2019-2020学年 河南省郑州市 高一上学期期末考试 数学

合集下载

高一数学上学期期中期末考试精选50题基础解析版

高一数学上学期期中期末考试精选50题基础解析版

期中解答题精选50题(基础版)1.(2020·新疆巴州第一中学)设函数221()1x f x x +=-求证:1()()f f x x =- 【分析】直接将1x代入函数化简即可. 【详解】221()1x f x x +=-,()22221111111x x f f x x x x ⎛⎫+ ⎪+⎛⎫⎝⎭∴===- ⎪-⎝⎭⎛⎫- ⎪⎝⎭,即得证. 2.(2020·宾县第一中学)已知函数()2f x 3x 5x 2=+-.(1)求()3f ,()1f a +的值; (2)若()4f a =-,求a 的值.【答案】(1)40,23116a a ++;(2)23a =-,或1a =- 【分析】(1)直接代入求值即可; (2)令()4f a =-,解出即可. 【详解】解:(1)()2352f x x x =+-,()233353240f ∴=⨯+⨯-=,()()()221315123116f a a a a a +=⨯++⨯+-=++;(2)令()4f a =-,即()23524f a a a =+-=-,解得:23a =-,或1a =-.3.(2020·济南市济阳区第一中学高一期中)已知函数()f x 是定义在R 上的奇函数,且当0x ≤时,()22f x x x =--.(1)求函数()()f x x R ∈的解析式;(2)写出函数()()f x x R ∈的增区间(不需要证明)【答案】(1)()222.02,0x x x f x x x x ⎧--≤=⎨->⎩;(2)(),1-∞-和()1,+∞.【分析】(1)当0x >时,0x -<,根据()()f x f x =--可得函数解析式; (2)根据二次函数的性质可得答案. 【详解】()1函数()f x 是定义在R 上的函数∴当0x >时,0x -<,()()f x f x ∴=--又当0x ≤时,()22f x x x =--()()()()2222f x f x x x x x ⎡⎤∴=--=-----=-⎣⎦∴函数()()f x x R ∈的解析式为:()222.02,0x x x f x x x x ⎧--≤=⎨->⎩;()2由二次函数的性质可知函数()f x 的单调递增区间为(),1-∞-和()1,+∞.4.(2020·大同市第四中学校)已知函数22()1x f x x =+.(1)求11(2),(3)23f f f f ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭的值;(2)求证:1()f x f x ⎛⎫+ ⎪⎝⎭是定值. 【答案】(1)1,1;(2)证明见解析. 【分析】(1)根据函数解析式代入即可求解. (2)根据解析式,代入整理即可求解.【详解】(1)因为()221x f x x =+,所以()2222112221212112f f ⎛⎫ ⎪⎛⎫⎝⎭+=+= ⎪+⎝⎭⎛⎫+ ⎪⎝⎭, ()2222113331313113f f ⎛⎫ ⎪⎛⎫⎝⎭+=+= ⎪+⎝⎭⎛⎫+ ⎪⎝⎭.(2)()22222222211111111111x x x x f x f x x x x x x ⎛⎫ ⎪+⎛⎫⎝⎭+=+=+== ⎪++++⎝⎭⎛⎫+ ⎪⎝⎭,是定值. 5.(2020·拉萨市第四高级中学高一期中)已知二次函数()2f x ax bx c =++,满足(0)(1)0f f ==,且()f x 的最小值是14-.(1)求()f x 的解析式;(2)设函数2()52g x x x =+-,函数()()()h x f x g x =-,求函数()h x 在区间[2,5]-上的最值. 【答案】(1)2()f x x x =-;(2)最大值14,最小值28-.【分析】(1)由已知条件列方程组,可求出,,a b c 的值,从而可得,,a b c ; (2)由题意得()62h x x =-+,再利用其单调性可求出其在[2,5]-上的最值 【详解】(1)因为(0)(1)0f f ==, 所以(0)0,(1)0f c f a b c ===++=,由二次函数的性质得11112424f a b c ⎛⎫=++=- ⎪⎝⎭,解得,1,1,0a b c ==-= 所以2()f x x x =-(2)依题得:()62h x x =-+ 函数()h x 在区间内[2,5]-单调递减 当2x =-时,()h x 有最大值14 当5x =时,()h x 有最小值28-6.(2020·南宁市第十九中学)已知函数()26x f x x +=-. (1)点()86,在()f x 的图像上吗? (2)当3x =时,求()f x 的值; (3)当()8f x =时,求x 的值.【答案】(1)不在,(2)53-,(3)507【分析】(1)将点的坐标代入解析式中验证即可; (2)将3x =代入函数中直接求解; (3)由()8f x =,可得286x x +=-,从而可求出x 的值 【详解】解:(1)因为()8285686f +==≠-,所以点()86,不在()f x 的图像上, (2)()3253363f +==--, (3)由()8f x =,得286x x +=-,解得507x =7.(2020·云南砚山县第三高级中学高一期中)判断下列函数的奇偶性. (1)21()f x x =; (2)()31f x x =-+;【答案】(1)偶函数;(2)非奇非偶函数.【分析】先求函数的定义域,再利用函数奇偶性的定义判断即可 【详解】(1)因为定义域为:{}0x x ≠ 所以定义域关于原点对称, 又因为2211()()()f x f x x x -===-,所以函数f (x )是偶函数; (2)因为定义域为R ,关于原点对称又因为()31f x x =-+,则()31()f x x f x -=+≠,()31()f x x f x -=+≠-, 所以()f x 是非奇非偶函数;8.(2019·广东高一期中)已知函数f (x 12x +. (1)求函数f (x )的定义域; (2)求f (-3),f (23)的值;(3)当a >0时,求f (a ),f (a -1)的值.【答案】(1)[3,2)(2,)---+∞;(2)()31f -=-;23()38f =;(3)()12f a a +;()111f a a -=+ 【分析】(1)由平方根被开方数大于等于0,分母不为零,同时成立求出定义域; (2)代入解析式,求出()3f -,23f ⎛⎫⎪⎝⎭的值;(3)代入解析式,即可求出结果. 【详解】(1)要使函数有意义,须3033202x x x x x +≥≥-⎧⎧⇒⇒-≤⎨⎨+≠≠-⎩⎩且2x ≠-, 所以函数的定义域为[3,2)(2,)---+∞(2)()12f x x =+,所以()1301,32f -=+=--+213()23823f ==+ (3)0,11a a >∴->-,()12f a a =+ ()111f a a -=+ 9.(2020·云南砚山县第三高级中学高一期中)(1)求解:2340x x --=; (2)解不等式的解集:(9)0x x -> ; 【答案】(1)124,-1x x ==;(2){}|09x x <<. 【分析】(1)利用因式分解法解方程即可; (2)直接解一元二次不等式即可 【详解】(1)2340x x --=(4)(1)0x x -+= 124,-1x x ==(2)不等式化为(9)0x x -<, 09x ∴<<,∴不等式的解集为{}|09x x <<;10.(2019·抚顺市雷锋高级中学高一期中)已知0x >,求函数4y x x=+的最小值,并说明当x 为何值时y 取得最小值.【答案】最小值为4,当2x =时y 取得最小值【分析】根据基本不等式求得函数的最小值,且求得此时x 的值. 【详解】因为0x >,所以4224y x x =+≥⨯=. 当且仅当4x x=时取等号.24x =.因为0x >,所以2x =. 所以2x =为何值时y 取得最小值4.11.(2019·抚顺市雷锋高级中学高一期中)已知一元二次方程22320x x +-=的两个实数根为12,x x .求值:(1)2212x x +; (2)1211+x x . 【答案】(1)174;(2)32.【分析】利用韦达定理可得12123,12x x x x +=-⋅=-,再对所求式子进行变行,即222121212()2x x x x x x +=+-;12121211x x x x x x ++=⋅;两根和与积代入式子,即可得到答案; 【详解】解:因为一元二次方程22320x x +-=的两个实数根为12,x x ,所以由根与系数关系可知12123,12x x x x +=-⋅=-.(1)222121212()2x x x x x x +=+-9172(1)44=-⨯-=;(2)1212123113212x x x x x x -++===⋅-.12.(2019·抚顺市雷锋高级中学高一期中)解一元二次不等式:2560x x -+>. 【答案】(,2)(3,)-∞⋃+∞.【分析】对多项式进行因式分解得256(2)(3)x x x x -+=--,再利用大于取两边,即可得到答案;【详解】解:因为256(2)(3)x x x x -+=--, 所以原不等式等价于(2)(3)0x x -->. 所以所求不等式的解集为(,2)(3,)-∞⋃+∞.13.(2020·河北英才国际学校高一期中)已知23a <<,21b -<<-,求2a b +的范围. 【答案】225a b <+<【分析】根据不等式的性质可得出答案. 【详解】解:23a <<,426a ∴<<,又21b -<<-, 225a b ∴<+<.14.(2021·四川省武胜烈面中学校高一期中)(1)解不等式2210x x --+<. (2)若不等式20ax x b -+<的解集为1,12⎛⎫ ⎪⎝⎭,求实数a ,b 的值; 【答案】(1)不等式的解集为{|1x x <-或12x ⎫>⎬⎭;(2)23a =,13b =.【分析】(1)根据一元二次不等式的解法即可求出; (2)根据函数与方程的思想即可求出.【详解】(1)2210x x --+<即为2210x x +->,而2210x x +-=的两根为11,2-,所以不等式的解集为{|1x x <-或12x ⎫>⎬⎭.(2)由题意可知20ax x b -+=的两根为1,12,所以,1112112a ba⎧+=⎪⎪⎨⎪⨯=⎪⎩,解得23a =,13b =. 15.(2019·福建高一期中)若二次函数满足f (x +1)-f (x )=2x 且f (0)=1. (1)求f (x )的解析式;(2)若在区间[-1,1]上不等式f (x )>2x +m 恒成立,求实数m 的取值范围. 【答案】(1)f (x )=x 2-x +1;(2)m <-1.【分析】(1)设f (x )=ax 2+bx +c (a ≠0),则由f (0)=1可求出c ,由f (x +1)-f (x )=2x 可求出,a b ,从而可求出函数的解析式,(2)将问题转化为x 2-3x +1-m >0在[-1,1]上恒成立,构造函数g (x )=x 2-3x +1-m ,然后利用二次函数的性质求出其最小值,使其最小值大于零即可求出实数m 的取值范围 【详解】(1)设f (x )=ax 2+bx +c (a ≠0),由f (0)=1, ∴c =1,∴f (x )=ax 2+bx +1. ∵f (x +1)-f (x )=2x ,∴2ax +a +b =2x ,∴220a a b =⎧⎨+=⎩,∴11a b =⎧⎨=-⎩,∴f (x )=x 2-x +1.(2)由题意:x 2-x +1>2x +m 在[-1,1]上恒成立,即x 2-3x +1-m >0在[-1,1]上恒成立.令g (x )=x 2-3x +1-m =3()2x -2-54-m ,其对称轴为x =32,∴g (x )在区间[-1,1]上是减函数, ∴g (x )min =g (1)=1-3+1-m >0, ∴m <-1.16.(2021·巴楚县第一中学高一期中)比较下列各组中两个代数式的大小: (1)256x x ++与2259x x ++; (2)2(3)x -与(2)(4)x x --; 【答案】(1)2256259x x x x ++<++;(2)2(3)(2)(4)x x x ->-- 【分析】利用作差法,分析两式之差的正负判定即可【详解】(1)因为()()2225625930x x x x x ++-++=--<,故2256259x x x x ++<++; (2)因为()()2220(63)(2)(4)9681x x x x x x x --=--++---=>,故2(3)(2)(4)x x x ->--【点睛】本题主要考查了作差法判定两式大小的问题,属于基础题17.(2020·上海财经大学附属中学高一期中)若x ∈R ,试比较26x x +3与24216x x -+的大小. 【答案】2264216.x x x x +≤-+3 【分析】利用作差法比较即可.【详解】因为()()()22226421681640x x x x x x x +--+=-+-=--≤3,所以2264216.x x x x +≤-+318.(2020·咸阳百灵学校)已知M = {x |-3 ≤ x ≤5}, N = {x | a ≤ x ≤ a +1},若N M ⊆,求实数a 的取值范围.【答案】34a -≤≤【分析】先分析集合N ≠∅,再根据N M ⊆建立不等式然后解之即可. 【详解】因为1a a <+,所以集合N ≠∅.因此,N M ⊆时,应满足315a a ≥-⎧⎨+≤⎩,解得34a -≤≤.19.(2020·大同市第四中学校)设集合{|12}A x x =-≤≤,集合{|21}B x m x =<<.若“x A ∈”是“x B ∈”的必要条件,求实数m 的取值范围;【答案】1,2⎡⎫-+∞⎪⎢⎣⎭.【分析】由“x A ∈”是“x B ∈”的必要条件有B A ⊆,讨论12m <、12m ≥满足条件时m 的范围,最后求并集即可.【详解】若“x A ∈”是“x B ∈”的必要条件,则B A ⊆, {}2|1A x x =-≤≤,①当12m <时,{|21}B x m x =<<,此时121m -≤<,即1122m -≤<;②当12m ≥时,B =∅,有B A ⊆成立;∴综上所述,所求m 的取值范围是1,2⎡⎫-+∞⎪⎢⎣⎭.20.(2020·南宁市第十九中学)已知{}10A x x =-=,{}210B x x =-=.求:(1)A B ; (2)A B 【答案】(1){}1;(2){}1,1-【分析】先求出集合A ,B ,再根据交集并集的定义即可求出. 【详解】{}{}101A x x =-==,{}{}2101,1B x x =-==-,∴(1){}1A B ⋂=;(2){}1,1A B =-.21.(2020·桂林市临桂区五通中学高一期中)奇函数2()1ax bf x x +=+是定义在区间[]1,1-上的增函数,且1225f ⎛⎫= ⎪⎝⎭.(1)求()f x 解析式;(2)求不等式(1)()0f x f x -+<的解集. 【答案】(1)()21x f x x =+;(2)10,2⎡⎫⎪⎢⎣⎭. 【分析】(1)先根据奇函数可求0b =,再利用1225f ⎛⎫= ⎪⎝⎭可求1a =,进而可得解析式;(2)根据奇函数和增函数把不等式(1)()0f x f x -+<进行转化,结合定义域可求答案. 【详解】(1)∵函数2()1ax bf x x +=+是定义在[]1,1-上的奇函数, ∴()00001bf +==+,即0b =, ∵1225f ⎛⎫= ⎪⎝⎭,∴2112225121a f ⨯⎛⎫== ⎪⎝⎭⎛⎫ +⎪⎝⎭,解得1a =, ∴()21xf x x =+. 经验证知,()21x f x x =+是定义在[]1,1-上的奇函数,所以()21xf x x =+.(2)∵函数()f x 在[]1,1-上为奇函数,且(1)()f x f x -<-,∴(1)()f x f x -<-,又∵函数()f x 是定义在[]1,1-上的增函数,∴111111x x x x-≤-≤⎧⎪-≤-≤⎨⎪-<-⎩,解得102x ≤<.