复合函数求解析式
高中数学-求函数解析式的六种常用方法

求函数解析式的六种常用方法一、换元法已知复合函数f [g (x )]的解析式,求原函数f (x )的解析式.令g (x )= t ,求f (t )的解析式,再把t 换为x 即可.例1 已知f (xx 1+)= x x x 1122++,求f (x )的解析式. 解: 设x x 1+= t ,则 x= 11-t (t ≠1), ∴f (t )= 111)11(1)11(22-+-+-t t t = 1+2)1(-t +(t -1)= t 2-t+1 故 f (x )=x 2-x+1 (x ≠1).评注: 实施换元后,应注意新变量的取值范围,即为函数的定义域.二、配凑法例2 已知f (x +1)= x+2x ,求f (x )的解析式.解: f (x +1)= 2)(x +2x +1-1=2)1(+x -1,∴ f (x +1)= 2)1(+x -1 (x +1≥1),将x +1视为自变量x ,则有f (x )= x 2-1 (x ≥1).评注: 使用配凑法时,一定要注意函数的定义域的变化,否则容易出错.三、待定系数法例3 已知二次函数f (x )满足f (0)=0,f (x+1)= f (x )+2x+8,求f (x )的解析式.解:设二次函数f (x )= ax 2+bx+c ,则 f (0)= c= 0 ①f (x+1)= a 2)1(+x +b (x+1)= ax 2+(2a+b )x+a+b ② 由f (x+1)= f (x )+2x+8 与①、② 得⎩⎨⎧=++=+822b a b b a 解得 ⎩⎨⎧==.7,1b a 故f (x )= x 2+7x. 评注: 已知函数类型,常用待定系数法求函数解析式.x ≥0, x <0. 四、消去法例4 设函数f (x )满足f (x )+2 f (x1)= x (x ≠0),求f (x )函数解析式. 分析:欲求f (x ),必须消去已知中的f (x 1),若用x1去代替已知中x ,便可得到另一个方程,联立方程组求解即可. 解:∵ f (x )+2 f (x1)= x (x ≠0) ① 由x 1代入得 2f (x )+f (x 1)=x1(x ≠0) ② 解 ①② 构成的方程组,得 f (x )=x 32-3x (x ≠0). 五、特殊值法例5 设是定义在R 上的函数,且满足f (0)=1,并且对任意的实数x ,y , 有f (x -y )= f (x )- y (2x -y+1),求f (x )函数解析式.分析:要f (0)=1,x ,y 是任意的实数及f (x -y )= f (x )- y (2x -y+1),得到f (x )函数解析式,只有令x = y.解: 令x = y ,由f (x -y )= f (x )- y (2x -y+1) 得f (0)= f (x )- x (2x -x+1),整理得 f (x )= x 2+x+1.六、对称性法即根据所给函数图象的对称性及函数在某一区间上的解析式,求另一区间上的解析式.例6 已知是定义在R 上的奇函数,当x ≥0时,f (x )=2x -x 2,求f (x )函数解析式.解:∵y=f (x )是定义在R 上的奇函数, ∴y=f (x )的图象关于原点对称. 当x ≥0时,f (x )=2x -x 2的顶点(1,1),它关于原点对称点(-1,—1),因此当x<0时,y=2)1(+x -1= x 2 +2x.故 f (x )=⎩⎨⎧+-xx x x 2222 评注: 对于一些函数图象对称性问题,如果能结合图形来解,就会使问题简单化.。
求函数解析式的三种常用方法

