x a)]. ba
F( x) 满足罗尔定理的条件, 则在(a, b)内至少存在一点,使得 F () 0. 即 f () f (b) f (a) 0
y f (x)
2 b x
第一节 中值定理
第一节 中值定理
二、拉格朗日(Lagrange)中值定理
拉格朗日(Lagrange)中值定理 如果函数 f(x)满足
(1)在闭区间[a, b]上连续; (2)在开区间(a, b) 内可导; 那么在(a, b)内至少有一点(a b) ,使得
f (b) f (a) f ' ()(b a) .

大学微积分(上)第四章 中值定理

大学微积分(上)第四章 中值定理
1 1 x
2
证 设 f ( x ) arcsin x arccos x , x [1,1]
f ( x ) ( 1 1 x
2
) 0.
f ( x) C ,
x [1,1]
又 f (0) arcsin 0 arccos 0 0 , 2 2 即C . 2 arcsin x arccos x . 2
o
a
x1 x2
x4
x5 b
x
一、函数的极值
定义: 在其中当 (1) 时,
则称


的极大点 ,
为函数的极大值 ;
(2)
则称 称

的极小点 , 为函数的极小值 .
y 2 1
o
极大点与极小点统称为极值点 . 为极大点 , 为极小点 , 是极大值 是极小值
1 2
x
注意: 1) 函数的极值是函数的局部性质. 2) 对可导函数, 极值可能出现在导数为 零的点
第四章 中值定理及导数的应用
在本章中, 要利用导数来研究函数的性质与形态.
如: 函数增量与自变增量之间的关系;
凹凸、最大,最小、图形等.
函数的单调、
中值定理是利用导数研究函数的理论基础.
第一节 中值定理
洛尔定理 拉格朗日中值定理 柯西中值定理
y
x 1 , x4 为极大点 x 2 , x5 为极小点
解:∵ f (x)在[0, ]上连续,在(0, )上可导, 且 f(0) = f() ∴由洛尔定理知: 在(0, )内至少有一点,使 f ()=0,
即: cos =0, 故=/2。
例2
验证洛尔定理对函数 f ( x ) x 3 4 x 2 7 x 10 在 [1,2]上的正确性。 解:∵ f (x)在[-1, 2]上连续,在(-1, 2)上可导, 且 f(-1) = f(2) ∴由洛尔定理知:

第四章中值定理与导数的应用1

第四章中值定理与导数的应用1
x0
例14. 求 lim n ( n n 1). 0型
则至少存在一点 (a, b) , 使得 f ( ) 0 .
y y f (x)
A
B
Oa
bx
实际上, 切线与弦线 AB 平行.
费马(Fermat)引理:

存在
(或 )
证:设

0 0
y O x0 x
y y f (x)
注意:
O a
bx
1) 定理条件条件不全具备, 结论不一定成立. 例如,
A
Oa
弦 AB 的方程: y f (a) f (b) f (a) (x a)
ba
bx
利用罗尔中值定理 证明
注1:在[a, b]内的任意闭区间 [ x1, x上2 ],拉格朗日中值 定理均成立.
特别地, 若 x 与 x +Δx为区间(a, b)内的任意两点,则有
y f (x x) f (x) f (x x)x (0 1)
(化简)
lim
x0
2 cos3
x
2
连续使 用罗必 达法则
下面的介绍的是利用倒数法 或取对数法将其它的不定型 转化为可以运用罗必达法则 计算的例题 .
例8 求 lim x ln x . 0
x0
用另一种形式 颠倒行不行 ?

倒数法
lim
x0
x ln
x
lim
x0
ln x 1
x
行 , 但繁些 .
f (1) f (2 ) f (3) 0 . 其中, 1 (a, b) , 2 (b, c) , 3 (c, d ) ,
即 f (x) 0 至少有三个实根.
f (x) 是四次多项式, f (x) 是三次多项式,

第四章 微分中值定理与导数的应用

第四章  微分中值定理与导数的应用

1 1, 所以arctan x 2 arctan x1 x 2 x1 . 2 1
返回
上页
下页
x 例5 证明不等式 <ln(1+x)<x 对一切x>0成立. 1 x
证 由于f(x)=ln(1+x)在[0,+∞)上连续、可导, 对任何x>0,在[0, x]上运用微分中值公式,得 f(x)-f(0)=f′( x)x, (0< <1 ), x 即 ln(1+x)= (0< <1). 1 x x x 由于 <x, <
f ( x2 ) f ( x1 ) f ( ) ( x2 x1 )
因为 f(x)≡0,所以 从而 f(x2)=f(x1) .
返回 上页
下页
( x1 x2 )
f()=0 .
例4 试证 arcsin x arccos x 证