故不等式(1)()0f x f x -+<的解集为10,2⎡⎫⎪⎢⎣⎭.22.(2019·福建高一期中)已知函数2()1ax b f x x +=+是定义在(1,1)-上的奇函数,且3(3)10f =.(1)确定函数()f x 的解析式;(2)当(1,1)x ∈-时判断函数()f x 的单调性,并证明;(3)解不等式1(1)()02f x f x -+<. 【答案】(1)2()1x f x x =+;(2)()f x 在区间()1,1-上是增函数,证明见解析;(3)20,3⎛⎫⎪⎝⎭.【分析】(1)由奇函数的概念可得b 的值,根据()3310f =可得a 的值,进而得结果; (2)设1211x x -<<<,用作差法分析可得可得()()12f x f x <,由函数单调性的定义即可得证明; (3)将奇偶性和单调性相结合列出不等式组,解出即可. 【详解】(1)∵()()f x f x -=-, ∴221()1ax b ax bx x -+--=+-+,即b b -=,∴0b =.∴2()1axf x x =+, 又()3310f =,1a =, ∴2()1xf x x =+. (2)对区间()1,1-上得任意两个值1x ,2x ,且12x x <,22121221121212222222121212(1)(1)()(1)()()11(1)(1)(1)(1)x x x x x x x x x x f x f x x x x x x x +-+---=-==++++++, ∵1211x x -<<<,∴120x x -<,1210x x ->,2110x +>,2210x +>,∴12())0(f x f x -<,∴12()()f x f x <, ∴()f x 在区间()1,1-上是增函数. (3)∵1(1)()02f x f x -+<, ∴1(1)()2f x f x -<-,1111211211x x x x ⎧-<-<⎪⎪⎪-<-⎨⎪-<<⎪⎪⎩,解得203x <<,∴实数x 得取值范围为20,3⎛⎫⎪⎝⎭.23.(2019·陕西镇安中学高一期中)函数()21ax bf x x +=+是定义在()1,1-上的奇函数,且1225f ⎛⎫= ⎪⎝⎭. (1)确定函数()f x 的解析式;(2)用定义证明()f x 在()1,1-上是增函数. 【答案】(1)()21xf x x =+;(2)证明见解析. 【分析】(1)由函数()f x 是定义在()1,1-上的奇函数,则()00f =,解得b 的值,再根据1225f ⎛⎫= ⎪⎝⎭,解得a 的值从而求得()f x 的解析式; (2)设1211x x -<<<,化简可得()()120f x f x -<,然后再利用函数的单调性定义即可得到结果.【详解】解:(1)依题意得()00,12,25ff ⎧=⎪⎨⎛⎫= ⎪⎪⎝⎭⎩∴20,1022,1514bab ⎧=⎪+⎪⎪⎨+⎪=⎪+⎪⎩∴1,0,a b =⎧⎨=⎩∴()21x f x x =+ (2)证明:任取1211x x -<<<,∴()()()()()()121212122222121211111x x x x x x f x f x x x x x ---=-=++++ ∵1211x x -<<<,∴120x x -<,2110x +>,2210x +>,由1211x x -<<<知,1211x x -<<,∴1210x x ->. ∴()()120f x f x -<.∴()f x 在()1,1-上单调递增.24.(2020·黔西南州同源中学高一期中)已知函数()f x 是定义在R 上的奇函数,当0x ≥时,2()2f x x x =-.(1)画出当0x <时,()f x 函数图象; (2)求出()f x 解析式.【答案】(1)见解析;(2)()()()222,02,0x x x f x x x x ⎧-≥⎪=⎨--<⎪⎩ .【分析】(1)根据函数奇偶性的性质即可画出当0x <时,函数()f x 的函数图象; (2)根据函数奇偶性的定义即可求出函数解析式. 【详解】解:(1)()f x 是奇函数,且当0x ≥时,2()2f x x x =-.∴函数()f x 的函数图象关于原点对称,则当0x <时,()f x 函数图象:;(2)若0x <,则0x ->, 当0x ≥时,2()2f x x x =-.()()2()2()f x x x f x ∴-=---=-,则当0x <时,2()2f x x x =--.即()()()222,02,0x x x f x x x x ⎧-≥⎪=⎨--<⎪⎩ .25.(2020·黔西南州同源中学高一期中)已知函数1()f x x x=-. (1)判断函数()f x 的奇偶性,并加以证明; (2)用定义证明函数()f x 在区间[)1,+∞上为增函数.【分析】(1)判断函数的奇偶性,利用奇偶性的定义证明即可; (2)作差判断符号,利用函数的单调性的定义证明即可. 【详解】解:(1)()f x 是奇函数,理由如下:函数1()f x x x=-的定义域为(-∞,0)(0⋃,)+∞,关于原点对称, 且11()()()f x x x f x xx-=-+=--=-,()f x ∴是奇函数;证明:(2)任取1x ,2[1x ∈,)+∞且12x x <,则1212121211()()()()f x f x x x x x x x -=---=-12121x x x x +,120x x -<,1210x x +>,120x x >12()()0f x f x ∴-<,即12()()f x f x <.()f x ∴在[1,)+∞上单调递增.26.(2019·上海市嘉定区封浜高级中学高一期中)若0,0a b >>,试比较33+a b 与22a b b a +的大小.【答案】3322a b a b b a +≥+,当且仅当a b =时等号成立.【分析】运用作差法求出两式的差,结合题意将两式的差与0进行比较即可. 【详解】由题意得,3333222222222))()()()()()()()(()(a b b a a b b a a a b b b a a b a b a b a b a b a b +==-+-=+-=+----+-因为0,0a b >>,所以20,()0a b a b +>-≥,当且仅当a b =时取等号, 所以2()()0a b a b -+≥,即32320())(a a b b b a +-≥+,当且仅当a b =时取等号, 故3322a b a b b a +≥+,当且仅当a b =时等号成立.27.(2021·安徽池州市·高一期中)已知函数()231f ax x ax =+-,a R ∈.(1)当4a =时,求不等式()0f x >的解集; (2)若()0f x ≤在R 上恒成立,求a 的取值范围. 【答案】(1){12x x <-或16x ⎫>⎬⎭;(2)[]12,0-.【分析】(1)解不含参数的一元二次不等式即可求出结果;(2)二次函数的恒成立问题需要对二次项系数是否为0进行分类讨论,即可求出结果.【详解】(1)当4a =时,()212410x f x x =+->,即()()21610x x +->,解得12x <-或16x >, 所以,解集为{12x x <-或16x ⎫>⎬⎭.(2)因为()2310f x ax ax =+-≤在R 上恒成立,①当0a =时,()10f x =-≤恒成立;②当0a ≠时,2120a a a <⎧⎨∆=+≤⎩,解得120a -<≤, 综上,a 的取值范围为[]12,0-.28.(2010·辽宁大连市·)解关于x 的不等式ax 2-(a +1)x +1<0.【分析】根据二次函数开口方向和一元二次方程的根的大小,分0,0,01,1,1,a a a a a <=<<=>讨论求解.【详解】①当a =0时,原不等式即为-x +1<0,解得x >1.②当a <0时,原不等式化为()11x x a ⎛⎫-- ⎪⎝⎭>0,解得1x a <或x >1.③当a >0时,原不等式化为()11x x a ⎛⎫-- ⎪⎝⎭<0.若a =1,即1a=1时,不等式无解;若a >1,即1a <1时,解得1a<x <1; 若0<a <1,即1a>1时,解得1<x <1a.综上可知,当a <0时,不等式的解集为11x x x a ⎧⎫⎨⎬⎩⎭或;当a =0时,不等式的解集为{x |x >1};当0<a <1时,不等式的解集为11x x a ⎧⎫<<⎨⎬⎩⎭;当a =1时,不等式的解集为Ø;当a >1时,不等式的解集为11x x a ⎧⎫<<⎨⎬⎩⎭.29.(2020·江苏泰州·)已知关于x 的不等式()2220x a x a -++<.(1)当3a =时,解关于x 的不等式; (2)当a R ∈时,解关于x 的不等式.【答案】(1){}23x x <<;(2)答案不唯一,具体见解析. 【分析】(1)直接求解一元二次不等式即可,(2)原不等式化为()()20x x a --<,然后分2a <,2a =和2a >三种情况解不等式【详解】解:(1)因为不等式为()2220x a x a -++<,所以当3a =时,不等式为2560x x -+<,即()()230x x --<, 则23x <<,故原不等式的解集为{}23x x <<. (2)原不等式为()()20x x a --<, 当2a <时,不等式解集为{}2x a x <<; 当2a =时,不等式解集为∅;当2a >时,不等式解集为{}2x x a <<.综上所述:当2a <时,不等式解集为{}2x a x <<; 当2a =时,不等式解集为∅;当2a >时,不等式解集为{}2x x a <<.30.(2020·杭州之江高级中学高一期中)设函数()()222,f x x ax a a =++-∈R . (1)当1a =时,解关于x 的不等式()()215f x a x a >--+;(2)若[]1,2x ∃∈,使得()0f x >成立,求a 的取值范围.【答案】(1)(,3)(1,)-∞-⋃+∞;(2)(3,)-+∞.【分析】(1)当1a =时,不等式可化简为()()310x x +->,根据一元二次不等式的解法,即可求得答案.(2)[]1,2x ∃∈,使得()0f x >成立的否定为:[]()1,2,0x f x ∀∈≤恒成立,列出方程组,可求得a 的范围,进而可得答案.【详解】(1)当1a =时,()()215f x a x a >--+,整理可得2214x x ++>所以()()310x x +->,解得3x <-或1x >, 故原不等式的解集为(,3)(1,)-∞-⋃+∞.(2)命题:[]1,2x ∃∈,使得()0f x >成立的否定为:[]()1,2,0x f x ∀∈≤恒成立,则(1)0(2)0f f ≤⎧⎨≤⎩,解得3a ≤-, 若原命题成立,则a 的取值范围为(3,)-+∞.31.(2020·江苏)已知不等式2320ax x -+>的解集为{|1x x <或}x b >. (1)求a ,b 的值;(2)当2c ≠时,解关于x 的不等式2()0ax ac b x bc -++<.【答案】(1)12.a b =⎧⎨=⎩,;(2)答案见解析.【分析】(1)根据二次不等式的解集得到1和b 是方程2320ax x -+=的两根,利用韦达定理得到方程组求解;(2)根据(1)的结论不等式2()0ax ac b x bc -++<化为(2)()0x x c --<,分类讨论得到不等式的解集.【详解】解:(1)由题意知,1和b 是方程2320ax x -+=的两根,则312b a b a⎧=+⎪⎪⎨⎪=⎪⎩,,解得12.a b =⎧⎨=⎩,(2)不等式2()0ax ac b x bc -++<, 即为2(2)20x c x c -++<,即(2)()0x x c --<. ①当2>c 时,解集为{}2x x c <<; ②当2c <时,解集为{}2x c x <<;综上,当2>c 时,原不等式的解集为{}2x x c <<; 当2c <时,原不等式的解集为{}2x c x <<;32.(2021·云南砚山县第三高级中学高一期中)已知函数()()()236f x x a x =-+-. (1)若1a =-,求()f x 在[]3,0-上的最大值和最小值;(2)若关于x 的方程()140f x +=在()0,∞+上有两个不相等实根,求实数a 的取值范围. 【答案】(1)最大值是0,最小值是498-;(2)58,23⎛⎫ ⎪⎝⎭. 【分析】(1)由1a =-,得到()2253f x x x =+-,再利用二次函数的性质求解;(2)将方程()140f x +=在()0,∞+上有两个不相等实根,转化为方程()2232380x a x a +--+=有两个不相等正实根求解.【详解】(1)当1a =-时,()()()1236f x x x =++-2253x x =+-2549248x ⎛⎫=+- ⎪⎝⎭,因为二次函数()f x 开口向上,对称轴为54x =-,又因为()f x 在5[3,)4--上递减,在5(,0]4-上递增, 所以()min 54948f x f ⎛⎫=-=- ⎪⎝⎭,又()()30,03f f -==-, 所以()()max 30f x f =-=;(2)因为方程()140f x +=在()0,∞+上有两个不相等实根,所以方程()2232380x a x a +--+=有两个不相等正实根,则()()232838032023802a a aa ⎧⎪∆=---+>⎪-⎪->⎨⎪-+⎪>⎪⎩, 解得5823a <<,所以实数a 的取值范围是58,23⎛⎫ ⎪⎝⎭.33.(2020·曲靖市关工委麒麟希望学校高一期中)如下图所示,动物园要围成相同面积的长方形虎笼四间,一面可利用原有的墙,其他各面用钢筋网围成.(1)现有可围36m 长网的材料,每间虎笼的长、宽各设计为多少时,可使每间虎笼面积最大?最大面积为多少?(2)若使每间虎笼面积为242m ,则每间虎笼的长、宽各设计为多少时,可使围成四间笼的钢筋网总长最小?最小值为多少?【答案】(1)当长为9m 2,宽为3m 时,面积最大,最大面积为227m 2;(2)当长为6m ,宽为4m 时,钢筋网总长最小,最小值为48m .【分析】(1)求得每间虎笼面积的表达式,结合基本不等式求得最大值. (2)求得钢筋网总长的表达式,结合基本不等式求得最小值. 【详解】(1)设长为a ,宽为b ,,a b 都为正数,每间虎笼面积为ab ,则463623181823a b a b a b +=⇒+=⇒=+≥ 则272ab ≤,所以每间虎笼面积ab 的最大值为227m 2,当且仅当23a b =即9m,3m 2a b ==时等号成立.(2)设长为a ,宽为b ,,a b 都为正数,每间虎笼面积为24ab =,则钢筋网总长为4648a b +≥===,所以钢筋网总长最小为48m ,当且仅当46,23,6m,4m a b a b a b ====等号成立.34.(2020·上海市第三女子中学高一期中)已知a R ∈,求证:“102a <<”是“111a a>+-”的充分非必要条件.【分析】从充分性和必要性两个方面去进行说明即可.【详解】解:充分性:当102a <<时,()()21111a a a -=-+<,且10a ->,则111a a>+-, 故充分性满足;必要性:当111a a >+-时,()1101a a -+>-,即201a a>-,可得1a <,且0a ≠,故必要性不满足;则“102a <<”是“111a a>+-”的充分非必要条件 35.(2020·福建厦门一中高一期中)已知20:{|}100x p x x +≥⎧⎨-≤⎩,q :{x |1-m ≤x ≤1+m ,m >0}.(1)若m =1,则p 是q 的什么条件?(2)若p 是q 的充分不必要条件,求实数m 的取值范围. 【答案】(1)p 是q 的必要不充分条件;(2)m ∈[9,+∞).【分析】(1)分别求出p 、q 对应的集合,根据集合间的关系即可得出答案;(2)根据p 是q 的充分不必要条件,则p 对应的集合是q 对应的集合的真子集,列出不等式组,解得即可得出答案.【详解】(1)因为20:{|}100x p x x +≥⎧⎨-≤⎩={x |-2≤x ≤10}, 若m =1,则q :{x |1-m ≤x ≤1+m ,m >0}={x |0≤x ≤2}, 显然{x |0≤x ≤2}≠⊂{x |-2≤x ≤10}, 所以p 是q 的必要不充分条件.