13.2(1)画轴对称图形教案.doc
人教版八年级数学上册13.2.1《画轴对称图形》教案

人教版八年级数学上册13.2.1《画轴对称图形》教案一. 教材分析人教版八年级数学上册13.2.1《画轴对称图形》是学生在掌握了轴对称的概念和性质的基础上,进一步学习如何通过作图的方法来画出各种轴对称图形。
本节内容通过具体的实例,使学生进一步理解轴对称图形的特征,提高他们的观察能力和动手能力,培养他们的空间想象能力。
二. 学情分析学生在学习本节内容前,已经掌握了轴对称的基本概念和性质,能够识别和判断一个图形是否是轴对称图形。
但是,对于如何通过作图的方法来画出轴对称图形,部分学生可能还存在困难。
因此,在教学过程中,需要教师通过详细的讲解和示范,引导学生掌握作图的方法。
三. 教学目标1.知识与技能:使学生能够理解和掌握轴对称图形的特征,能够通过作图的方法来画出各种轴对称图形。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的空间想象能力和动手能力。
3.情感态度价值观:培养学生对数学的兴趣,提高他们解决问题的能力,培养他们的合作意识。
四. 教学重难点1.重点:使学生能够理解和掌握轴对称图形的特征,能够通过作图的方法来画出各种轴对称图形。
2.难点:如何引导学生通过作图的方法来画出轴对称图形。
五. 教学方法采用问题驱动法、案例教学法、合作学习法等,通过引导学生观察、操作、思考、交流等活动,提高他们的空间想象能力和动手能力。
六. 教学准备教师准备PPT、作图工具(直尺、圆规等)、练习题等。
七. 教学过程1.导入(5分钟)通过一个简单的实例,引导学生回顾轴对称的概念和性质,激发他们的学习兴趣。
2.呈现(10分钟)教师通过PPT展示各种轴对称图形,引导学生观察和思考,使他们能够发现轴对称图形的特征。
3.操练(10分钟)教师引导学生通过作图的方法来画出各种轴对称图形,边讲解边示范,使他们能够理解和掌握作图的方法。
4.巩固(10分钟)教师给出一些练习题,让学生独立完成,检测他们对于轴对称图形的理解和掌握。
2024年人教版八年级数学上册教案及教学反思全册第13章 轴对称 画轴对称图形(第1课时)教案

第十三章轴对称13.2 画轴对称图形第1课时一、教学目标【知识与技能】能画出简单平面图形作轴对称之后的图形,了解画一般轴对称图形的方法.【过程与方法】让每个学生在生动具体的问题情境中参与数学活动,通过积极主动的探索,加深自己的理解和认识.【情感、态度与价值观】让学生体验到成功的喜悦,树立自信心,体验合作交流的重要性,感受数学美,明白数学来源于生活又服务于生活的道理.二、课型新授课三、课时第1课时,共1课时。
四、教学重难点【教学重点】1.轴对称变换的定义.2.能够按要求作出简单平面图形经过轴对称后的图形.【教学难点】利用轴对称进行一些图案设计.五、课前准备教师:课件、三角尺、直尺、圆规等。
学生:三角尺、直尺、圆规。
六、教学过程(一)导入新课我们前面学习了轴对称图形以及轴对称图形的一些相关的性质.如果有一个图形和一条直线,如何画出这个图形关于这条直线对称的图形呢?这节课我们一起来学习作轴对称图形的方法.(出示课件3)(二)探索新知1.创设情境,探究轴对称图形的画法教师问1:(出示课件2)观察思考,欣赏美丽图案,思考这些图案是怎样形成的?你想学会制作这种图案的方法吗?学生回答:这些图案都是轴对称图形,希望学习这些图案制作方法.教师问2:在一张半透明纸的左边部分,画一只左脚印,把这张纸对折后描图,打开对折的纸,就能得到相应的右脚印,这时,右脚印和左脚印成轴对称,折痕所在直线就是它们的对称轴,并且连接任意一对对应点得到的线段被对称轴垂直平分.类似地,请你再画一个图形做一做,看看能否得到同样的结论呢?(出示课件5)学生问:这个如何做呢?出示下边的图案教师问3:认真观察,左脚印和右脚印有什么关系?