求函数的解析式问题的难度一般不大,主要考查函数的定义域、表示形式、图象、性质等.求函数解析式的方法有很多种,如数形结合法、赋值法、配凑法、换元法、待定系数法等.本文主要谈一谈求函数解析式的三种常用方法:配凑法、换元法、待定系数法.一、配凑法配凑法主要适用于求复合函数的解析式.若已知f ()g ()x 的表达式,可通过配凑,将其转化为g ()x 的倍数、平方式、立方式,再将g ()x 作为自变量,用x 代替,即可得到f ()x 的解析式.在配凑时,要先从高次项开始配凑,接着配凑低次项、常数项.例1.若函数f ()x +1=x 2-2x ,则f ()x 的解析式为______.分析:仔细观察可发现,x +1和x 2-2x 之间存在一定的联系:x 2-2x =()x +12-4()x +1+3,可运用配凑法,将f ()x +1用x +1表示出来,再将x +1用x 替换.解:f ()x +1=x 2-2x =()x +12-4()x +1+3,故函数的解析式为f ()x =x 2-4x +3.运用配凑法解题,需通过观察找出f ()g ()x 的表达式与g ()x 之间的联系,以便配凑出g ()x 的倍数、平方式、立方式.二、待定系数法待定系数法是解答代数问题的重要方法.在解题时,需先引入待定系数,根据函数的类型,设出函数的解析式,然后结合已知条件建立关于待定系数的方程或者方程组,进而求得待定系数,便可确定函数的解析式.例2.已知函数f ()x 为反比例函数,且经过点()1,2,则函数f ()x 的解析式为______.分析:首先根据f ()x 为反比例函数,引入待定系数,设出f ()x 的解析式,然后将已知点的坐标代入设出的解析式中,求得待定系数的值,即可解题.解:因为f ()x 为反比例函数,所以设f ()x =kx()k ≠0,因为f ()x 经过点()1,2,将其代入f ()x =kx中,可得k =2,所以函数的解析式为f ()x =2x.运用待定系数法求函数的解析式,需熟练掌握一些基本函数的表达式,如二次函数的一般式为f ()x =ax 2+bx +c 、顶点式为f ()x =a ()x -h 2+k 、对数函数的表达式为y =log a x 、指数函数的表达式为y =a x,根据已知信息求得待定系数即可.三、换元法换元法主要适用于求表达式较为复杂或者复合函数的解析式.在解题时,需引入一个或者几个新的变量,将代数式用新的变量替换,把已知关系式转化为关于新变量的式子,从而简化代数式,求得函数的解析式.在运用换元法解题的过程中,要注意确保自变量及其取值范围的等价性.例3.已知f ()sin x =sin 2x +2sin x ,则函数f ()x 的解析式为______.解:因为f ()sin x =sin 2x +2sin x ,可令t =sin x ,因为sin x ∈[]-1,1,所以t ∈[]-1,1,所以f ()t =t 2+2t ,t ∈[]-1,1.所以函数f ()x 的解析式为f ()x =x 2+2x ,x ∈[]-1,1.若已知f ()g ()x 的表达式,求f ()x 的解析式,可先使用配凑法求解.当解题受阻时,再考虑运用换元法.令t =g ()x ,并求得x =g -1()t ,得到关于t 的表达式,便可解题.相比较而言,待定系数法和配凑法较为简单,换元法的运算量较大.在求函数的解析式时,同学们一定要仔细审题,明确已知关系式是否为复合函数、函数的类型是否已知、已知关系式与f ()x 之间的联系,然后选择与之相应的方法求解.(作者单位:江苏省启东中学)考点透视36。
复合函数

复合函数一、复合函数的定义:设y 是z 的函数y =f (z ),而z 又是x 的函数z =φ(x ),设X 表示φ(x )的定义域或其中的一部分,如果对于在X 上取值时所对应的值,函数y =f (z )均有定义,则y 成为x 的函数,记为y = f [φ(x )]。
这个函数叫做由y = f (z )及z =φ(x )复合而成的复合函数,它的定义域为X ,z 叫做中间变量,f 称为外层函数,φ称为内层函数。
要求掌握把复合函数分解为几个简单函数的方法,例如是由和两个函数复合而成的。
二、复合函数的解析式:例1:已知二次函数()x f 满足()569132+-=+x x x f ,求()x f 。
分析:本题可采用待定系数法求解,但待定系数法不是求模型函数的解析式的唯一定势,解答这类问题要具体情况具体分析。
本题用换元和“凑型”的办法解决。
解法一 设13+=x t ,则31-=t x 。