(2)由(1),知p :{x |-2≤x ≤10},因为p 是q 的充分不必要条件,所以}{}{21011x x x m x m ≠-≤≤⊂-≤≤+∣∣, 所以012110m m m >⎧⎪-≤-⎨⎪+≥⎩,且12m -≤-和110m +≥不同时取等号,解得m ≥9,即m ∈[9,+∞).36.(2020·玉林市育才中学高一期中)已知集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},若B ⊆A ,求实数m 的取值范围. 【答案】{m |m ≤3}.【分析】由B =∅和B ≠∅分类讨论得不等式(或不等式组)解之可得. 【详解】解:A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},且B ⊆A . ①若B =∅,则m +1>2m -1,解得m <2, 此时有B ⊆A ;②若B ≠∅,则m +1≤2m -1,即m ≥2,由B ⊆A ,得212215m m m ≥⎧⎪+≥-⎨⎪-≤⎩,解得2≤m ≤3.由①②得m ≤3.∴实数m 的取值范围是{m |m ≤3}.37.(2019·福建高一期中)(1)设{}22,2,6A a a =-,{}22,2,36B a a =-,若{}2,3A B ⋂=,求A B .(2)已知{}26A x x =≤≤,{}23B x a x a =≤≤+,若B A ⊆,求实数a 的取值范围.【答案】(1){}2,3,6,18A B =;(2){}1a a >.【分析】(1)由交集的概念可得223a a -=,求出a 代入验证,再求并集即可; (2)分为B =∅和B ≠∅两种情形,列出不等式解出即可. 【详解】(1)由{}2,3A B ⋂=,∴223a a -=,解得3a =或1a =-, 当3a =时,{}2,3,18B =,此时{}2,3,6,18A B =, 当1a =-时,不合题意. ∴{}2,3,6,18A B =. (2)∵B A ⊆,当B =∅时,23a a >+,∴3a >,当B ≠∅时,222336a a a a ≤⎧⎪≤+⎨⎪+≤⎩,∴13a .综上,{}1a a a ∈>.38.(2020·曲靖市关工委麒麟希望学校高一期中)已知M={x| -2≤x ≤5}, N={x| a+1≤x≤2a -1}.(1)若M ⊆N ,求实数a 的取值范围; (2)若M ⊇N ,求实数a 的取值范围. 【答案】(1)空集;(2){}3a a ≤.【分析】(1)根据子集的性质进行求解即可;(2)根据子集的性质,结合N =∅和N ≠∅两种情况分类讨论进行求解即可. 【详解】(1)由M N ⊆得:12321531212a a a a a a a +≤-≤-⎧⎧⎪⎪⇒-≥≥⎨⎨⎪⎪+≤-≥⎩⎩无解; 故实数a 的取值范围为空集; (2)由M N ⊇得: 当N =∅时,即1212a a a +>-⇒<; 当N ≠∅时,12121232153a a a a a a a +≤-≥⎧⎧⎪⎪+≥-⇒≥-⎨⎨⎪⎪-≤≤⎩⎩, 故23a ≤≤;综上实数a 的取值范围为{}3a a ≤.39.(2019·陕西镇安中学高一期中)已知集合{}25A x x =-≤≤,{}121B x m x m =+≤≤-. (1)若4m =,求A B ;(2)若A B =∅,求实数m 的取值范围.【答案】(1){}27x x -≤≤;(2){2m m <或}4m >.【分析】(1)当4m =时,求出集合B ,利用并集的定义可求得集合A B ;(2)分B =∅、B ≠∅两种情况讨论,结合A B =∅可得出关于实数m 的不等式,综合可求得实数m 的取值范围.【详解】(1)当4m =时,{}57B x x =≤≤,故{}27A B x x ⋃=-≤≤; (2)当121m m +>-时,即当2m <时,B =∅,则A B =∅; 当121m m +≤-时,即当2m ≥时,B ≠∅,因为A B =∅,则212m -<-或15m +>,解得12m <-或4m >,此时有4m >.综上所述,实数m 的取值范围是{2m m <或}4m >.40.(2019·广西大学附属中学高一期中)设全集U =R ,集合{}14A x x =≤<,{}23B x a x a =≤<-.(1)若2a =-,求B A ⋂;(2)若A B A ⋃=,求实数a 的取值范围. 【答案】(1) {}|14x x ≤<;(2)1,2⎡⎫+∞⎪⎢⎣⎭. 【分析】(1)利用集合间的交集运算求解; (2)由A B A ⋃=得B A ⊆,再分B φ=和B φ≠讨论.【详解】(1) 若2a =-,则{}45B x x =-≤<,又{}14A x x =≤<,所以{}|14B A x x =≤<. (2) 若A B A ⋃=,则B A ⊆. 当B φ=时,23a a ≥-,1a ≥; 当B φ≠时,由1,21,34a a a <⎧⎪≥⎨⎪-≤⎩,解得112a ≤<.综上可知,实数a 的取值范围1,2⎡⎫+∞⎪⎢⎣⎭.41.(2020·吉林江城中学)已知集合{}12A x x =-≤<,集合B ={}12x a x a -≤<,(1)B A ⊆,求实数a 的取值范围; (2)若A B =∅,求实数a 的取值范围.【答案】(1){}|011a a a ≤≤≤-或;(2)1|32a a a ⎧⎫≤-≥⎨⎬⎩⎭或.【分析】(1)(2)都是根据题意讨论B φ=和B φ≠两种情况,从而列出关于a 的不等式组,进而求实数a 的取值范围. 【详解】(1)因为B A ⊆,所以当B φ=时,12a a -≥,解得1a ≤-,此时满足题意;当B φ≠时,由题意得112212a a a a -≥-⎧⎪≤⎨⎪-<⎩,解得01a ≤≤,所以实数a 的取值范围为{}|011a a a ≤≤≤-或. (2)因为A B =∅,所以当B φ=时满足题意,即12a a -≥,解得1a ≤-;当B φ≠时,由题意得2112a a a ≤-⎧⎨-<⎩或1212a a a-≥⎧⎨-<⎩,解得112a -<≤-或3a ≥,所以实数a 的取值范围为1|32a a a ⎧⎫≤-≥⎨⎬⎩⎭或.42.(2019·浙江高一期中)已知602x A xx ⎧⎫-=>⎨⎬-⎩⎭,()(){}110B x x a x a =---+≤. (1)当2a =时,求A B ;(2)当0a >时,若A B B ⋃=,求实数a 的取值范围. 【答案】(1){}23A B x x ⋂=<≤;(2)[)5,+∞.【分析】(1)解不等式求得集合,A B ,由并集定义可求得结果; (2)由并集结果可确定A B ⊆,根据包含关系可构造不等式组求得结果. 【详解】(1)由602xx ->-得:26x <<,则{}26A x x =<<; 当2a =时,由()()110x a x a ---+≤得:()()310x x -+≤,则{}13B x x =-≤≤;{}23A B x x ∴⋂=<≤;(2)若A B B ⋃=,则A B ⊆,当0a >时,{}11B x a x a =-≤≤+,又{}26A x x =<<,则1216a a -≤⎧⎨+≥⎩,解得:5a ≥,∴实数a 的取值范围为[)5,+∞.43.(2019·甘肃兰州市·兰州五十一中高一期中)已知集合A ={x |-1<x <3},B ={x |-m <x <m },若B ⊆A ,求m 的取值范围 【答案】(,1]-∞.【分析】分类讨论:0m ≤和0m >,前者由子集定义即得,后者由包含关系得不等关系后可得.【详解】当0m ≤时,B A =∅⊆, 当0m >时,则13m m -≥-⎧⎨≤⎩,解得01m <≤.综上,m 的取值范围是(,1]-∞.44.(2020·上海市杨思高级中学高一期中)若x ∈R ,不等式2680mx mx m -++>恒成立,求实数m 的取值范围. 【答案】[0,1)【分析】根据x ∈R 时,不等式2680mx mx m -++>恒成立,分0m =和0m ≠两种情况,利用判别式法求解.【详解】因为x ∈R 时,不等式2680mx mx m -++>恒成立, 当0m =时,80>成立,当0m ≠时,则2364(8)0m m m m >⎧⎨∆=-+<⎩, 解得01m <<, 综上:01m ≤<. 则实数m 的取值范围[0,1).45.(2021·乌苏市第一中学高一期中)解下列不等式:(1)2440x x -+-< (2)()210x a x a +-->【答案】(1){}|2x x ≠;(2)当1a =-时原不等式的解集为{|1}x x ≠,当1a >-时原不等式的解集为{|x x a <-,或1}x >,当1a <时原不等式的解集为{|x x a >-,或1}x <.【分析】(1)将一元二次不等式化简,将左边配成完全平方式,即可得出不等式的解集; (2)由题意,一元二次不等式所对应的一元二次方程的两个根为a - 和1,分类讨论a -和1的大小,从而求得它的解集.【详解】解:(1)因为2440x x -+-<,所以2440x x -+>,即()220x ->,所以2x ≠,即原不等式的解集为{}|2x x ≠(2)x 的不等式:2(1)0x a x a +-->,即()(1)0x a x +->,此不等式所对应的一元二次方程2(1)0x a x a +--=的两个根为a -和1. 当1a -=,即1a =-时,此时不等式即2(1)0x ->,它的解集为{|1}x x ≠; 当<1a -,即1a >-时,它的解集为{|x x a <-或1}x >;当1a ->,即1a <时,它的解集为{|x x a >-或1}x <.综上可得:当1a =-时原不等式的解集为{|1}x x ≠,当1a >-时原不等式的解集为{|x x a <-或1}x >,当1a <时原不等式的解集为{|x x a >-或1}x <.46.(2021·乌苏市第一中学高一期中)解下列不等式: (1)23710x x -≤ (2)(1)()0x x a --> 【答案】(1)10{|1}3x x -≤≤;(2)1a ≥时,解集为(,1)(,)a -∞+∞,1a <时,解集为(,)(1,)a -∞+∞.【分析】(1)不等式变形为一边为0,一边二次系数为正,分解因式确定相应二次方程的根后结论二次函数性质得解;(2)根据a 和1的大小分类讨论得解.【详解】(1)不等式化为237100x x --≤,即(1)(310)0x x +-≤,解集为10{|1}3x x -≤≤; (2)当1a ≥时,不等式的解为1x <或x a >,解集为(,1)(,)a -∞+∞; 当1a <时,不等式的解为x a <或1x >,解集为(,)(1,)a -∞+∞.47.(2020·吉林江城中学)(1)若不等式20ax bx c ++>的解集是{}|23x x -<<,求不等式20cx bx a ++>的解集;(2)已知不等式210kx kx ++>恒成立,求k 的取值范围. 【答案】(1)1|2x x ⎧<-⎨⎩或13x ⎫>⎬⎭;(2){}|04k k ≤<.【分析】(1)根据不等式20ax bx c ++>的解集是{}|23x x -<<,得到0a <,=-b a ,6c a =-,代入20cx bx a ++>即可求解;(2)通过讨论0k =和0k >两种情况来求解.【详解】(1)因为不等式20ax bx c ++>的解集是{}|23x x -<<, 所以2-和3是方程20ax bx c ++=的两根,且0a <,所以23,23b ca a-+=--⨯=,即=-b a ,6c a =-,代入不等式20cx bx a ++>得260ax ax a --+>, 因为0a <,所以2610x x +->,解得12x <-或13x >, 所以不等式20cx bx a ++>的解集为1|2x x ⎧<-⎨⎩或13x ⎫>⎬⎭. (2)当0k =时,不等式为10>,恒成立,满足题意; 当0k ≠时,要满足题意,需2040k k k >⎧⎨∆=-<⎩,解得04k <<,所以实数k 的取值范围为{}|04k k ≤<48.(2018·天津河东·高一期中)已知函数()af x x x=+. (1)当a R ∈时,用定义证明()f x 为奇函数.(2)当0a <时,用定义证明()f x 在()0,∞+上单调递增. 【分析】(1)根据奇函数的定义进行证明即可; (2)根据函数的单调性进行证明即可.【详解】(1)定义域:{}|0x x ≠,关于原点对称,()a a f x x x x x ⎛⎫-=-+=-+ ⎪-⎝⎭()f x =-,∴()f x 为奇函数; (2)0a <时,设12,x x 是()0,∞+上任意两个实数,且120x x <<, 则()()12f x f x -1212a a x x x x ⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭()1212a a x x x x ⎛⎫=-+- ⎪⎝⎭()()211212a x x x x x x -=-+()12121a x x x x ⎛⎫=-- ⎪⎝⎭因为120x x <<,所以120x x -<,120x x >,而0a <,所以120ax x ->, ∴()()120f x f x -<, 即()()12f x f x <,故()f x 在()0,∞+单调递增.49.(2020·河南郑州·高一期中)已知函数()f x 是定义域为R 的奇函数,当0x >时,()22f x x x =-.(1)求出函数()f x 在R 上的解析式;(2)画出函数()f x 的图象,并根据图象写出()f x 的单调区间; (3)求使()1f x =时的x 的值.【答案】(1)222,0()0,02,0x x x f x x x x x ⎧->⎪==⎨⎪--<⎩;(2)函数图象见解析,单调增区间为(],1-∞-和[)1,+∞,单调减区间为(1,1)-.(3)1x =或1x =-【分析】(1)通过①由于函数()f x 是定义域为R 的奇函数,则(0)0f =;②当0x <时,0x ->,利用()f x 是奇函数,()()f x f x -=-.求出解析式即可.(2)利用函数的奇偶性以及二次函数的性质画出函数的图象,写出单调增区间,单调减区间. (3)利用当0x >时,221x x -=,当0x <时,221x x --=,分别求解方程即可. 【详解】解:(1)①由于函数()f x 是定义域为R 的奇函数,则(0)0f =; ②当0x <时,0x ->,因为()f x 是奇函数,所以()()f x f x -=-. 所以22()()[()2()]2f x f x x x x x =--=----=--.综上:222,0()0,02,0x x x f x x x x x ⎧->⎪==⎨⎪--<⎩.(2)函数图象如下所示:由函数图象可知,函数的单调增区间为(],1-∞-和[)1,+∞,单调减区间为(1,1)-. (3)当0x >时,221x x -=解得1x =或1x =因为0x >,所以1x =当0x <时,221x x --= 解得1x =-综上所述,1x =+或1x =-50.(2019·云南昭通市第一中学高一期中)某商店试销一种成本单价为40元/件的新产品,规定试销时的销售单价不低于成本单价,又不高于80元/件,经试销调查,发现销售量y (件)与销售单价x (元/件)可近似看作一次函数100=-+y x 的关系.设商店获得的利润(利润=销售总收入-总成本)为S 元. (1)试用销售单价x 表示利润S ;(2)试问销售单价定为多少时,该商店可获得最大利润?最大利润是多少?此时的销售量是多少?【答案】(1)()214040004080S x x x =-+-≤≤;(2)当销售单价为70元/件时,可获得最大利润900元,此时销售量是30件.【分析】(1)由利润=销售总收入-总成本可得答案;(2)对于()()()2709004080S x x x =--+≤≤配方法即可求得最大值. 【详解】(1)()()()()404040100S x xy y x y x x =-=-=--+ ()214040004080x x x =-+-≤≤.(2)()()()2709004080S x x x =--+≤≤,∴当销售单价为70元/件时,可获得最大利润900元,此时销售量是30件.。