(出示课件6)学生回答:成轴对称教师问4:对称轴是折痕所在的直线,即直线l,它与图中的线段PP ′是什么关系?学生回答:直线l垂直平分线段PP′教师总结点拨:由一个平面图形可以得到与它关于一条直线l对称的图形,这个图形与原图形的形状、大小完全相同;新图形上的每一点都是原图形上的某一点关于直线l的对称点;连接任意一对对应点的线段被对称轴垂直平分.教师讲解:同学们自己能做出一个类似的图形吗?学生回答:可以做到.师生共同解答如下:(1)取一张长方形纸;(2)将纸对折,中间夹上复写纸;(3)在纸上沿折叠线画出半只蝴蝶;(4)把纸展开.得到的图案如下:教师问5:取一张白纸折叠夹上复写纸,任画一个你最喜欢的图形,打开纸看一下,然后改变折痕方向重新叠纸,在原来的图形上描图,再打开,你会发现什么结论?学生动手作图后回答:这两个图形关于某直线成轴对称.教师问6:当对称轴的方向和位置发生变化时,得到图形的方向和位置会变吗?学生画图后回答:当对称轴的方向和位置发生变化时,得到图形的方向和位置不会变化.例1:将一张正方形纸片按如图①,图②所示的方向对折,然后沿图③中的虚线剪裁得到图④,将图④的纸片展开铺平,得到的图案是()(出示课件8)师生共同解答如下:动手剪一剪,亲自操作后得到答案:B.例2:如图,将长方形ABCD 沿DE 折叠,使A 点落在BC 上的F 处,若∠EFB =50°,则∠CFD 的度数为( )(出示课件10)A .20° B.30° C .40° D.50°师生共同解答如下:A. B. C. D. A B D CE F由折叠知道:∠EFD=∠A=90°,∵∠EFB=50°,∴∠CFD=180°-90°-50°==40°.答案:C.总结点拨:折叠是一种轴对称变换,折叠前后的图形形状和大小不变,对应边和对应角相等.2、运用新知,作轴对称图形教师问7:如何画一个点的轴对称图形?学生回答:画出点A关于直线l的对称点A′.教师问8:如何画呢?师生共同解答如下:作法:(1)过点A作l的垂线,垂足为点O.(2)在垂线上截取OA′=OA.点A′就是点A关于直线l的对称点. (出示课件12)教师问8:如何画一条线段的对称图形?学生回答:已知线段AB,画出AB关于直线l的对称线段.师生共同解答如下:(出示课件13)教师问9:如果有一个图形和一条直线,如何画出与这个图形关于这条直线对称的图形呢?师生共同探究后,完成下边的问题例3:如图,已知△ABC 和直线l ,作出与△ABC 关于直线l 对称的图形.师生共同解答如下:(出示课件14)分析:△ABC 可以由三个顶点的位置确定,只要能分别画出这三个顶点关于直线l 的对称点,连接这些对称点,就能得到要画的图形.(出示课件15)作法:(1)过点A 画直线l 的垂线,垂足为点O ,在垂线上截取OA ′=OA ,A ′就是点A 关于直线l 的对称点.(2)同理,分别画出点B ,C 关于直线l 的对称点B ′,C ′ .(3)连接A ′B ′,B ′C ′,C ′A ′,得到△ A ′B ′C ′即为所求. l AB C总结点拨:(出示课件16)作轴对称图形的方法:几何图形都可以看作由点组成.对于某些图形,只要作出图形中一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到与原图形成轴对称的图形.例4:在3×3的正方形格点图中,有格点△ABC和△DEF,且△ABC和△DEF关于某直线成轴对称,请在下面给出的图中画出4个这样的△DEF.(出示课件17)师生共同解答如下:总结点拨:作一个图形关于一条已知直线的对称图形,关键是作出图形上一些点关于这条直线的对称点,然后再根据已知图形将这些点连接起来.(出示课件18)(三)课堂练习(出示课件21-25)1.作已知点关于某直线的对称点的第一步是()A.过已知点作一条直线与已知直线相交B.过已知点作一条直线与已知直线垂直C.过已知点作一条直线与已知直线平行D.不确定2.如图,把一张长方形的纸按图那样折叠后,B,D两点落在B′,D′点处,若得∠AOB′=70°,则∠B′OG的度数为________.3.如图,把下列图形补成关于直线l的对称图形.4.如图给出了一个图案的一半,虚线l 是这个图案的对称轴.整个图案是个什么形状?请准确地画出它的另一半.5.如图,画△ABC关于直线m的对称图形.参考答案:1.B2.55°3.解答如下图:4.解答如下图:5.解答如下图:(四)课堂小结今天我们学了哪些内容:1.轴对称图形的基本特征。