把13+=x t 、31-=t x 分别代入569)13(2+-=+x x x f 的左边和右边得()53163192+⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-=t t t f ,即()842+-=t t t f ,∴ ()()R x x x x f ∈+-=842 。
解法二 由已知,569)13(2+-=+x x x f ∴()()()813x 413x 13x f 2++-+=+,把13x +视为一个整体,有()()R x x x x f ∈+-=842.例2 已知()0x x 1x x 1x f 22>+=⎪⎭⎫ ⎝⎛+,求()x f 。
分析 由22x 1x x 1x f +=⎪⎭⎫ ⎝⎛+求()x f 的对应法则,可设t =+x 1x ,则22221t x x =++,即21222-=+t xx ,问题很容易得到解决。
随后的问题是()x f 的定义域是什么?例3、设f(x)满足()3x x 12f x f =⎪⎭⎫⎝⎛+,求f(x)分析:在已知的关系式中含有f(x)和f(x 1),求出f(x),需要消去f(x1),所以需从已知的关系中再产生一个关于f(x)和f(x1)的关系式,然后联立解出f(x),这里只要以x 1代替x ,便可得关于f(x)和f(x 1)的又一等式.三、复合函数的定义域:⒈已知f(x)的定义域,求f[g(x)]的定义域例4、函数f(x)的定义域是[0,2],则函数g(x)=f(x+21)- f(x-21)的定义域是( )(A)[0,2] (B)[23,21-] (C)[25,21] (D)[23,21]例5、已知函数f(x)的定义域是(]0,1,求g(x)=f(x+a)·f(x-a)⎪⎭⎫⎝⎛≤<-0a 21的定义域.⒉已知f[g(x)]的定义域,求f(x)的定义域例6、若函数f(x+1)的定义域为⎪⎭⎫⎝⎛-,221,则f(x 2)的定义域是_____例7、函数f(x+1)的定义域为[-2,3],则y=f(2x-1)的定义域是( )(A)⎥⎦⎤⎢⎣⎡250,(B)[-1,4](C)[-5,5](D)[-3,7]⒊由符合函数的定义域,求字母参数的取值.例8、函数96k x k x y 2+-=的定义域为R ,则k 的取值范围是_____.例9、已知函数()2bx ax x f 2++=的定义域为⎥⎦⎤⎢⎣⎡-31,21,求a+b 的值.四、复合函数的性质与构成它的函数的性质密切相关,其规律可列表如下: ⒈复合函数[])(x g f y =在区间[]b a ,上的单调性:引理1 已知函数y=f [g(x)].若u=g(x)在区间(a,b)上是增函数,其值域为(c ,d),又函数y=f(u)在区间(c,d)上是增函数,那么,原复合函数y=f [g(x)]在区间(a,b)上是增函数.引理2 已知函数y=f [g(x)].若u=g(x)在区间(a,b)上是减函数,其值域为(c ,d),又函数y=f(u)在区间(c,d)上是减函数,那么,原复合函数y=f [g(x)]在区间(a,b)上是增函数.若函数)(x g u =在区间[]b a ,上是单调函数,函数)(u f y =在[])(),(b g a g 或[])(),(a g b g 上也是单调函数,那么复合函数[])(x g f y =在区间[]b a ,上是即)(x g u =,)(u f y =增减性相同时, [])(x g f y =为增函数,)(x g u =,)(u f y =增减性相反时, [])(x g f y =为减函数.例10 求下列函数的单调区间: y=log 4(x 2-4x+3)解:(方法1)设 y=log 4u,u=x 2-4x+3.由u >0, ∵u=x 2-4x+3,∴x 2-4x+3>0 解得原复合函数的定义域为x <1或x >3.当x ∈(-∞,1)时,u=x 2-4x+3为减函数,而y=log 4u 为增函数,所以(-∞,1)是复合函数的单调减区间;当x ∈(3,±∞)时,u=x 2-4x+3为增函数y=log 4u 为增函数,所以,(3,+∞)是复合函数的单调增区间. (方法2)设 y=log 4u,u=x 2-4x+3u=x 2-4x+3=(x -2)2-1,x >3或x <1,(复合函数定义域) x <2 (u 减)解得x <1.