2022-2023学年河南省郑州市实验高级中学高一上学期期末数学试题(解析版)

2022-2023学年河南省郑州市实验高级中学高一上学期期末数学试题(解析版)

2022-2023学年河南省郑州市实验高级中学高一上学期期末数学试题一、单选题1.已知集合{}|11A x x =-<<,{}02B x x =≤≤,则A B =( )A .(12]-,B .(12)-,C .[01),D .[01],【答案】C【分析】由交集的定义计算.【详解】由已知{|01}[0,1)A B x x =≤<=. 故选:C .2.函数1()lg(2)3f x x x =-+-的定义域是( ) A .(2)+∞,B .(23),C .(3)+∞,D .(23)(3)+∞,, 【答案】D【分析】由题可得2030x x ->⎧⎨-≠⎩,即得.【详解】∵1()lg(2)3f x x x =-+-, ∴2030x x ->⎧⎨-≠⎩,解得2x >,且3x ≠, 所以函数的定义域为(2,3)(3,)+∞. 故选:D.3.已知ln3a =,0.43-=b ,0.53c -=,则( ) A .a b c >> B .c a b >> C .a c b >> D .c b a >>【答案】A【分析】根据对数的单调性,指数函数的单调性,求解即可. 【详解】因为ln3lne 1a =>=,0.50.4331c b --=<=<, 所以a b c >>. 故选:A4.用二分法求函数32()22f x x x x =+--的一个正零点的近似值(精确度为0.1)时,依次计算得到如下数据:f (1)=–2,f (1.5)=0.625,f (1.25)≈–0.984,f (1.375)≈–0.260,关于下一步的说法正确的是A .已经达到精确度的要求,可以取1.4作为近似值B .已经达到精确度的要求,可以取1.375作为近似值C .没有达到精确度的要求,应该接着计算f (1.4375)D .没有达到精确度的要求,应该接着计算f (1.3125) 【答案】C【分析】根据已知能的特殊函数值,可以确定方程32220x x x +--=的根分布区间,然后根据精确要求选出正确答案.【详解】由由二分法知,方程32220x x x +--=的根在区间区间(1.375,1.5),没有达到精确度的要求,应该接着计算f (1.4375).故选C .【点睛】本题考查了二分法的应用,掌握二分法的步骤是解题的关键.5.玉雕在我国历史悠久,拥有深厚的文化底蕴,数千年来始终以其独特的内涵与魅力深深吸引着世人.某扇形玉雕壁画尺寸(单位:cm )如图所示,则该玉雕壁画的扇面面积约为( )A .21600cmB .23200cmC .23350cmD .24800cm【答案】D【分析】利用扇形的面积公式,大扇形面积减去小扇形面积即可求解【详解】易知该扇形玉雕壁画可看作由一个大扇形剪去一个小扇形得到,设大、小扇形所在圆的半径分别为1r ,2r ,相同的圆心角为θ,则1216080r r θ==,得122r r =,又因为1240r r -=,所以180r =,240r =,该扇形玉雕壁画面积1211111608016080804048002222S r r =⨯⨯-⨯⨯=⨯⨯-⨯⨯=(2cm ).故选:D .6.已知角α的顶点与原点重合,始边与x 轴的正半轴重合,点(1,3)P - 在角α的终边上,则sin cos 2sin 3cos αααα-=- ( )A .34-B .34C .49-D .49【答案】D【分析】先根据三角函数的定义求出tan α ,然后采用弦化切,代入tan α 计算即可 【详解】因为点(1,3)P - 在角α的终边上,所以tan 3α=- sin cos tan 13142sin 3cos 2tan 32(3)39αααααα----===--⨯--故选:D7.下列关于函数tan 23y x π⎛⎫=-+ ⎪⎝⎭的说法正确的是( )A .最小正周期为πB .图像关于点5,012π⎛⎫⎪⎝⎭成中心对称C .在区间,312ππ⎛⎫-- ⎪⎝⎭上单调递增D .图像关于直线12x π=-成轴对称【答案】B【分析】根据函数tan(2)tan(2)33y x x ππ=-+=--,结合正切函数的图象与性质,对选项中的命题判断正误即可.【详解】解:函数tan(2)tan(2)33y x x ππ=-+=--,当512x π=时,521232πππ⨯-=,所以图象关于点5,012π⎛⎫⎪⎝⎭成中心对称,选项B 正确; 函数的最小正周期为2T π=,所以A 错误;当,312x ππ⎛-∈⎫-⎪⎝⎭时,2,32x πππ⎛⎫-∈-- ⎪⎝⎭,所以函数在,312ππ⎛⎫-- ⎪⎝⎭上单调递减,所以C 错误; 正切函数不是轴对称函数,所以D 错误. 故选:B .8.下列有关命题的说法错误的是( )A .()2lg(23)f x x x =-++的增区间为(1,1)-B .“1x =”是“2x -4x +3=0”的充分不必要条件C .若集合{}2440A x kx x =++=中只有两个子集,则1k =D .对于命题p :.存在0x R ∈,使得20010x x ++<,则⌝p :任意x R ∈,均有210x x ++≥【答案】C【分析】A.利用复合函数的单调性判断;B.利用充分条件和必要条件的定义判断;C.由方程2440kx x ++=有一根判断;D.由命题p 的否定为全称量词命题判断.【详解】A.令223t x x =-++,由2230x x -++>,解得13x -<<,由二次函数的性质知:t 在(1,1)-上递增,在(1,3)上递减,又lg y t =在()0,∞+上递增,由复合函数的单调性知:()2lg(23)f x x x =-++在(1,1)-上递增,故正确;B. 当1x =时,2x -4x +3=0成立,故充分,当2x -4x +3=0成立时,解得1x =或3x =,故不必要,故正确;C.若集合{}2440A x kx x =++=中只有两个子集,则集合只有一个元素,即方程2440kx x ++=有一根,当0k =时,=1x -,当0k ≠时,16160k ∆=-=,解得1k =,所以0k =或1k =,故错误;D.因为命题p :.存在0x R ∈,使得20010x x ++<是存在量词命题,则其否定为全称量词命题,即⌝p任意x R ∈,均有210x x ++≥,故正确; 故选:C二、多选题9.下列化简结果正确的是( ) A .1cos 22sin 52sin 22cos522︒︒-︒︒= B .1sin15sin 30sin 754︒︒︒=C .cos15sin15︒-︒=D .tan 24tan 361tan 24tan 36︒+︒=-︒︒【答案】ACD【分析】由正弦、余弦、正切函数的和差角公式逐一判断可得选项.【详解】解:对于A ,()1cos 22sin 52sin 22cos52sin 5222sin 302︒︒-︒︒=-==,故A 正确;对于B ,11111sin15sin 30sin 75cos15sin15sin 30sin 30sin 3022228︒︒︒=︒︒︒=⋅=⨯⨯=,故B 不正确;对于C ,()2cos15sin1545152sin 302︒-︒=-==,故C 正确;对于D ,()tan 24tan 36tan 24+36tan 601tan 24tan 36︒+︒=︒︒=︒=-︒︒D 正确,故选:ACD.10.下列四个命题正确的有( )A .已知π3cos 65α⎛⎫-= ⎪⎝⎭,则πsin 3α⎛⎫+ ⎪⎝⎭值为35B .若22a x a y ≥,则x y ≥C .若sin tan 0αα⋅>且cos tan 0αα⋅<,则角2α为第二或第四象限角 D .函数1cos 2y x =+是周期函数,最小正周期是2π 【答案】ACD【分析】利用诱导公式可以判断A ;利用特值法可以判断B ;对C 先判断α的象限,再判断2α的象限;对D ,作出函数的图象,再由图象进行判断.【详解】A.因为π3cos 65α⎛⎫-= ⎪⎝⎭,所以5ππππsin sin cos 3π3co 26s 66αααα⎛⎫⎛⎫⎛⎫+=+-=-⎝⎛⎫-= ⎪ ⎪ ⎪⎝⎭ ⎝⎝=⎪⎭⎭⎭,故选项A 正确;B .当0a =,1,2x y ==时,满足22a x a y ≥,但不能得到x y ≥,故选项B 错误;C .2sin sin tan 0cos αααα⋅=>且cos tan sin 0ααα⋅=<,∴cos 0,sin 0αα><,α为第四象限角,所以32ππ2π2π,Z 2k k k α+<<+∈,所以3ππππ,Z 42k k k α+<<+∈,∴2α为第二或第四象限角,故选项C 正确; D .作出1|cos |2y x =+的图象如图所示,由图象可得此函数为周期函数且最小正周期为2π,故选项D 正确;故选:ACD11.下列说法正确的有( ) A .若12x <,则1221x x +-的最大值是1- B .若x ,y ,z 都是正数,且2x y z ++=,则411x y z+++的最小值是3 C .若0x >,0y >,228x y xy ++=,则2x y +的最小值是2D .()f x 是定义在实数集上的偶函数,且在()0,∞+上单调递增,()10f =,则不等式()0f x x>的解集为()(),11,-∞-⋃+∞ 【答案】AB【分析】对于A ,凑分母,结合基本不等式,可得答案;对于B ,根据基本不等式,结合“1”的妙用,可得答案;对于C ,根据基本不等式的变式,整理出关于所求整式的二次不等式,可得答案;对于D ,根据题意可得函数在(),0∞-上单调递减,从而可得不等式()0f x x>等价于()00x f x >⎧⎨>⎩或()00x f x <⎧⎨<⎩,从而可得出答案 【详解】对于A ,因为12x <,所以210x -<,所以120x ->,所以()1122112121x x x x +=-++=---()112121112x x ⎡⎤-++-=-⎢⎥-⎣⎦≤, 当且仅当11212x x -=-,即0x =时等号成立,故1221x x +-的最大值为1-,故A 正确; 对于B ,因为x ,y ,z 都是正数,且2x y z ++=, 所以13x y z +++=,10x +>,0y z +>, 所以()411411131x y z x y z x y z ⎛⎫+=++++ ⎪++++⎝⎭,所以()4411115531313y z x x y z x y z ⎡+⎡⎤++=++≥+=⎢⎢⎥++++⎢⎣⎦⎣, 当且仅当()411y z x x y z ++=++,即()12x y z +=+,即11x y z =⎧⎨+=⎩时等号成立, 所以411x y z+++的最小值为3,故B 正确; 对于C ,因为0x >,0y >,所以2222x y x y +⎛⎫⋅≤ ⎪⎝⎭,即()2224x y xy +≤(当且仅当2x y =时等号成立), 因为228x y xy ++=,所以()282xy x y =-+,所以()()22824x y x y +-+≤,所以()()2242320x y x y +++-≥,解得28x y +≤-(舍去)或24x y +≥, 当且仅当22x y ==时等号成立,所以2x y +的最小值为4,故C 错误;对于D ,因为函数()f x 是偶函数,且在()0,∞+上单调递增,所以函数在(),0∞-上单调递减, 又因(1)0f =,所以(1)0f -=,不等式()0f x x>等价于()00x f x >⎧⎨>⎩或()00x f x <⎧⎨<⎩, 即()()01x f x f >⎧⎨>⎩或()()01x f x f <⎧⎨<-⎩,所以10x -<<或1x >,即不等式()0xf x >的解集为()(1,01,)-⋃+∞,故D 错误 故选:AB12.定义运算:a b ad bc c d=-,将函数()cos sin x f x xωω=的图像向左平移23π个单位,所得图像关于原点对称,若01ω<<,则下列说法正确的是( ) A .()f x 的最小正周期为4πB .对任意的x R ∈,都有()23f x f x π⎛⎫=- ⎪⎝⎭C .()f x 在()0,π上是增函数D .由2sin y x ω=的图像向右平移3π个单位长度可以得到()f x 图像 【答案】AC【分析】依题意得()2sin 3f x x πω⎛⎫=- ⎪⎝⎭,根据奇函数可得12ω=,可判断A ;判断3x π=是否为对称轴可判断B ;当()0,x π∈时,有13236x πππ-<-<,可判断C ;根据平移性质可判断D .【详解】依题意得()cos sin 2sin 3sin xf x x x x x ωπωωωω⎛⎫===- ⎪⎝⎭,()f x 图像向左平移23π个单位得22sin 33y x ππω⎡⎤⎛⎫=+- ⎪⎢⎥⎝⎭⎣⎦为奇函数 所以2,33k k Z πωππ-=∈,又01ω<<,得12ω=故()12sin 23f x x π⎛⎫=- ⎪⎝⎭,其最小正周期为4π,A 正确;由于12sin 2sin 132336f ππππ⎛⎫⎛⎫⎛⎫=⨯-=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以3x π=不是对称轴,故B 错;当()0,x π∈时,有13236x πππ-<-<,由于sin y x =在,36ππ⎛⎫- ⎪⎝⎭上单调递增, 所以()f x 在()0,π上是增函数,故C 正确;由2sin y x ω=的图像向右平移3π个单位长度可以得到()12sin 23y x f x π⎛⎫=-≠ ⎪⎝⎭,故D 错;故选:AC三、填空题13.幂函数()()222mm m f x x =+-在区间()0,∞+上单调递减,则实数m 的值为______.【答案】3-【分析】利用幂函数的定义,幂函数的单调性列式计算作答.【详解】因函数()()222mm m f x x =+-是幂函数,则2221m m +-=,解得m =1或m =-3,又函数()f x 在()0,∞+上单调递减,则0m <, 所以实数m 的值为-3. 故答案为:-314.已知sin α+cos α=713,α∈(-π,0),则tan α=________. 【答案】512-. 【解析】由题意利用同角三角函数的基本关系,以及三角函数在各个象限中的符号,求得sin α和cos α的值,可得tan α的值.