13.2.1画轴对称图形教案 (1)

能从中悟出怎样作一个图形关于某直线对称的对称图形吗?课的课题,并板书课题。
轴对称图形铺垫。
新课讲授探究:1.已知点A和直线l,作点A关于直线l的对称点。
作法:过点A作直线l的垂线,垂足为O,在垂线上截取OAAO=',点A'即为点A关于l的对称点.2.已知线段AB和直线l,作线段AB关于直线l的对称线段。
作法:分别作出端点A、B的对称点BA'',,连结BA''.归纳作轴对称图形的方法:几何图形均可看作由点组成,从理论上只要分别作出所有点关于对称轴的对称点,就可得到轴对称图形.但实际操作上,只须作出图形中的一些特殊点(如线段端点,多边形顶点)的对称点,再依样连接即可.用多媒体展示生活中经过多次轴对称的图案。
归纳:通过作轴对称图形(也可用计算机画图工具进行翻转)可以使新图案更加丰富,设计形成满意的图案模板后通过平移(在计算机里可采用多次复制),就会得出美丽的图案.【例题】把下面的图形补成关于直线l对称的图形.【解析】补成关于直线l对称的图形,即作出图形关于直线l的轴对称图形.点A、F在对称轴上,故其对称点与本身重合,只须作出点B、C、D、E的对称点再依样连接即可.1.点A、B关于直线MN对称,AB交MN于O,若AB=6,则下列错误的是()A.AO=3 B.OB=3 C.AB⊥MN D.MN=6学生按要求利用轴对称的性质自己画图,试着用语言描述作法。
教师归纳从点、线段到图形的轴对称图形的作法。
教师通过多媒体展示图案,学生观看图片。
学生先观察图形找出关键点,再作出它们的对称点,并连接。
教师指导学生画图。
培养学生的动手能力,进一步体会轴对称的性质。
学生体会作轴对称图形的本质是作出图形的关键点的对称点。
学生体会轴对称在现实生活中的应用及对称美。
考查学生轴对称图形的作法,使学生知道在对称轴上的点其对称点是它2.如图,ABC ∆与C B A '''∆关于直线MN 对称,P 为MN 上任一点,下列结论中错误的是( ) A .P A A '∆是等腰三角形 B .MN 垂直平分A A 'C .ABC ∆与C B A '''∆面积相等D .直线B A AB '',的交点不一定在MN 上. 3.如图是一个经过改造的台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔.如果一个球按图中所示的方向被击出(球可以经过多次反射),那么该球最后将落入( )A .1 号袋B .2 号袋C .3 号袋D .4 号袋4.将一张正方形纸片沿一对角线对折后,得到一个等腰直角三角形,再沿底边上的高线对折,把得到的图形沿虚线剪开,打开阴影部分并铺平,该图形有对称轴( ). A .1条 B .2条 C .3条 D .4条5.如图,将正方形纸片经过两次对折,并剪出一个圆形小洞后展开铺平,得到的平面图形是( )6.如图,一轴对称图形画出了它的一半,请你画出它的另一半.拓展思维:用四块如图所示的瓷砖拼成一个正方形图案,如图1,拼成了一个轴对称图形。
13.2(1)画轴对称图形教案.doc

第十三章轴对称13.2 画轴对称图形(第 1 课时)【教材分析】知识 1. 能按要求作出简单平面图形经过一次或两次轴对称后的图形.教技能2. 能利用轴对称进行图案设计 .学过程通过利用轴对称作图和图案设计,发展实践能力.目方法标情感 1. 通过欣赏轴对称图案,从而了解数学、应用数学的态度.态度2. 通过作轴对称图形、设计图案,锻炼学生克服困难的意志,培养创新精神.重点作轴对称图形 .难点利用轴对称设计图案 .【教学流程】环节导学问题师生活动二次备课情境引入猜一猜:下列图片被遮住了一半,请说出图片的名称教师出示图片,引导学生观察学生观察图片,独立思考,才想出整体图片的名称。