2 令f ( x ) arcsin x arccos x , 则
返回
上页
下页
三、 柯西中值定理
定理3 (柯西中值定理) 若函数f(x)和g(x)满足以下条件: (1) 在闭区间[a,b]上连续, (2) 在开区间(a,b)内可导,且g(x)≠0, 那么在(a,b)内至少存在一点,使得
f (b) f (a ) f ( ) g(b) g(a ) g( )
( x 1).
f '( x)
1 1 x2

1 1 x2
0, x ( 1,1)
得f ( x ) C , x ( 1,1) 又因f (0)

2
, 且f ( 1)

2
,
故 f ( x ) arcsin x arccos x
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章.中值定理与导数的应用
要求掌握的内容:
1、理解罗尔定理和拉格朗日中值定理
2、会用洛必达法则求函数极限
3、掌握函数单调性的判别方法
4、了解函数极值的概念,掌握函数极值、最值的求法及应用
5、会用导数判断函数图形的凹凸性,会求函数的拐点和渐近线。

6、会描绘简单函数的图形
一、罗尔定理
如果函数f(x)满足:在闭区间[a,b]上连续;在开区间(a,b)内可导;其中a不等于b;在区间端点处的函数值相等,即f(a)=f(b),那么在区间(a,b)内至少存在一点ξ(a<ξ<b),使得 f'(ξ)=0.
罗尔定理的三个已知条件的直观意义是:f(x)在[a,b]
上连续表明曲线连同端点在内是无缝隙的曲线;f(x)在内
(a,b)可导表明曲线y=f(x)在每一点处有切线存在;
f(a)=f(b)表明曲线的割线(直线AB)平行于x轴.罗尔定
理的结论的直观意义是:在(a,b)内至少能找到一点ξ,使
f'(ξ)=0,表明曲线上至少有一点的切线斜率为0,从而
切线平行于割线AB,也就平行于x轴.
二、拉格郎日中值定理
定义:如果函数f(x)在(a,b)上可导,[a,b]上连续,则必有一ξ∈[a,b]使得f'
(ξ)*(b-a)=f(b)-f(a),上式给出了自变量取得的
有限增量△x时,函数增量△y的准确表达式,因
此本定理也叫有限增量定理
几何意义:若连续曲线y=f(x)在A(a,f(a)),B(b,f(b))
两点间的每一点处都有不垂直与x轴的切线,则曲
线在A,B间至少存在一点P(c,f(c)),使得该曲线在
P点的切线与割线AB平行.
三、罗比达法则
洛必达法则是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法。


(1)当x→a时,函数f(x)及F(x)都趋于零;
(2)在点a的去心邻域内,f'(x)及F'(x)都存在且F'(x)≠0;
(3)当x→a时lim f'(x)/F'(x)存在(或为无穷大),那么
x→a时 lim f(x)/F(x)=lim f'(x)/F'(x)。

再设
(1)当x→∞时,函数f(x)及F(x)都趋于无穷;
(2)当|x|>N时f'(x)及F'(x)都存在,且F'(x)≠0;
(3)当x→∞时lim f'(x)/F'(x)存在(或为无穷大),那么
x→∞时 lim f(x)/F(x)=lim f'(x)/F'(x)。

利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意:
1、在着手求极限以前,首先要检查是否满足0/0或∞/∞型,否则滥用洛必达法则会出错。

当不存在时(不包括∞情形),就不能用洛必达法则,这时称洛必达法则不适用。

2、若条件符合,洛必达法则可连续多次使用,直到求出极限为止。

四、函数单调性的判断
1、定义法
2、一阶倒数的符号
(1)若在(a,b)内f'(x)>0,则f(x)在[a,b]上单调上升;
(2)若在(a,b)内 f'(x)<0,则 f(x) 在[a,b]上单调下降。

五、倒数求极值的一般步骤:
1、求一阶倒数
2、另一阶倒数等于0,求出极值点
3、判断极值点两端的符号
4、求极值点。

六、二阶导数与函数凹凸性的关系。

函数在区间的二阶导数大于0,在该区间是凹函数,小于0是凸函数
重点提示:拉格朗日中值定理,用倒数判定单调性,函数的图像,极值的方法。

相关文档
最新文档