【详解】因为sin α+cos α=713,① 所以sin 2α+cos 2α+2sin αcos α=49169, 即2sin αcos α=120169-. 因为α∈(-π,0),所以sin α<0,cos α>0,所以sin α-cos α=1713==-, 与sin α+cos α=713联立解得sin α=-513,cos α=1213, 所以tan α=sin 5cos 12αα=-. 故答案为:512-. 【点睛】该题考查的是有关三角函数恒等变换化简求值问题,涉及到的知识点有同角三角函数关系式,在解题的过程中,注意sin cos ,sin cos ,sin cos αααααα++⋅这三个式子是知一求二,属于简单题目.15.已知函数π()cos ln(4f x x x =+⋅在区间[]2022,2022-上的最大值是M ,最小值是m ,则()f M m +=____________.【答案】π4【分析】令()2()cos ln 1g x x x x =⋅++,则()()π4f xg x =+,()f x 和()g x 在[]2022,2022-上单调性相同,()g x 时奇函数,可得()g x 在max min ()()0g x g x +=,据此可求M +m ,从而求出()f M m +.【详解】令()2()cos ln 1g x x x x =⋅++,则()()π4f xg x =+, ∴()f x 和()g x 在[]2022,2022-上单调性相同,∴设()g x 在[]2022,2022-上有最大值max ()g x ,有最小值min ()g x .∵()()2cos ln 1g x x x x -⋅-++=,∴()()()()22cos ln 110g x g x x x x x x ⎡⎤+-=⋅+++-=⎢⎥⎣⎦,∴()g x 在[]2022,2022-上为奇函数,∴max min ()()0g x g x +=, ∴max min ππ(),()44M g x m g x =+=+,∴π2M m +=,()ππ24f M m f ⎛⎫+== ⎪⎝⎭.故答案为:π416.如图是某市夏季某一天的温度变化曲线,若该曲线近似地满足函数()()sin 0πy A x B ωϕϕ=++<<,则下列说法正确的是________.①该函数的周期是16.②该函数图象的一条对称轴是直线14x =③该函数的解析式是()π3π10sin 2002484y x x ⎛⎫=++≤≤ ⎪⎝⎭④这一天的函数关系式也适用于第二天 【答案】①②【分析】根据图象确定函数的最小正周期及14x =时,函数取得最大值,判断①②正确;由于2ππ8T ω==,故可取π8ω=-,从而该函数的解析式不一定是()π3π10sin 2002484y x x ⎛⎫=++≤≤ ⎪⎝⎭,③错误;这一天的函数关系式只适用于当天,④错误.【详解】由图象可得:函数最小正周期()146216T =-⨯=,①正确; 故2ππ8T ω==, 不妨令A >0,且3010A B A B +=⎧⎨-+=⎩,解得:1020A B =⎧⎨=⎩,由图象可得:当14x =时,函数取得最大值,故该函数图象的一条对称轴是直线14x =,②正确;不妨取π8ω=-,则π10sin 208y x ϕ⎛⎫=-++ ⎪⎝⎭, 将()6,10代入得:3π10sin 20104ϕ⎛⎫-++= ⎪⎝⎭,因为0πϕ<<,解得:π4ϕ=,故③错误;这一天的函数关系式只适用于当天,不一定适合第二天,④错误. 故答案为:①②四、解答题 17.化简求值:(1))12431818-⎛⎫- ⎪⎝⎭.(2)2log 32122log 1lg 25lg 4⎛⎫++-⋅ ⎪⎝⎭【答案】(1)5; (2)4.【分析】(1)利用指数幂的运算法则化简计算即得; (2)利用对数的运算性质化简计算即得. 【详解】(1))()()1211204333443181=22218---⎛⎫-⨯+- ⎪⎝⎭2415=+-=;(2)2log 321122log 1lg 25lg 30lg10031442⎛⎫++-⋅++⋅=+= ⎪⎝⎭. 18.已知全集U =R ,集合{}13A x x =<≤,集合{}21B x m x m =<<-.条件①U AB =∅;②x A∈是x B ∈的充分条件;③12,x A x B ∀∈∃∈,使得12x x =.(1)若1m =-,求A B ⋂; (2)若集合A ,B 满足条件__________(三个条件任选一个作答),求实数m 的取值范围.【答案】(1){}12x x <<(2)∞(-,-2)或{}|2m m -<【分析】(1)可将1m =-带入集合B 中,得到集合B 的解集,即可求解出答案;(2)可根据题意中三个不同的条件,列出集合A 与集合B 之间的关系,即可完成求解.【详解】(1)当1m =-时,集合{}22B x x =-<<,集合{}13A x x =<≤,所以{}12A B x x ⋂=<<;(2)i.当选择条件①时,集合{}21B x m x m =<<-,当B =∅时,U A B A =≠∅,舍;当集合B ≠∅时,即集合21m m -<,13m <时,{}|21U B x x m x m =≤≥-或, 此时要满足U A B =∅,则2131m m ≤⎧⎨-⎩<,解得m <-2, 结合13m <,所以实数m 的取值范围为∞(-,-2)或{}|2m m -<; ii.当选择条件②时,要满足x A ∈是x B ∈的充分条件,则需满足在集合B ≠∅时,集合A 是集合B 的子集,即2131m m ≤⎧⎨-⎩<,解得m <-2, 所以实数m 的取值范围为∞(-,-2)或{}|2m m -<;iii.当选择条件③时,要使得12,x A x B ∀∈∃∈,使得12x x =,那么需满足在集合B ≠∅时,集合A 是集合B 的子集,即2131m m ≤⎧⎨-⎩<,解得m <-2, 所以实数m 的取值范围为∞(-,-2)或{}|2m m -<;故,实数m 的取值范围为∞(-,-2)或{}|2m m -<.19.已知角α在第二象限,且4tan 3α=-. (1)求23112tan()sin 2sin(3)sin 2ππααπαπα⎡⎤⎢⎥⎛⎫--+⎢⎥ ⎪+⎛⎫⎝⎭⎢⎥- ⎪⎢⎥⎝⎭⎣⎦的值; (2)若cos()αβ-=αβ-为第一象限角,求sin β的值. 【答案】(1)145-【分析】(1)利用同角三角函数关系可求解得43sin ,cos 55αα==-,利用诱导公式化简原式可得原式2(sin cos )αα=--,代入即得解;(2)利用同角三角函数关系可得sin()αβ-=,又sin[(]sin )ααββ=--,利用两角差的正弦公式,即得解【详解】(1)因为4tan 3α=-,且α在第二象限, 故22sin 4cos 3sin cos 1sin 0cos 0αααααα⎧=-⎪⎪⎪+=⎨⎪>⎪<⎪⎩,所以43sin ,cos 55αα==-, 原式2112(tan )cos sin cos αααα⎛⎫=--+ ⎪⎝⎭sin cos 2sin cos 2(sin cos )sin cos αααααααα-=-⋅=-- 145=- (2)由题意有sin()0αβ->故sin()αβ-==, sin sin[()]sin cos()cos sin()βααβααβααβ=--=---4355⎛⎫=-- ⎪⎝⎭ 20.筒车是我国古代发明的一种水利灌溉工具,因其经济又环保,至今还在农业生产中得到使用,现有一个筒车按逆时针方向匀速转动.每分钟转动5圈,如图,将该筒车抽象为圆O ,筒车上的盛水桶抽象为圆O 上的点P ,已知圆O 的半径为4m ,圆心O 距离水面2m ,且当圆O 上点P 从水中浮现时(图中点0P )开始计算时间.(1)根据如图所示的直角坐标系,将点P 到水面的距离h (单位:m ,在水面下,h 为负数)表示为时间t (单位:s )的函数,并求13t =时,点P 到水面的距离;(2)在点P 从0P 开始转动的一圈内,点P 到水面的距离不低于4m 的时间有多长?【答案】(1)()ππ4sin 266h t t ⎛⎫=-+ ⎪⎝⎭,2m (2)4s【分析】(1)根据题意先求出筒车转动的角速度,从而求出h 关于时间t 的函数,和13t =时的函数值;(2)先确定定义域[]0,12t ∈,再求解不等式,得到26t ≤≤,从而求出答案.【详解】(1)筒车按逆时针方向匀速转动.每分钟转动5圈,故筒车每秒转动的角速度为52ππ606⨯=()rad /s ,故()ππ4sin 266h t t ⎛⎫=-+ ⎪⎝⎭,当13t =时,()13ππ134sin 2266h ⎛⎫=-+= ⎪⎝⎭,故点P 到水面的距离为2m(2)点P 从0P 开始转动的一圈,所用时间012t =,令()ππ4sin 2466h t t ⎛⎫=-+≥ ⎪⎝⎭,其中[]0,12t ∈,解得:26t ≤≤,则624-=,故点P 到水面的距离不低于4m 的时间为4s.21.已知()π2sin cos 3cos 44f x x x x x π⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭. (1)求函数()f x 的单调递减区间:(2)若函数()()42sin 2g x f x k x =--在区间7,1212ππ⎡⎤⎢⎥⎣⎦上有唯一零点,求实数k 的取值范围. 【答案】(1)7,()1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦;(2)11|44k k ⎧-<≤⎨⎩或12k ⎫=-⎬⎭. 【解析】(1)化简()f x ,利用正弦函数的递减区间列式可解得结果;(2)转化为函数()cos 26h x x π⎛⎫=+ ⎪⎝⎭在7,1212x ππ⎡⎤∈⎢⎥⎣⎦上的图象与2y k =的图象有唯一交点,根据图象可得结果.【详解】(1)()2sin cos 23cos cos 44f x x x x x ππ⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭ sin 223sin cos 244x x x πππ⎛⎫⎛⎫=++-+ ⎪ ⎪⎝⎭⎝⎭ sin 223sin cos 44x x x ππ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭ sin 23sin 22x x π⎛⎫=++ ⎪⎝⎭ sin 23cos 22sin 23x x x π⎛⎫=+=+ ⎪⎝⎭, 令3222232k x k πππππ+≤+≤+,Z k ∈,解得:71212k x k ππππ+≤≤+,Z k ∈, ∴()f x 的单调递减区间为7,()1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦. (2)由(1)知,函数2n 2)3(si f x x π⎛⎫=+ ⎪⎝⎭, ()g x =2sin 242sin 23x k x π⎛⎫+-- ⎪⎝⎭在7,1212ππ⎡⎤⎢⎥⎣⎦上有唯一零点等价于132sin 2sin 2sin 2cos 2cos 23226k x x x x x ππ⎛⎫⎛⎫=+-=-+=+ ⎪ ⎪⎝⎭⎝⎭在7,1212ππ⎡⎤⎢⎥⎣⎦上有唯一实根, 设()cos 26h x x π⎛⎫=+ ⎪⎝⎭,7,1212x ππ⎡⎤∈⎢⎥⎣⎦,依题意可知2y k =与()y h x =的图象有唯一交点, 函数()h x 在7,1212x ππ⎡⎤∈⎢⎥⎣⎦上的图象如图:由图可知实数k 应满足11222k -<≤或21k =-, ∴1144k -<≤或12k =-, 故实数k 的取值范围11|44k k ⎧-<≤⎨⎩或12k ⎫=-⎬⎭. 【点睛】关键点点睛:转化为函数()cos 26h x x π⎛⎫=+ ⎪⎝⎭在7,1212x ππ⎡⎤∈⎢⎥⎣⎦上的图象与2y k =的图象有唯一交点,根据图象求解是解题关键.22.已知函数()()2log 41x f x kx =++为偶函数. (1)求实数k 的值;(2)解关于m 的不等式()()211f m f m +>-;(3)设()()()2log 20x g x a a a =⋅+≠,若函数()f x 与()g x 图象有2个公共点,求实数a 的取值范围. 【答案】(1)1-(2)()(),20,-∞-⋃+∞(3)()2,1【分析】(1)根据偶函数的定义及性质直接化简求值;(2)判断0x ≥时函数的单调性,根据奇偶性可得函数在各区间内的单调性,解不等式即可;(3)由函数()f x 与()g x 图象有2个公共点,可得1222x x xa a ⋅+=+有两个实数根,再利用换元法转化为二次方程有两个根,利用判别式求参数范围.【详解】(1)函数的定义或为R ,函数()()2log 41x f x kx =++为偶函数. ()()f x f x ∴-=,即 ()()22og 41lo l g 41x x kx kx -+-=++,()()22224142log 41log 41log log 4241x x x x x x kx x --+∴=+-+===-+, 1k ∴=-;(2)()()222411log 41log log 222x xx x x f x x ⎛⎫+⎛⎫=+-==+ ⎪ ⎪⎝⎭⎝⎭, 当0x ≥时,21x ≥,122x xy =+单调递增, f x 在[)0,∞+上单调递增,又函数()f x 为偶函数,所以函数()f x 在[)0,∞+上单调递增,在(],0-∞上单调递减; ()()211f m f m +>-,211m m ∴+>-,解得2m <-或0m >,所以所求不等式的解集为 ()(),20,-∞-⋃+∞;(3)函数()f x 与()g x 图象有2个公共点,()()()()22241log 2log 41log 2x x xx g x a a f x x ⎛⎫+∴=⋅+==+-= ⎪⎝⎭, 即4112222x xx x x a a +⋅+==+,20x a a ⋅+>, 设20x t =>,则1at a t t +=+,即()2110a t at -+-=, 又2x t =在R 上单调递增,所以方程()2110a t at -+-=有两个不等的正根;()()210Δ411001101a a a a a a -≠⎧⎪=--⨯->⎪⎪∴⎨->-⎪⎪->⎪-⎩,解得21a ,即a的取值范围为()2,1.。