操作:如图所示 , 在一张半透明纸的左边部分 , 画一只左脚印 , 把这张纸对折后描图 , 打学生动手画左手掌印,开对折的纸 , 就能得到相应的右脚印 .教师指导如何快速准确地画出,并强调将纸张对折后描图.自主探究教师提出问题:思考: 1、认真观察 ,左脚印和右脚印有什么合关系?作2、对称轴是折痕所在的直线 ,即直线 l ,它与交图中的线段PP’是什么关系 ?流归纳:由一个平面图形可以得到与它关于一条直线 l 对称的图形 ,这个图形与原图形的形状、大小完全相同 ;新图形上的每一点都是原图形上的某一点关于直线l 的对称点 ;连接任意一对对应点的线段被对称轴垂直平分.【问题探究】自如果有一个图形和一条直线,如何画出与这主个图形关于这条直线对称的图形呢?探例 1、已知点 A 和直线l,以直线l 为对称究轴,作点A经轴对称变换后所得的图形点A ′.学生观察、讨论、思考、发言 . 教师评价,给与引导、纠正,并给出完整的的归纳 .教师巡视指导,及时启发引导,解决问题学生进行讨论,然后根据讨论的结果独立作图,最后交流想法.例 1:作法:(1)过点 A 作对称轴 l 的垂线,垂足为 O;(2)在垂线上截取 OA=OA’;(3 )点 A ’就是点 A 关于 l 的对称点.合作交流例 2 已知三角形 ABC 和直线 l,作出三角形ABC 关于直线 l 对称的图形.方法总结:作已知图形关于已知直线对称的图形的一般步骤:(1)确定关键点;(2)一一做出关键点的对称点;(3)连线得到对称图形.例 2、作法:(1)过点 A 作直线 l 的垂线,垂足为点 O,在垂线上截取 OA′=OA,点 A 就是点 A 关于直线 l 的对称点;(2)类似地,在图上分别作出点B、 C 关于直线 l 的对称点B′、 C′;( 3)连接 A′ B′、B′C′、C′A′,得到的△ A ′ B′ C′即为所求.尝试应用1. 作已知点关于某直线对称的点的第一步教师巡视指导,及时启发引导,( )解决问题A. 过已知点作一条直线与已知直线相交学生进行讨论,然后根据讨论B. 过已知点作一条直线与已知直线垂直的结果独立作图,最后交流想C. 过已知点作一条直线与已知直线平行法.D. 不确定教师及时给与评价鼓励2、下面是四位同学作△ABC关于直线MN的1、解析 :作已知点关于某直线轴对称图形,其中正确的是()对称的点的第一步是过已知点作一条直线与已知直线垂直. 故选 B.3.如图所示的长方形纸片,先沿虚线按箭头方向向右对折,接着将对折后的纸片沿虚2、 B线剪下一个小圆和一个小三角形,然后将纸3、 C片打开是下列图中的哪一个()4、4.图中给出了一个图案的一半,其中的虚线是这个图案的对称轴.试画出这些图案的另一半?成欣赏自我:本节课你学会了什么?果完善自我:对本课的内容,你还有哪些疑展惑?示5、在由小正方形围成的L 形图中,请你用三种方法分别添画一个小正方形,使它成为轴对称图形.补偿提高师引导学生归纳总结.梳理知识,并建立知识体系 .教师巡视指导,及时启发引导,解决问题学生进行讨论,然后根据讨论的结果独立作图,最后交流想法.师生共同评价5、答案如图所示作业设计必做题学生认定作业,课下独立完成教材第 68 页练习第1,2 题.选做题教材第 71 页习题 13.2 第 1 题 .。
人教版八年级上册数学 13.2 第1课时 画轴对称图形教案1