所以x ∈(-∞,1)时,函数u 单调递减.由于y=log 4u 在定义域内是增函数,所以由引理知:u=(x -2)2-1的单调性与复合函数的单调性一致,所以(-∞,1)是复合函数的单调减区间.下面我们求一下复合函数的单调增区间. u=x 2-4x+3=(x -2)2-1,x >3或x <1,(复合函数定义域) x >2 (u 增)解得x >3.所以(3,+∞)是复合函数的单调增区间. 例11 求下列复合函数的单调区间:⎪⎭⎫ ⎝⎛-=2x 2x 31log y 解: 设 u 31logy =,u=2x -x 2.由 u >0u=2x -x2解得原复合函数的定义域为0<x <2. 由于u y 31log=在定义域(0,+∞)内是减函数,所以,原复合函数的单调性与二次函数u=2x -x2的单调性正好相反. 易知u=2x -x 2=-(x -1)2+1在x ≤1时单调增.由 0<x <2 (复合函数定义域) x ≤1,(u 增)解得0<x ≤1,所以(0,1]是原复合函数的单调减区间. 又u=-(x -1)2+1在x ≥1时单调减,由 x <2, (复合函数定义域) x ≥1, (u 减)解得0≤x <2,所以[0,1]是原复合函数的单调增区间. 例12 求y=2x 6x 7--的单调区间.解: 设y=,u=7-6x -x 2,由u ≥0,u=7-6x -x 2解得原复合函数的定义域为-7≤x ≤1.因为y=在定义域[0+∞]内是增函数,所以由引理知,原复合函数的单调性与二次函数u=-x2-6x+7的单调性相同.易知u=-x 2-6x+7=-(x+3)2+16在x ≤-3时单调增加。
复合函数解析式的求法

复合函数解析式的求法复合函数解析式是指在一个函数中,另一个函数作为其中的一个变量。
求解复合函数解析式的方法有多种,下面将详细介绍。
一、复合函数解析式的基本概念复合函数是指两个或多个函数通过运算符连接起来,形成一个新的函数。
例如,设函数f(x)和g(x)分别为sinx和cosx,则复合函数h(x)=f(g(x))=sin(cos(x))。
二、求解复合函数解析式的方法1.分解法分解法是将复合函数分解为若干个简单的单一函数,然后再根据各自的解析式进行求解。
例如,求h(x)=sin(cos(x))的解析式,可以分解为:h(x)=sin[cos(x)]=sin[sin(x)]。
2.替换法替换法是将复合函数中的某个变量用另一个变量替换,使得问题变得简单。
例如,求h(x)=cos(2x)的解析式,可以替换为:h(x)=cos(2x)=cos[2(x+π/2)]。
3.反函数法反函数法是将复合函数看作是原函数的反函数,然后求出原函数的解析式。
例如,求h(x)=ln(e^x)的解析式,可以看作是求e^x=ln(x)的反函数,得到h(x)=x。
4.洛必达法则洛必达法则是对复合函数求导的一种方法。
当复合函数的导数存在极限时,可以利用洛必达法则求解。
例如,求h(x)=(sinx)"的解析式,可以利用洛必达法则得到:h(x)=cosx。
三、实例分析求复合函数h(x)=sin(2x)的解析式。
解:利用分解法,可以将h(x)分解为h(x)=sin[2(x+π/4)]。
然后利用替换法,得到h(x)=sin[2(x+π/4)]=sin[2(x+π/4)]。
最后,利用反函数法,得到h(x)=2x。
四、注意事项1.在求解复合函数解析式时,要注意判断函数的连续性和可导性。
2.根据不同的函数形式,选择合适的求解方法。
3.在求解过程中,要注意单位的统一。
通过以上介绍,相信大家对复合函数解析式的求法有了更深入的了解。
复合函数解析式的求法

复合函数解析式的求法摘要:一、复合函数解析式的概念二、求解复合函数解析式的基本方法1.代换法2.反函数法3.隐函数法4.参数方程法三、求解复合函数解析式的应用1.实际问题中的应用2.数学理论中的应用四、结论正文:复合函数解析式是数学中一个重要的概念,它涉及到函数的复合问题。