2023-2024学年河南省郑州市高一上学期期末数学试题1(含答案)

2023-2024学年河南省郑州市高一上学期期末数学试题1(含答案)

2023-2024学年河南省郑州市高一上册期末数学试题一、单选题1.命题“∀x ∈R ,|x |+x 2≥0”的否定是()A .∀x ∈R ,|x |+x 2<0B .∀x ∈R ,|x |+x 2≤0C .∃x 0∈R ,|x 0|+20x <0D .∃x 0∈R ,|x 0|+20x ≥0【正确答案】C【分析】利用全称命题的否定可得出结论.【详解】由全称命题的否定可知,命题“x ∀∈R ,20x x +≥”的否定是“0x ∃∈R ,2000x x +<”.故选:C.2.已知全集U =R ,集合{|14}A x x x =<->或,23{|}B x x =-≤≤,那么阴影部分表示的集合为A .4{|}2x x -≤<B .{|34}x x x ≤≥或C .{|21}x x -≤≤-D .{|13}x x -≤≤【正确答案】D【分析】由韦恩图可知阴影部分表示的集合为()U C A B ⋂,求出U C A ,计算得到答案【详解】阴影部分表示的集合为()U C A B ⋂,{|14}A x x x =- 或{|14}U C A x x ∴=-≤≤{|23}B x x =-≤≤ (){|13}U C A B x x ∴⋂=-≤≤故选D本题主要考查的是韦恩图表达集合的关系和运算,属于基础题3.已知函数3,2,()(1),2,x x f x f x x -<⎧=⎨-≥⎩则(6)f 等于()A .-2B .0C .1D .2【正确答案】A【分析】根据分段函数,根据分段函数将(6)f 最终转化为求()1f 【详解】根据分段函数可知:()()()()()(6)543212f f f f f f ======-故选:A4.对于实数a ,b ,c 下列命题中的真命题是()A .若a b >,则22ac bc >B .若0a b >>,则11a b>C .若0a b <<,则b a a b >D .若a b >,11a b>,则0a >,0b <【正确答案】D【分析】通过不等式的性质一一验证即可.【详解】对于选项A :若a b >,当0c =时,22ac bc =,故选项A 错误;对于选项B :若0a b >>,可得0b aab -<,则11ab<,故选项B 错误;对于选项C :若0a b <<,则22a b >,则b aa b<,故选项C 错误,对于选项D :若11a b >,则0b a ab->,又a b > ,则0a >,0b <,故选项D 正确;故选:D.5.“2,3k k πθπ=+∈Z ”是“sin 2θ=”的()A .充分必要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件【正确答案】B【分析】由sin 2θ=等价于2,3k k πθπ=+∈Z ,或22,3k k πθπ=+∈Z ,再根据充分、必要条件的概念,即可得到结果.【详解】因为sin 2θ=,所以2,3k k πθπ=+∈Z ,或22,3k k πθπ=+∈Z ,所以“2,3k k πθπ=+∈Z ”是“sin 2θ=”的充分而不必要条件.故选:B.6.函数f(x)=log 3x -8+2x 的零点一定位于区间A .(5,6)B .(3,4)C .(2,3)D .(1,2)【正确答案】B【详解】试题分析:根据零点存在性定理,因为,所以函数零点在区间(3,4)内,故选择B 零点存在性定理7.已知α为钝角,且1sin 123πα⎛⎫+= ⎪⎝⎭,则5cos 12πα⎛⎫+= ⎪⎝⎭()A B C .D 【正确答案】C先求出cos 123πα⎛⎫+=- ⎪⎝⎭,再利用和角的余弦公式计算求解.【详解】∵α为钝角,且1sin 123πα⎛⎫+= ⎪⎝⎭,∴cos 123πα⎛⎫+=- ⎪⎝⎭,∴5cos cos 12123πππαα⎡⎤⎛⎫⎛⎫+=++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦cos cos sin sin123123ππππαα⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭1123=-=故选:C本题主要考查同角的平方关系,考查和角的余弦公式的应用,意在考查学生对这些知识的理解掌握水平.8.函数()()2121531xa x a x f x a x ⎧-+<=⎨-≥⎩在R 上单调递减的一个充分不必要条件是()A .20,5⎛⎫ ⎪⎝⎭B .10,2⎛⎫ ⎪⎝⎭C .30,5⎛⎫ ⎪⎝⎭D .20,3⎛⎫ ⎪⎝⎭【正确答案】A【分析】先求出()f x 在R 上单调递减的a 的范围,则充分不必要条件为102a <<的非空真子集.【详解】函数()()2121531xa x ax f x a x ⎧-+<=⎨-≥⎩在R 上单调递减,则2100121253a a a a a -<⎧⎪<<⎨⎪-+≥-⎩,解得:102a <<,则()f x 在R 上单调递减的一个充分不必要条件为102a <<的非空真子集,所以A 正确,故选:A.二、多选题9.下列函数是奇函数的有()A .ln y x =B .sin y x =C .1y x x=+D .2xy =【正确答案】BC【分析】通过奇函数的定义()()0f x f x +-=,以及定义域关于原点对称分析各个选项【详解】因为ln y x =的定义域为(0,)+∞,不符合奇函数定义,A 错误;通过奇函数的定义()()0f x f x +-=,sin sin()0x x +-=,且定义域关于原点对称,B 正确;1()f x x x=+,所以()()0f x f x +-=,且定义域关于原点对称,C 正确;()2x g x =,所以()()0g x g x +-≠,D 错误;故选:BC10.已知函数()sin 2xf x =,则以下结论恒成立的是()A .()()f x f x -=-B .()()f x f x -=C .(2)()f x f x π-=D .()()f x f x ππ+=-【正确答案】ACD利用诱导公式逐个验证即可得答案【详解】解:对于A ,B ,()sin()sin ()22x xf x f x -=-=-=-,所以A 正确,B 错误;对于C ,2(2)sinsin(sin ()222x x xf x f x πππ--==-==,所以C 正确;对于D ,因为()sinsin()cos 2222xx x f x πππ++==+=,()sin sin()cos 2222x x xf x πππ--==-=,所以()()f x f x ππ+=-,所以D 正确,故选:ACD11.已知角α的终边经过点()sin120,tan120P,则()A.cos α=B.sin α=C .tan 2α=-D.sin cos αα+=【正确答案】ACD【分析】先化简点P 坐标,再根据三角函数的定义,求得sin α,cos α,进而求得tan ,sin cos ααα+的值即可判断选项.【详解】解:由题知()sin120,tan120P ,即P ⎝,因为角α的终边经过点P ,所以sin ,5α=-cos ,5α=sin tan 2cos ααα==-,sin cos 555α+α=-+=-.故选:ACD12.函数()π3sin 23f x x ⎛⎫=- ⎪⎝⎭的图象为C ,以下结论中正确的是()A .图象C 关于直线11π12x =对称;B .图象C 关于点2π,03⎛⎫⎪⎝⎭对称;C .由3sin 2y x =的图象向右平移π3个单位长度可以得到图象C ;D .函数()f x 在区间π5π,1212⎛⎫- ⎪⎝⎭内是增函数.【正确答案】ABD【分析】利用三角函数的性质及函数的平移变换即可求解.【详解】对于A ,由()ππ2πZ 32x k k -=+∈,得()π5πZ 212k x k =+∈,所以()π3sin 23f x x ⎛⎫=- ⎪⎝⎭的对称轴方程为()π5πZ 212k x k =+∈,当1k =时,π5π11π21212x =+=,所以图象C 关于直线11π12x =对称,故A 正确;对于B ,由2π2ππ3sin 23sin π=0333f ⎛⎫⎛⎫=⨯-= ⎪ ⎪⎝⎭⎝⎭,所以图象C 关于点2π,03⎛⎫⎪⎝⎭对称,故B 正确;对于C ,将3sin 2y x =的图象向右平移π3个单位长度可以得π2ππ3sin 23sin 23sin 2()333y x x x f x ⎛⎫⎛⎫⎛⎫=-=-≠-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故C 错误;对于D ,由()πππ2π22πZ 232k x k k -≤-≤+∈,得()π5πππZ 1212k x k k -≤≤+∈,所以()π3sin 23f x x ⎛⎫=- ⎪⎝⎭的递增区间为()π5ππ,πZ 1212k k k ⎡⎤-+∈⎢⎥⎣⎦,当0k =时,π5π,1212⎡⎤-⎢⎥⎣⎦为函数()π3sin 23f x x ⎛⎫=- ⎪⎝⎭的一个增区间,故D 正确.故选:ABD.三、填空题13.已知函数()f x 是定义在R 上的奇函数,当0x >时,()21xf x =-,则()1f -=__________.【正确答案】1-【分析】根据0x >时函数解析式,将1x =代入即可求()1f ,根据奇函数()()011f f +-=代入即可求得()1f -.【详解】解:由题知()f x 是定义在R 上的奇函数,()()110f f ∴+-=,当0x >时,()21xf x =-,()11f ∴=,()11f ∴-=-.故答案为:-114.已知函数()()2lg 72f x ax x =++的定义域为R ,则实数a 的取值范围是____________.【正确答案】49,8⎛⎫+∞ ⎪⎝⎭【分析】转化为2720ax x ++>恒成立,分0a =与0a ≠两种情况,列出不等式组,求出实数a 的取值范围.【详解】由题意得:2720ax x ++>恒成立,当0a =时,720x +>,解得:27x >-,定义域为不是R ,舍去;当0a ≠时,要满足0Δ4980a a >⎧⎨=-<⎩,解得:498a >,综上:实数a 的取值范围是49,8⎛⎫+∞ ⎪⎝⎭.故答案为.49,8⎛⎫+∞ ⎪⎝⎭15.若函数()f x 是定义在R 上的偶函数,()1f x +是奇函数,()01f =,则()()()()()21012f f f f f -+-+++=__________.【正确答案】1-【分析】由奇函数的定义,()1f x +是奇函数,所以有()()11f x f x -+=-+,分别令x 取0和1-,即可求出()1f 与()2f 的值,再利用()f x 为偶函数,可求出()1f -与()2f -的值,然后代入式中求解即可.【详解】∵()1f x +是奇函数,∴()()11f x f x -+=-+,令0x =,得()()0101f f -+=-+,即()()11f f =-,∴()10f =,令=1x -,得()()()1111f f --+=--+,即()()201f f =-=-,∵()f x 是定义在R 上的偶函数,∴()()221f f -==-,()()110f f -==,∴()()()()()()()21012101011f f f f f -+-+++=-++++-=-.故答案为.1-16.已知函数()()6sin (0,0π)f x x ωϕωϕ=+><<为偶函数,点()()12,6,,6A x B x -是函数()f x 图象上的两点,若12x x -的最小值为3,则()2f =__________.【正确答案】3-【分析】根据函数的奇偶性确定π2ϕ=,再根据12x x -的最小值为3确定函数最小正周期,求得2π3ω=,即得函数解析式,即可求得答案.【详解】因为函数()()6sin (0,0π)f x x ωϕωϕ=+><<为偶函数,故()()6sin 6sin x x ωϕωϕ-+=+,即sin cos cos sin sin cos cos sin x x x x ωϕωϕωϕωϕ-+=+,所以sin cos 0x ωϕ=,sin x ω不恒等于0,故cos 0ϕ=,而0πϕ<<,则π2ϕ=,点()()12,6,,6A x B x -是函数()f x 图象上的两点,12x x -的最小值为3,则()f x 的最小正周期为6,则2ππ63ω==,故()πππ36sin 6co 3s 2f x x x ⎛⎫=+= ⎪⎝⎭,故()6cos2π233f ==-,故3-四、解答题17.求值:(1)1103231338⎛⎫--+ ⎪⎝⎭(2)24log 32log 0.252lg 42lg5⋅+++【正确答案】(1)32-(2)1792【分析】(1)根据指数的运算法则化简求值即可(2)根据对数的运算法则及性质化简求值.【详解】(1)1103231338⎛⎫--+⎪⎝⎭13271()18=-+133312(12⨯=--+32=-(2)24log 32log 0.252lg 42lg5⋅+++421log 32221log ln 2lg 4lg 54e =++++-1281lg10022=-+++-1792=本题主要考查了指数运算,对数运算,属于中档题.18.已知1,sin cos 225x x x ππ-<<+=.(1)求2sin cos sin 1tan x x x x⋅++的值(2)求sin cos x x -的值.【正确答案】(1)1225-(2)75-【分析】(1)由1sin cos 5x x +=两边平方可得sinxcosx ,利用同角关系2sin cos sin sinxcosx 1tan x x xx⋅+=+;(2)由(1)可知cosx 0sinx 0>,<,从而sin cos x x -=【详解】(1)∵1sin cos 5x x +=.∴112sinxcosx 25+=,即12sinxcosx 25=-()2sin cos sin 1tan 1sinx cosx sinx x x x sinx x cosx+⋅+=++,()12sinxcosx 25sinxcosx cosx sinx sinx cosx +===-+(2)由(1)知12sinxcosx 25=-<0,又22x ππ-<<∴cosx 0sinx 0>,<,∴7sin cos 5x x -===-本题考查三角函数化简求值,涉及同角三角函数基本关系和整体代入的思想,属于中档题.19.设命题()2:240p x m x m +-+=方程有两个不相等的实数根;命题q :对所有的23x ≤≤,不等式22413x x m -+≥恒成立.(1)若命题p 为真命题,求实数m 的取值范围;(2)若命题,p q 一真一假,求实数m 的取值范围.【正确答案】(1){4m m 或1}m <(2){|3m m <-或13m ≤≤或4}m >【分析】(1)根据命题p 为真命题,由2(24)44(1)(4)0m m m m ∆=--=-->求解;(2)先由命题q 为真命题求得m 的范围,再根据命题,p q 一真一假求解.【详解】(1)解:若命题p 为真命题,则2Δ(24)44(1)(4)0m m m m =--=-->,解得4m >或1m <,所以实数m 的取值范围为{4m m 或1}m <.(2)若命题q 为真命题,则当23x ≤≤时,()2229x m -≥-恒成立.当2x =时,()22y x =-取得最小值0,则209m ≥-,即29m ≤,解得3 3.m -≤≤当p 真q 假时,1433m m m m <<⎧⎨<-<⎩或或,得3m <-或4m >,当p 假q 真时,得33m -≤≤且14m ≤≤,解得13m ≤≤.综上,实数m 的取值范围为{|3m m <-或13m ≤≤或4}m >.20.某公司设计了某款新产品,为生产该产品需要引进新型设备.已知购买该新型设备需要3万元,之后每生产x 万件产品,还需另外投入原料费及其他费用()f x 万元,产量不同其费用也不同,且()21,010,29lg 41,10.x x f x x x x ⎧<<⎪=⎨⎪+-≥⎩已知每件产品的售价为8元且生产的该产品可以全部卖出.(1)写出年利润()W x (万元)关于年产量x (万件)的函数解析式;(2)该产品年产量为多少万件时,公司所获年利润最大?其最大利润为多少万元?【正确答案】(1)()2183,010,2lg 38,10.x x x W x x x x ⎧-+-<<⎪=⎨⎪--+≥⎩(2)当该产品年产量为8万件时,年利润最大,最大利润为29万元【分析】(1)根据题意,建立函数关系式;(2)利用函数单调性求出最大值,即可得到答案.【详解】(1)当010x <<时,()2211838322W x x x x x =--=-+-.当10x ≥时,()()89lg 413lg 38W x x x x x x =-+--=--+.故()2183,010,2lg 38,10.x x x W x x x x ⎧-+-<<⎪=⎨⎪--+≥⎩(2)当010x <<时,()()22118382922W x x x x =-+-=--+,所以当8x =时,()W x 取得最大值,且最大值为29;当10x ≥时,()lg 38W x x x =--+,此时()W x 单调递减,所以当10x =时,()W x 取得最大值,且最大值为27.综上,当该产品年产量为8万件时,年利润最大,最大利润为29万元.21.已知22()()21x x a a f x x ⋅+-=∈+R 是奇函数.(1)求实数a 的值;(2)判断函数()f x 的单调性,并用定义证明之;(3)解关于t 的不等式()23(2)0f t f t -+<.【正确答案】(1)1;(2)函数()(())f x g h x =在R 上是增函数,证明见解析;(3){31}t t -<<。

2022-2023学年河南省郑州市第一中学高一上学期期末数学试题(解析版)