13.2画轴对称图形第1课时画轴对称图形1.理解图形轴对称变换的性质.(难点)2.能按要求画出一个图形关于某直线对称的另一个图形.(重点)一、情境导入观察下面的图形:(1)这些图案有什么共同特点?(2)能否根据其中一部分画出整个图案?二、合作探究探究点一:轴对称变换【类型一】剪纸问题将一张正方形纸片按如图①,图②所示的方向对折,然后沿图③中的虚线剪裁得到图④,将图④的纸片展开铺平,再得到的图案是( )解析:严格按照图中的顺序先向右上翻折,再向左上翻折,剪去左上角,展开得到图形B.故选B.方法总结:此类题目主要考查学生的动手能力及空间想象能力,对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.【类型二】折叠问题如图,将矩形ABCD沿DE折叠,使A点落在BC上的F处,若∠EFB=60°,则∠CFD=( )A.20° B.30° C.40° D.50°解析:根据图形翻折变换后全等可得△ADE≌△FDE,∴∠EAD=∠EFD=90°.∵∠EFB =60°,∴∠CFD=30°,故选B.方法总结:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,对应边和对应角相等.探究点二:作轴对称图形【类型一】画一个图形关于已知直线对称的另一个图形画出△ABC关于直线l的对称图形.解析:分别作出点A 、B 、C 关于直线l 的对称点,然后连接各点即可.解:如图所示:方法总结:我们在画一个图形关于某条直线对称的图形时,先确定一些特殊的点,然后作这些特殊点的对称点,顺次连接即可得到.【类型二】在方格中设计轴对称图形在3×3的正方形格点图中,有格点△ABC 和△DEF ,且△ABC 和△DEF 关于某直线成轴对称,请在下面给出的图中画出4个这样的△DEF .解析:对称轴可以随意确定,根据你确定的对称轴去画另一半对称图形即可.解:如图所示:方法总结:作一个图形关于一条已知直线的对称图形,关键是作出图形上一些点关于这条直线的对称点,然后再根据已知图形将这些点连接起来.【类型三】利用轴对称设计图案某居民小区搞绿化,要在一块矩形空地(如下图)上建花坛,现征集设计方案,要求设计的图案由圆和正方形组成(圆与正方形的个数不限),并且使整个矩形场地成轴对称图形.请在下边矩形中画出你的设计方案.K解析:矩形是轴对称图形,而正方形和圆也是轴对称图形,设计出的图案只要折叠重合即可.解:如图所示:方法总结:利用轴对称可以设计出精美的图案,一个图形经过不同位置的几次变换,若再结合平移、旋转等,便可以得到非常美丽的图案.三、板书设计作轴对称图形1.如何由一个平面图形得到它的轴对称图形.2.利用轴对称设计图案.本节课尽量创设与学生生活环境、知识背景相关的教学情境,以生动活泼的形式呈现有关内容.重视动手操作,实践探究,但如果只有操作,而没有数学体验,数学课很容易上成劳技课,所以,本节课的设计在重视活动的同时,又重视知识的获取,因为动手操作的目的本身就在于更直观地发现新知识.练习的设计具有一定的层次性,使不同的学生在学习数学的过程中得到不同的发展.。
13_2《画轴对称图形_》教案

口答
巩固知识
例题分析
如图,四边形ABCD的四个顶点的坐标分别为A(-5,1),B(-2,1),C(-2,5),D(-5,4),分别作出四边形ABCD关于y轴和x轴对称的图形.
观察思考解答
强化巩固
强化练习
1、P71页:练习:第2、3题
2、P72页:习题:第6题
动手解答
深化提升
课堂小结
1、用坐标表示轴对称.
2、关于坐标轴对称点的规律:
点(x,y)关于x轴对称的点的作标是(x,-y);
点(x,y)关于y轴对称的点的作标是(-x,y)
作业布置
1、P72页:习题:第4、5、7题
2、课课练
教学反思
教学难点
探索利用坐标来表示轴对称;
教学方法
创设情境-主体探究-合作交流-应用提升.
媒体资源
多媒体投影
教学过程
教学流程
教学活动
学生活动
设计意图
创设情境
1、如何画一个图形关于直线l的对称图形?
2、什么是平面直角坐标系?
思考回顾
复习旧知
探究新知
1、在平面直角坐标系内画出以下已知点以及对称点,并把坐标填在表格中,你能发现坐标间有什么规律?