求解复合函数解析式是解决复合函数问题的关键。
本文将详细介绍求解复合函数解析式的基本方法及其应用。
首先,我们需要了解什么是复合函数解析式。
复合函数解析式是指,给定两个函数f(x) 和g(x),求解一个新函数h(x),使得h(x) = f(g(x))。
这里,f(x) 和g(x) 被称为内函数,h(x) 被称为外函数。
求解复合函数解析式的基本方法有以下几种:1.代换法:这是求解复合函数解析式最基本的方法。
首先,我们根据内函数g(x) 的解析式求出它的值域,然后用这个值域去替换外函数h(x) 中的自变量x,从而得到h(x) 的解析式。
2.反函数法:如果内函数g(x) 和外函数h(x) 互为反函数,那么我们可以直接利用反函数的性质,求出h(x) 的解析式。
3.隐函数法:如果内函数g(x) 和外函数h(x) 之间存在隐函数关系,那么我们可以通过求解这个隐函数关系,得到h(x) 的解析式。
4.参数方程法:如果内函数g(x) 和外函数h(x) 之间存在参数方程关系,那么我们可以通过求解这个参数方程,得到h(x) 的解析式。
在实际问题中,求解复合函数解析式可以帮助我们更好地理解复杂问题的内在关系,从而更好地解决问题。
在数学理论中,求解复合函数解析式也是解决许多数学问题的关键。
总的来说,求解复合函数解析式是数学中的一个重要问题,它涉及到函数的复合、反函数、隐函数等许多重要的数学概念。
求函数解析式的七种方法

函 数 解 析 式 的 七 种 求 法一、 待定系数法:在已知函数的解析式结构时,用待定系数法。
例1 已知)(x f 是一次函数,且34)]([+=x x f f ,求)(x f解:设b ax x f +=)( )0(≠a ,则b ab x a b b ax a b x af x f f ++=++=+=2)()()]([∴⎩⎨⎧=+=342b ab a ∴⎩⎨⎧⎩⎨⎧=-===3212b a b a 或 32)(12)(+-=+=∴x x f x x f 或 二、 配凑法:已知复合函数[()]f g x 的表达式,求()f x 的解析式,[()]f g x 的表达式容易配成()g x 的运算形式时,常用配凑法。
但要注意所求函数()f x 的定义域不是原复合函数的定义域,而是()g x 的值域。
例2 已知221)1(x x x x f +=+ )0(>x ,求 ()f x 的解析式 解:2)1()1(2-+=+x x x x f , 21≥+xx 2)(2-=∴x x f )2(≥x三、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式。
与配凑法一样,要注意所换元的定义域的变化。
例3 已知x x x f 2)1(+=+,求)1(+x f解:令1+=x t ,则1≥t ,2)1(-=t x x x x f 2)1(+=+∴,1)1(2)1()(22-=-+-=t t t t f1)(2-=∴x x f )1(≥xx x x x f 21)1()1(22+=-+=+∴ )0(≥x四、代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法。
例4已知:函数)(2x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式解:设),(y x M 为)(x g y =上任一点,且),(y x M '''为),(y x M 关于点)3,2(-的对称点则⎪⎩⎪⎨⎧=+'-=+'3222y y x x ,解得:⎩⎨⎧-='--='y y x x 64 , 点),(y x M '''在)(x g y =上x x y '+'='∴2把⎩⎨⎧-='--='yy x x 64代入得: )4()4(62--+--=-x x y整理得672---=x x y ∴67)(2---=x x x g五、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式。