2022-2023学年河南省郑州市第一中学高一上学期期末数学试题(解析版)
所以 ,即 ,得 ,
所以 ,当且仅当 时,等号成立.
同理 ,解得 ,当且仅当 时,等号成立.
对于A, ,
所以 ,当 时,等号成立,所以A错误;
对于B, ,当 时,等号成立,所以B正确;
对于C, ,当且仅当 时,等号成立,所以C正确;
对于D,设 ,பைடு நூலகம் ,所以 ,
即 ,则 ,得 ,
解得 ,所以D正确.
故选:BCD.
12.设函数 的定义域为 ,且满足 , ,当 时, .则下列说法正确的是()
A.
B.当 时, 的取值范围为
C. 为奇函数
D.方程 仅有3个不同实数解
【答案】BC
【解析】
【分析】根据 ,推导出 ,所以 的周期为8,可判断A;根据函数性质求出 , ,当 时, ,从而确定 的取值范围,可判断B;根据 得到 关于 中心对称,从而 关于原点中心对称,即 为奇函数,可判断C;画出 与 的图象,数形结合求出交点个数,即可求出方程 的根的个数,可判断D.
【详解】解:由二次函数图象开口向下知: ,对称轴为 ,即 ,故 .
又因为 ,
所以 .
故选:ACD.
11.已知 为正数, ,则下列说法正确的是()
A. B. 的最小值为1
C. 最小值为8D. 的最小值为
【答案】BCD
【解析】
【分析】由 结合基本不等式,求得 的最大值, 的最小值,判断选项正误.
【详解】因为 , 为正数, ,
对于B,函数 偶函数,故B正确:
对于C,因为 是第一象限角,所以 ,所以 ,所以 是第一象限或第三象限角,故C正确;
对于D,取 , ,满足 、 是第一象限的角,且 ,而 .故D错误.
故选:BC.
10.二次函数 的图象如图所示,则下列说法正确的是()

河南省郑州市2021-2022高一数学上学期期末考试试题(含解析)

河南省郑州市2021-2022高一数学上学期期末考试试题(含解析)
【详解】将正四面体补成一个正方体,则正方体的棱长为1,正方体的对角线长为
正四面体的外接球的直径为正方体的对角线长,
外接球的表面积的值为 ,
故答案为:
【点睛】本题考查球的内接多面体等基础知识,考查运算求解能力,考查逻辑思维能力,属于容易题.
16.高斯是德国的著名数学家,近代数学奠基者之一,享有“数学王子”的称号,他和阿基米德、牛顿并列为世界三大数学家,用其名字命名的“高斯函数”为:设 ,用 表示不超过x的最大整数,则 称为高斯函数,例如: , .已知函数 ,则函数 的值域是_________.
则故 取得最小值,为 ,
当 时,函数值最大为 .
即函数取值范围是 .
故选:B.
【点睛】本题主要考查了分段函数的运用,主要考查函数的单调性的运用,运用数形结合的思想方法是解题的关键,属于难题.
二、填空题
13.已知集合M满足 ,则满足条件的集合M有_________个.
【答案】4
【解析】
【分析】
根据集合包含关系的定义,将满足条件的集合逐个列出,即可得到本题答案.
【点睛】本题主要考查了分段函数,函数的最值,函数在实际问题中的应用,属于中档题.
22.已知函数 为奇函数,其中a为常数.
(Ⅰ)求常数a的值;
(Ⅱ)判断函数 在 上的单调性,并证明;
(Ⅲ)对任意 ,都有 恒成立.求实数m的取值范围.
【答案】(Ⅰ) (Ⅱ) 在 上为增函数,证明见解析(Ⅲ)
7.已知 ,若 ,则t=( )
A. 16B. 8C. 4D. 1
【答案】D
【解析】
【分析】
根据函数 为单调函数,令 ,求出 即可.
【详解】 , ,
令 ,
,
,
即 ,

河南省郑州市2016-2017学年高一上学期期末考试数学试题 Word版含答案

河南省郑州市2016-2017学年高一上学期期末考试数学试题 Word版含答案

河南省郑州市2016-2017学年高一上学期期末考试数学试题 Word版含答案数学试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若$\{1,2\}\subset A\subset\{1,2,3,4,5\}$,则满足条件的集合$A$的个数是()A。

6B。

8C。

7D。

92.设$a,b\in\mathbb{R}$,集合$A=\{1,a+b,a\},B=\{0,\frac{b}{a},b\}$,若$A=B$,则$b-a=$()A。

2B。

$-1$C。

1D。

$-2$3.下列各组函数中$f(x)$与$g(x)$的图象相同的是()A。

$f(x)=x,g(x)=|x|$B。

$f(x)=x^2,g(x)=\begin{cases}x,&(x\geq 0)\\-x,&(x<0)\end{cases}$C。

$f(x)=1,g(x)=x$D。

$f(x)=x,g(x)=\begin{cases}x,&(x\geq0)\\0,&(x<0)\end{cases}$4.下列函数中,既是偶函数又在$(-\infty,0)$内为增函数的是()A。

$y=-\frac{1}{2}$B。

$y=x^2$C。

$y=x+1$D。

$y=\log_3(-x)^2$5.三个数$a=0.32,b=\log_2 0.3,c=2^0.3$之间的大小关系为()A。

$a<c<b$B。

$a<b<c$C。

$b<a<c$D。

$b<c<a$6.下列叙述中错误的是()A。

若点$P\in\alpha,P\in\beta$且$\alpha\cap\beta=l$,则$P\in l$B。

三点$A,B,C$能确定一个平面C。

若直线$a\parallel b$,则直线$a$与$b$能够确定一个平面D。

若点$A\in l,B\in l$且$A\in\alpha,B\in\alpha$,则$l\subset\alpha$7.方程$\log_3 x+x=3$的解所在区间是()A。

2020-2021学年河南省郑州市高一(上)期末数学试卷

2020-2021学年河南省郑州市高一(上)期末数学试卷

2020-2021学年河南省郑州市高一(上)期末数学试卷1.(单选题,5分)已知集合A={x|x>-1},B={x|x<2},则A∪(∁R B)=()A.{x|x>-1}B.{x|x≥-1}C.{x|x<-1}D.{x|-1<x≤2}的定义域为()2.(单选题,5分)函数f(x)=ln(x-1)+ 1x−2A.(0,2)∪(2,+∞)B.[0,2)∪(2,+∞)C.(1,2)∪(2,+∞)D.[1,2)∪(2,+∞)3.(单选题,5分)已知a=0.3-0.3,b=3-0.3,c=log30.3,则()A.a>b>cB.b>a>cC.a>c>bD.c>a>b4.(单选题,5分)下列说法中错误的是()A.空间中,“一条直线在平面内”也可以说“平面经过这条直线”B.空间中,直线与平面的位置关系有且只有三种:直线在平面内、直线与平面相交和直线与平面平行C.空间中,两个平面之间的位置关系有且只有三种:两个平面平行、两个平面相交和两个平面垂直D.空间中两条直线的位置关系有且只有三种:相交直线、平行直线和异面直线5.(单选题,5分)某几何体的三视图如图所示,若该几何体的体积是4,则a=()3A. 23√3B.1C. √2D.26.(单选题,5分)若直线x-y+2=0与圆(x-m)2+y2=2有公共点,则实数m的取值范围是()A.[-3,1]B.[-1,3]C.[-4,0]D.[0,4]7.(单选题,5分)已知alog32=1,则2a=()A. 13B.1C.2D.38.(单选题,5分)阿波罗尼乌斯(Apollonius,约前262~约前190)是古希腊时期的数学家、天文学家.师从于欧几里得,他结合前人的研究成果,在没有现代数学符号系统的支持下,以超越常人的智慧写出了经典之作《圆锥曲线论》.该书共八卷,传下来七卷,其中给出了解析几何的大部分内容的论断和证明.在其第七卷《平面轨迹》中提出:如果一个移动的点与两定点之间距离的比是常量(且不等于1),则它的轨迹是一个圆.现在已知两个定点的坐标分=2,则P点轨迹方程为()别为A(-1,0),B(2,0),动点P满足|PA||PB|A.x2+y2-6x+5=0B.x2+y2-6x+7=0C.x2+y2-10x+7=0x+5=0D.x2+y2- 1439.(单选题,5分)如图,在正方体ABCD-A′B′C′D′中,线段B'D′上有两个动点E,F,若线段EF长度为一定值,则下列结论中错误的是()A.AC⊥BEB.BD⊥平面ABEC.EF || 平面ABCDD.三棱锥B-AEF的体积为定值10.(单选题,5分)在三棱锥P-ABC 中,PA=PB ,过P 作PO⊥平面ABC ,O 为垂足,M 为AB 的中点,则下列结论中肯定成立的是( )A.∠OCA=∠OCBB.OA=OBC.OC⊥ABD.C ,O ,M 三点共线11.(单选题,5分)已知点Q (x 0,1),若在圆O :x 2+y 2=1上存在点P ,使得∠OQP=60°,则x 0的取值范围是( )A.[- 13 , 13 ]B.[- 12 , 12 ]C.[- √22 , √22 ]D.[- √33 , √33 ]12.(单选题,5分)已知函数f (x )=lnx+x-2的零点为a ,记函数g (a )=lna+2a-k ,若g (a )>0恒成立,则正整数k 的最大值为( )A.1B.2C.3D.413.(填空题,5分)空间中,线段PQ 的端点坐标分别为(1,4,-7),(3,-4,5),则线段PQ 的中点M 的坐标为___ .14.(填空题,5分)已知函数f (x )= {x +4,(x <0)2x −1,(x ≥0) ,若f (a )=3,则a 的值为___ . 15.(填空题,5分)已知函数f (x )=1-22x +1 ,则不等式f (2x-1)+f (x-2)>0的解集为___ .16.(填空题,5分)在正三棱锥P-ABC 中,E ,F 分别为棱PA ,AB 上的点,PE=3EA ,BF=3FA ,且CE⊥EF .若PB=2 √3 ,则三棱锥P-ABC 的外接球的体积为___ .17.(问答题,10分)设集合A={3,5},B={x|x 2-5x+m=0},满足A∪B={2,3,5}. (Ⅰ)求集合B ;(Ⅱ)若集合C={x|ax-1=0},且满足B∩C=C ,求所有满足条件的a 的集合.18.(问答题,12分)在△ABC中,已知M(1,6)是BC边上一点,边AB,AC所在直线的方程分别为2x-y+7=0,x-y+6=0.(Ⅰ)若AM⊥BC,求直线BC的方程;(Ⅱ)若|BM=|CM|,求直线BC在x轴上的截距.19.(问答题,12分)如图,直四棱柱ABCD-A1B1C1D1的底面为菱形,AA1=AB=2,∠BAD=60°,M,E分别为A1D1,BC的中点.(Ⅰ)求证:MB1 || 平面C1DE;(Ⅱ)求证:DE⊥平面BCC1B1;(Ⅲ)求三棱锥M-C1DE的体积.20.(问答题,12分)已知圆C经过点A(2,0),与直线x+y=2相切,且圆心C在直线2x+y-1=0上.(1)求圆C的方程;(2)已知直线l经过点(0,1),并且被圆C截得的弦长为2,求直线l的方程.21.(问答题,12分)2020年,突如其来的新冠肺炎疫情席卷全球,此次疫情传播速度之快、感染范围之广、防控难度之大均创历史之最.面对疫情,我国政府快速应对,在这次疫情大考的实践中凸显了中国社会主义制度的优越性,在向全球提供支援及分享抗疫经验中体现出了大国担当的责任和情怀.据报载,截至目前,我国有5种疫苗正在开展三期临床试验.如图为某种疫苗在按规定的剂量使用后,每毫升血液中的含药量y(微克)与时间t(小时)之间的.当t≥3时,y与t之间满近似曲线,其中,OM,MN为线段,且MN所在直线的斜率为- 12足:y=(13)t-a(其中a为常数).(Ⅰ)结合图象,写出使用后y与t之间的函数关系式y=f(t),其中t>0;(Ⅱ)根据进一步的测定:每毫升血液中含药量不少于13微克时治疗有效,求使用一次治疗有效的时间范围.22.(问答题,12分)已知函数f(x)= e x−ae−x2是奇函数,g(x)= e x−be−x2偶函数.(Ⅰ)求a,b的值;(Ⅱ)求证:[g(x)]2-[f(x)]2=1;(Ⅲ)若方程[g(x)]2-kf(x)-3=0在[ln(√2 +1),+∞)上有一个实数根,求k的取值范围.。

2019年-2020学年高一上学期数学期末模拟考试试题(含答案解析)

2019年-2020学年高一上学期数学期末模拟考试试题(含答案解析)