已知点
A(2,-3)
B(-1,2)
C(-6,-5)
D(0.5,1)
E(4,0)
关于x轴对称的点
关于y轴对称的点
关于坐标轴对称点的规律:
点(x,y)关于x轴对称的点的作标是(x,-y);
点(x,y)关于y轴对称的点的作标是(-x,y).
动手画图观察思考讨论
经过动手画图观察思考讨论得出规律
巩固练习
教学设计4:13.2 画轴对称图形(第1课时)

13.2 画轴对称图形(第1课时)
教学过程:
一、复习导入
判断下列图形哪些是轴对称图形,是轴对称图形的请指出其对称轴(认真,仔细)
二、创设情境:
上节课我们学习了画两个图形或一个图形的对称轴.请同学们为下面的两张轴对称图形画出对称轴.
三、试一试
问题1:如图,实线所构成的图形为已知图形,虚线为对称轴,请画出已知图形的轴对称图形。
画完之后,请同学们思考下面两个问题:
(1)你可以通过什么方法来验证你画得是否正确.(折叠)
(2)和其他同学比较一下,你的方法是最简单吗?
在格点图中,大家会很容易画出已知图形的轴对称图形,如果没有格点图,我们还能比较准确地画出已知图形的轴对称图形吗?
问题2:你能画出点A关于直线L的对称点吗?
画法:
1、过点A向直线L画垂线段AO,垂足点O;
2、延长AO至OA1,使OA1=OA。
则点A1就是点A关于直线L的对称点。
问题3:你能画出线段AB关于直线L的对称线段吗?
画法:
1、画点A、点B关于直线L的对称点A1 、B1
2、连结A1、B1。
则线段A1 B1就是线段AB关于直线L的对称线段
问题4:你能画出三角形ABC关于直线L的对称图形吗?(参考课本67页例1)
画法:
1、画出点A、点B和C点关于直线L的对称点A1、B1和C1。
2、连结A1 B1、B1 C1、A1 C1 、则A1 B1 C1就是AB C关于直线L的对称三角形。
13.2.1 画轴对称图形 教案

13.2.1 画轴对称图形教案初级中学教案课题13.2.1画轴对称图形课时及授课时间课时授课人年__月日教学目标(学习目标) 知识与技能:1.通过实际操作,了解什么叫做轴对称变换.2.如何作出一个图形关于一条直线的轴对称图形.过程与方法:经历实际操作、认真体验的过程,发展学生的思维空间,并从实践中体会轴对称变换在实际生活中的应用.情感、态度与价值观1.鼓励学生积极参与数学活动,培养学生的数学兴趣.2.初步认识数学和人类生活的密切联系,体验数学活动充满着探索与创造,感受数学的应用意识.教学重点1.轴对称变换的定义.2.能够按要求作出简单平面图形经过轴对称后的图形.教学难点.轴对称变换的定义.2.能够按要求作出简单平面图形经过轴对称后的图形.教学用具直尺、三角板、圆规教学方法(学习方法)采用“问题探究”的教学方法,让学生在互动交流中领会知识.教学过程一、导入新课[师]如何作一个图形经过轴对称后的图形呢?我们知道:任何一个图形都是由点组成的.因为我们来作一个点关于一条直线的对称点.由已经学过的知识知道:•对应点的连线被对称轴垂直平分.所以,已知对称轴L和一个点A,要画出点A关于L•的对应点A′,可采取如下些点可以作为特殊点?并画出图形的另一半.三、随堂练习(一)课本P68练习1、2.四、课时小结几何图形都看作由点组成,对于某些图形,只要画出图形中的一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到原图形的轴对称图形。
五、布置作业:课时测评备注(补充)板书设计13.2画轴对称图形教学反思。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十三章轴对称
13.2 画轴对称图形(第 1 课时)
【教材分析】
知识 1. 能按要求作出简单平面图形经过一次或两次轴对称后的图形.
教技能
2. 能利用轴对称进行图案设计 .
学
过程通过利用轴对称作图和图案设计,发展实践能力.
目
方法
标
情感 1. 通过欣赏轴对称图案,从而了解数学、应用数学的态度.