复合函数解析式的求法

复合函数解析式的求法摘要:一、复合函数解析式的求法简介1.定义与概念2.求解方法二、代换法求解复合函数解析式1.代换法的原理2.具体求解步骤3.示例三、待定系数法求解复合函数解析式1.待定系数法的原理2.具体求解步骤3.示例四、常见问题与注意事项1.问题解析2.注意事项正文:复合函数解析式的求法是数学中的一个重要内容。
复合函数是指由多个函数嵌套而成的函数,解析式则是指将复合函数用公式表示出来的过程。
求解复合函数解析式的方法有多种,常见的有代换法和待定系数法。
代换法是求解复合函数解析式的一种基本方法。
其原理是根据已知函数的性质,通过变量替换将复合函数中的内部函数求解出来,再代入外部函数中求解解析式。
具体求解步骤包括:确定变量替换关系,求解内部函数,代入外部函数求解解析式。
例如,已知函数f(x)=2x+1,g(x)=x^2-2x+3,求解复合函数f(g(x))的解析式。
我们可以先令u=g(x),即u=x^2-2x+3,然后将u代入f(u)中,得到f(g(x))=f(u)=2u+1=2(x^2-2x+3)+1=2x^2-4x+7。
待定系数法是另一种求解复合函数解析式的方法。
其原理是假设复合函数解析式为F(x)=a0+a1x+a2x^2+...+anx^n,然后通过已知条件求解待定系数,确定解析式。
具体求解步骤包括:确定解析式的一般形式,列方程求解待定系数。
例如,已知函数f(x)=x^2+2x+1,g(x)=2x-1,求解复合函数f(g(x))的解析式。
我们可以假设f(g(x))=ax^3+bx^2+cx+d,然后通过代入已知函数求解待定系数,得到解析式为f(g(x))=x^3+x^2+x-1。
在求解复合函数解析式时,需要注意一些常见问题。
例如,在代换法中,替换关系可能不唯一,需要根据题目条件选择合适的替换关系;在待定系数法中,需要根据题目条件选择合适的一般形式。
同时,求解过程中需要灵活运用代数运算和函数性质,以简化求解过程。
复合函数

复合函数一、复合函数定义:设y=f(u)的定义域为A ,u=g(x)的值域为B ,若A ⊇B ,则y 关于x 函数的y=f [g(x)]叫做函数f 与g 的复合函数,u 叫中间量.形象的称u=g(x)为内函数,y=f(u)为外函数。
1、复合函数的解析式求解:已知)(x f 求复合函数)]([x g f 的解析式,直接把)(x f 中的x 换成)(x g 即可。
例1.设函数53)(,32)(-=+=x x g x x f ,求))(()),((x f g x g f例2.已知 求;2、复合函数的定义域(也叫做抽象函数定义域)1).已知)(x f 的定义域,求复合函数()][x g f 的定义域若)(x f 的定义域为()b a x ,∈,求出)]([x g f 中b x g a <<)(的解x 的范围,即为)]([x g f 的定义域。
2).已知复合函数()][x g f 的定义域,求)(x f 的定义域若()][x g f 的定义域为()b a x ,∈,则由b x a <<确定)(x g 的范围即为)(x f 的定义域。
3).已知复合函数[()]f g x 的定义域,求[()]f h x 的定义域可先由()][x g f 定义域求得()x f 的定义域,再由()x f 的定义域求得()][x h f 的定义域。
例1已知函数()f x 的定义域为[]15-,,求(35)f x -的定义域 例2已知函数2(22)f x x -+的定义域为[]03,,求函数()f x 的定义域. 例3. 函数 y=(x+1)f 定义域是[-2,3],则=(2x-1)y f 的定义域是( ) 例4 若函数f (x +1)的定义域为[-21,2],求f (x 2)的定义域. 四、复合函数单调性问题:(1).复合函数单调性的判断:复合函数的单调性是由两个函数共同决定。
为了记忆方便,我们把它们总结成一个图表:以上规律还可总结为:“同增异减”.(2)、复合函数))y=的单调性判断步骤:fg(x(1、确定函数的定义域;将复合函数分解:)(xgu=。