态度
2. 通过作轴对称图形、设计图案,锻炼学生克服困难的意志,培养创新精神.
重点作轴对称图形 .
难点利用轴对称设计图案 .
【教学流程】
环节导学问题师生活动二次备课
情境引入猜一猜:
下列图片被遮住了一半,请说出图片的名称
教师出示图片,引导学生观察
学生观察图片,独立思考,才想
出整体图片的名称。
操作:如图所示 , 在一张半透明纸的左边部
分 , 画一只左脚印 , 把这张纸对折后描图 , 打学生动手画左手掌印,
开对折的纸 , 就能得到相应的右脚印 .教师指导如何快速准确地画出,
并强调将纸张对折后描图.
自
主
探
究
教师提出问题:
思考: 1、认真观察 ,左脚印和右脚印有什么合关系?
作2、对称轴是折痕所在的直线 ,即直线 l ,它与
交图中的线段PP’是什么关系 ?
流归纳:
由一个平面图形可以得到与它关于一条直
线 l 对称的图形 ,这个图形与原图形的形状、
大小完全相同 ;新图形上的每一点都是原图
形上的某一点关于直线l 的对称点 ;连接任
意一对对应点的线段被对称轴垂直平分.
【问题探究】
自如果有一个图形和一条直线,如何画出与这主个图形关于这条直线对称的图形呢?
探例 1、已知点 A 和直线l,以直线l 为对称究轴,作点A经轴对称变换后所得的图形点
A ′.学生观察、讨论、思考、发言 . 教师评价,给与引导、纠正,并给出完整的的归纳 .
教师巡视指导,及时启发引导,解决问题
学生进行讨论,然后根据讨论
的结果独立作图,最后交流想
法.
例 1:作法:
(1)过点 A 作对称轴 l 的垂线,垂足为 O;
(2)在垂线上截取 OA=OA’;
(3 )点 A ’就是点 A 关于 l 的
对称点.
合作交
流
例 2 已知三角形 ABC 和直线 l,作出三角形
ABC 关于直线 l 对称的图形.
方法总结:
作已知图形关于已知直线对称的图形的一
般步骤:
(1)确定关键点;
(2)一一做出关键点的对称点;
(3)连线得到对称图形.例 2、作法:
(1)过点 A 作直线 l 的垂线,垂足为点 O,在垂线上截取 OA′
=OA,点 A 就是点 A 关
于直线 l 的对称点;
(2)类似地,在图上分别作出点B、 C 关于直线 l 的对称点
B′、 C′;
( 3)连接 A′ B′、B′C′、C′A′,得到的△ A ′ B′ C′即为所求.
尝试应用1. 作已知点关于某直线对称的点的第一步教师巡视指导,及时启发引导,( )解决问题
A. 过已知点作一条直线与已知直线相交学生进行讨论,然后根据讨论
B. 过已知点作一条直线与已知直线垂直的结果独立作图,最后交流想
C. 过已知点作一条直线与已知直线平行法.
D. 不确定教师及时给与评价鼓励
2、下面是四位同学作△ABC关于直线MN的1、解析 :作已知点关于某直线
轴对称图形,其中正确的是()对称的点的第一步是过已知点
作一条直线与已知直线垂直. 故
选 B.
3.如图所示的长方形纸片,先沿虚线按箭
头方向向右对折,接着将对折后的纸片沿虚2、 B
线剪下一个小圆和一个小三角形,然后将纸3、 C
片打开是下列图中的哪一个()
4、
4.图中给出了一个图案的一半,其中的虚
线是这个图案的对称轴.试画出这些图案的
另一半?
成欣赏自我:本节课你学会了什么?
果完善自我:对本课的内容,你还有哪些疑展惑?
示
5、在由小正方形围成的L 形图中,请你用三
种方法分别添画一个小正方形,使它成为轴对
称图形.
补
偿
提
高
师引导学生归纳总结.
梳理知识,并建立知识体系 .
教师巡视指导,及时启发引导,解决问题
学生进行讨论,然后根据讨论的结果独立作图,最后交流想法.师生共同评价
5、答案如图所示
作业设计必做题学生认定作业,课下独立完成教材第 68 页练习第1,2 题.
选做题
教材第 71 页习题 13.2 第 1 题 .。