2019年-2020 学年高一数学期末模拟考试试题一.选择题(共10小题)1.已知集合A={x|0<log4x<1},B={x|e x﹣2≤1},则A∪B=()A.(﹣∞,4)B.(1,4)C.(1,2)D.(1,2]2.某同学用二分法求方程3x+3x﹣8=0在x∈(1,2)内近似解的过程中,设f(x)=3x+3x ﹣8,且计算f(1)<0,f(2)>0,f(1.5)>0,则该同学在第二次应计算的函数值为()A.f(0.5)B.f(1.125)C.f(1.25)D.f(1.75)3.函数的图象大致是()A.B.C.D.4.函数的零点所在的区间是()A.B.C.D.5.已知a,b是非零实数,则“a>b”是“ln|a|>ln|b|”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.函数的值域为()A.B.C.(0,] D.(0,2]7.若a>b>c>1且ac<b2,则()A.log a b>log b c>log c a B.log c b>log b a>log a cC.log b c>log a b>log c a D.log b a>log c b>log a c8.已知函数f(x)=lg(ax2﹣2x+a)的值域为R,则实数a的取值范围为()A.[﹣1,1] B.[0,1]C.(﹣∞,﹣1)∪(1,+∞)D.(1,+∞)9.若x1是方程xe x=4的解,x2是方程xlnx=4的解,则x1•x2等于()A.4 B.2 C.e D.110.我国古代数学著作《九章算术》有如下问题:“今有蒲生一日,长三尺莞生一日,长一尺蒲生日自半,莞生日自倍.问几何日而长倍?”意思是:“今有蒲草第1天长高3尺,芜草第1天长高1尺以后,蒲草每天长高前一天的一半,芜草每天长高前一天的2倍.问第几天莞草是蒲草的二倍?”你认为莞草是蒲草的二倍长所需要的天数是()(结果采取“只入不舍”的原则取整数,相关数据:lg3≈0.4771,lg2≈0.3010)A.2 B.3 C.4 D.5二.填空题(共5小题)11.已知x>0,y>0,且+=1,则3x+4y的最小值是2512.函数(a>0且a≠1)的图象恒过定点P,则点P的坐标为(4,),若点P在幂函数g(x)的图象上,则g(9)=.13.函数的递减区间是(3,+∞).14.已知函数f(x)=有3个零点,则实数a的取值范围是(,1).15.对于函数f(x),若在定义域内存在实数x0满足f(﹣x0)=﹣f(x0),则称函数f(x)为“倒戈函数”.设f(x)=3x+2m﹣1(m∈R,且m≠0是定义在[﹣1,1]上的“倒戈函数”,则实数m的取值范围是.三.解答题(共4小题)16.已知函数的定义域为集合A,集合B={x|1<x<8},C={x|a <x<2a+1},(1)求集合(∁R A)∪B;(2)若A∪C=A,求a的取值范围17.(1)已知5a=3,5b=4,用a,b表示log2536.(2)求值.18.已知函数f(x)=log a(1﹣x),g(x)=log a(x+3),其中0<a<1.(1)解关于x的不等式:f(x)<g(x);(2)若函数F(x)=f(x)+g(x)的最小值为﹣4,求实数a的值.19.某工厂今年初用128万元购进一台新的设备,并立即投入使用,计划第一年维修、保养费用8万元,从第二年开始,每年的维修、保养修费用比上一年增加4万元,该设备使用后,每年的总收入为54万元,设使用x年后设备的盈利总额y万元.(1)写出y与x之间的函数关系式;(2)从第几年开始,该设备开始盈利?(3)使用若干年后,对设备的处理有两种方案:①年平均盈利额达到最大值时,以42万元价格卖掉该设备;②盈利额达到最大值时,以10万元价格卖掉该设备.问哪种方案处理较为合理?请说明理由.2019年-2020 学年高一期末模拟考试试题一.选择题(共10小题)1.已知集合A={x|0<log4x<1},B={x|e x﹣2≤1},则A∪B=()A.(﹣∞,4)B.(1,4)C.(1,2)D.(1,2]【答案】A【解答】解:A={x|1<x<4},B={x|x≤2},∴A∪B=(﹣∞,4).故选:A.2.某同学用二分法求方程3x+3x﹣8=0在x∈(1,2)内近似解的过程中,设f(x)=3x+3x ﹣8,且计算f(1)<0,f(2)>0,f(1.5)>0,则该同学在第二次应计算的函数值为()A.f(0.5)B.f(1.125)C.f(1.25)D.f(1.75)【答案】C【解答】解:∵f(1)<0,f(2)>0,f(1.5)>0,∴在区间(1,1.5)内函数f(x)=3x+3x﹣8存在一个零点该同学在第二次应计算的函数值=1.25,故选:C.3.函数的图象大致是()A.B.C.D.【答案】D【解答】解:由,可知当x→﹣∞时,f(x)→﹣∞,排除A,C;当x→+∞时,由指数爆炸可知e x>x3,则→0,排除B.故选:D.4.函数的零点所在的区间是()A.B.C.D.【答案】C【解答】解:由于连续函数满足f()=﹣2<0,f()=>0,且函数在区间(,)上单调递增,故函数函数的零点所在的区间为(,).故选:C.5.已知a,b是非零实数,则“a>b”是“ln|a|>ln|b|”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】D【解答】解:由于ln|a|>ln|b|⇔|a|>|b|>0,由a>b推不出ln|a|>ln|b|,比如a=1,b=﹣2,有a>b,但ln|a|<ln|b|;反之,由ln|a|>ln|b|推不出a>b,比如a=﹣2,b=1,有ln|a|>ln|b|,但a<b;∴“a>b”是“ln(a﹣b)>0”的既不充分也不必要条件.故选:D.6.函数的值域为()A.B.C.(0,] D.(0,2]【答案】A【解答】解:令t(x)=2x﹣x2=﹣(x﹣1)2+1≤1∵单调递减∴即y≥故选:A.7.若a>b>c>1且ac<b2,则()A.log a b>log b c>log c a B.log c b>log b a>log a cC.log b c>log a b>log c a D.log b a>log c b>log a c【答案】B【解答】解:因为a>b>c>1,令a=16,b=8,c=2,则log c a>1>log a b所以A,C错,则故D错,B对.故选:B.8.已知函数f(x)=lg(ax2﹣2x+a)的值域为R,则实数a的取值范围为()A.[﹣1,1] B.[0,1]C.(﹣∞,﹣1)∪(1,+∞)D.(1,+∞)【答案】B【解答】解:函数f(x)=lg(ax2﹣2x+a)的值域为R,设g(x)=ax2﹣2x+a,则g(x)能取边所有的正数,即(0,+∞)是g(x)值域的子集,当a=0时,g(x)=﹣2x的值域为R,满足条件.当a≠0时,要使(0,+∞)是g(x)值域的子集,则满足得,此时0<a≤1,综上所述,0≤a≤1,故选:B.9.若x1是方程xe x=4的解,x2是方程xlnx=4的解,则x1•x2等于()A.4 B.2 C.e D.1【答案】A【解答】解:由于x1和x2是函数y=e x和函数y=lnx与函数y=的图象的公共点A和B的横坐标,而A(),B()两点关于y=x对称,可得,因此x1x2=4,故选:A.10.我国古代数学著作《九章算术》有如下问题:“今有蒲生一日,长三尺莞生一日,长一尺蒲生日自半,莞生日自倍.问几何日而长倍?”意思是:“今有蒲草第1天长高3尺,芜草第1天长高1尺以后,蒲草每天长高前一天的一半,芜草每天长高前一天的2倍.问第几天莞草是蒲草的二倍?”你认为莞草是蒲草的二倍长所需要的天数是()(结果采取“只入不舍”的原则取整数,相关数据:lg3≈0.4771,lg2≈0.3010)A.2 B.3 C.4 D.5【答案】C【解答】设蒲草每天长的高度为数列{a n},莞草每天长的高度为数列{b n},由题意得:{a n}为等比数列,求首项为3,公比为,所以通项公式a n=3•()n﹣1,前n项和S n=6[1﹣()n],{b n}为等比数列,首项为1,公比为2,所以通项公式b n=2n﹣1,前n项和T n=2n﹣1;由题意得设n天莞草是蒲草的二倍,即2n﹣1=2•6[1﹣()n]⇒(2n)2﹣13•2n+12=0⇒2n=12或1(舍)两边取以10为底的对数,n===2+由相关数据可得,n=4,故选:C.二.填空题(共5小题)11.已知x>0,y>0,且+=1,则3x+4y的最小值是25【答案】25【解答】解:因为x>0,y>0,+=1,所以3x+4y=(3x+4y)(+)=13++≥13+2=25(当且仅当x=2y 时取等号),所以(3x+4y)min=25.故答案为:25.12.函数(a>0且a≠1)的图象恒过定点P,则点P的坐标为(4,),若点P在幂函数g(x)的图象上,则g(9)=.【答案】(4,);.【解答】解:对于函数(a>0且a≠1),令2x﹣7=1,求得x=4,y=,可得它的图象恒过定点P(4,).点P在幂函数g(x)=xα的图象上,则4α=,即22α=2﹣1,∴α=﹣,g(x)==,故g(9)==,故答案为:(4,);.13.函数的递减区间是(3,+∞).【答案】(3,+∞)【解答】解:由2x2﹣5x﹣3>0得x>3或x<﹣,设t=2x2﹣5x﹣3,则当x>3时,函数t为增函数,当x<﹣时,函数t为减函数,∵y=log0.1t为减函数,∴要求y=log0.1(2x2﹣5x﹣3)的递减区间,即求函数t=2x2﹣5x﹣3的递增区间,即(3,+∞),即函数f(x)的单调递减区间为为(3,+∞).故答案为:(3,+∞).14.已知函数f(x)=有3个零点,则实数a的取值范围是(,1).【答案】(,1).【解答】解:∵函数f(x)=有3个零点,∴a>0 且y=ax2+2x+1在(﹣2,0)上有2个零点,∴,解得<a<1,故答案为:(,1).15.对于函数f(x),若在定义域内存在实数x0满足f(﹣x0)=﹣f(x0),则称函数f(x)为“倒戈函数”.设f(x)=3x+2m﹣1(m∈R,且m≠0是定义在[﹣1,1]上的“倒戈函数”,则实数m的取值范围是.【解答】解:∵f(x)=3x+2m﹣1是定义在[﹣1,1]上的“倒戈函数,∴存在x0∈[﹣1,1]满足f(﹣x0)=﹣f(x0),∴3+2m﹣1=﹣3﹣2m+1,∴4m=﹣3﹣3+2,构造函数y=﹣3﹣3+2,x0∈[﹣1,1],令t=3,t∈[,3],y=﹣﹣t+2,y∈[﹣,0],∴﹣<0,∴﹣,故答案为:[﹣,0).三.解答题(共4小题)16.已知函数的定义域为集合A,集合B={x|1<x<8},C={x|a <x<2a+1},(1)求集合(∁R A)∪B;(2)若A∪C=A,求a的取值范围【解答】解:(1)∵函数的定义域为集合A,∴A={x|}={x|﹣1<x<2},∴∁R A={x|x≤﹣1或x≥2},∵集合B={x|1<x<8},∴集合(∁R A)∪B={x|x≤﹣1或x>1}.(2)∵A={x|}={x|﹣1<x<2},C={x|a<x<2a+1},A∪C=A,∴C⊆A,当C=∅时,a≥2a+1,解得a≤﹣1,当C≠∅时,,解得﹣1<x.综上,a的取值范围是(﹣∞,].17.(1)已知5a=3,5b=4,用a,b表示log2536.(2)求值.【解答】解:(1)5a=3,5b=4,得a=log53,b=log54,log2536=,(2)原式=﹣1+2=﹣1﹣2+2=2.5﹣1=1.5.18.已知函数f(x)=log a(1﹣x),g(x)=log a(x+3),其中0<a<1.(1)解关于x的不等式:f(x)<g(x);(2)若函数F(x)=f(x)+g(x)的最小值为﹣4,求实数a的值.【解答】解:(1)不等式即为log a(1﹣x)<log a(x+3),∵0<a<1,∴1﹣x>x+3>0,得解为﹣3<x<﹣1,(2),由﹣x2﹣2x+3>0解得其定义域为(﹣3,1),∵h(x)=﹣x2﹣2x+3z在(﹣3,﹣1)上单调递增,在(﹣1,1)上单调递减,∴h(x)max=h(﹣1)=4.∵0<a<1,且F(x)的最小值为﹣4,∴log a4=﹣4.得a﹣4=4,所以a==.19.某工厂今年初用128万元购进一台新的设备,并立即投入使用,计划第一年维修、保养费用8万元,从第二年开始,每年的维修、保养修费用比上一年增加4万元,该设备使用后,每年的总收入为54万元,设使用x年后设备的盈利总额y万元.(1)写出y与x之间的函数关系式;(2)从第几年开始,该设备开始盈利?(3)使用若干年后,对设备的处理有两种方案:①年平均盈利额达到最大值时,以42万元价格卖掉该设备;②盈利额达到最大值时,以10万元价格卖掉该设备.问哪种方案处理较为合理?请说明理由.(1)由题意可知x年的维修,使用x年后的总保养、维修费用为8x+【解答】解:=2x2+6x.所以盈利总额y关于x的函数为:y=54x﹣(2x2+6x)﹣128=﹣2x2+48x﹣128(x∈N×).(2)由y>0,得﹣2x2+48x﹣128>0,即x2﹣24x+64<0,解得,由x∈N*,得4≤x≤20.答:第4年该设备开始盈利.(3)方案①年平均盈利,当且仅当,即x=8时取等号,.所以方案①总利润为16×8+42=170(万元),方案②y=﹣2(x﹣12)2+160,x=12时y取得最大值160,所以方案②总利润为160+10=170(万元),答:选择方案①处理较为合理.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

河南省郑州市2019-2020学年高一上学期期末考试高一数学试题卷注意事项:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

考试时间120分钟,满分150分。

考生应首先阅读答题卡上的文字信息,然后在答题卡上作答,在试题卷上作答无效。

交卷时只交答题卡。

第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A ={x|1<x<3},集合B ={x|y ,则A ∩B = A.{x|1<x ≤2} B.{x|1<x<3} C.{x|2≤x<3} D.{x|1<x<2}2.过两点A(0,y),3)的直线的倾斜角为60°,则y = A.-9 B.-3 C.5 D.63.下列四个命题中错误的是A.若直线a 、b 相交,则直线a 、b 确定一个平面B.若四点不共面,则这四点中任意三点都不共线C.若两条直线没有公共点,则这两条直线是异面直线D.经过平面外一点有且只有一条直线与该平面垂直 4.设 1.50.4111(),(),ln542a b c ===,则下列关系正确的是 A.a>b>c B.b>a>c C.b>c>a D.c>a>b5.已知圆x 2+y 2-2mx -(4m +2)y +4m 2+4m +1=0的圆心在直线x +y -7=0上,则该圆的面积为A.4πB.2πC.πD.2π 6.如下图一个几何体的三视图,则该几何体的体积是A.8B.83C.2D.4 7.已知f(2x )=x +3,若f(t)=3,则t = A.16 B.8 C.4 D.18.如图所示是正方体的平面展开图,在这个正方体中CN 与BM 所成角为A.30°B.45°C.60°D.90°9.已知定义在R 上的奇函数f(x),满足f(x +4)=f(x)恒成立,且f(1)=1,则f(3)+f(4)+f(5)的值为A.-1B.1C.2D.010.已知圆M :(x -1)2+(y -1)2=8,过直线l :x -y -2=0上任意一点P 向圆引切线PA ,切点为A ,则|PA|的最小值为 A.1 B.2 C.3 D.411.长方体ABCD -A 1B 1C 1D 1中,AB =AA 1=2,AD =1,则异面直线BC 1与CD 1所成角的余弦值为 10 B.15 10 D.1212.已知函数41,0()log ,0x x f x x x ⎧+≤⎪=⎨>⎪⎩,若方程f(x)=k 有4个不同的根x 1,x 2,x 3,x 4,且x 1<x 2<x 3<x 4,则4232144()x x x x x ++的取值范围是A.(-7,2]B.[-7,2)C.(2,42]D.[2,42)第Ⅱ卷(非选择题 共90分)二、填空题(每小题5分,共20分)13.已知集合M 满足{3,4}⊆M ⊆{3,4,5,6},则满足条件的集合M 有_________个。

14.已知直线l 1:x +ay +6=0与l 2:(a -2)x +y +1=0互相垂直,则a =_________。

15.若正四面体ABCD 的棱长为2,则该正四面体的外接球的表面积为_________。

16.高斯是德国的著名数学家,近代数学奠基者之一,享有“数学王子”的称号,他和阿基米德、牛顿并列为世界三大数学家,用其名字命名的“高斯函数”为:设x ∈R ,用[x]表示不超过x 的最大整数,则y =[x]称为高斯函数,例如:[-3.4]=-4,[2.7]=2。

已知函数21()15x x e f x e =-+,则函数y =[f(x)]的值域是_________。

三、解答题(本题共6小题,共70分) 17.(本小题满分10分)已知直线l 1:x -2y +3=0与直线l 2:2x +3y -8=0的交点为M 。

(I)求过点M 且与直线l 3:3x -y +1=0平行的直线l 的方程; (II)若直线l '过点M ,且点P(0,4)到l '的距离为5,求直线l '的方程。

18.(本小题满分12分)已知全集U =R ,集合M ={x|-2≤x ≤5},N ={x|a +1≤x ≤2a +1}。

(I)若a =1,求M ∩(R N ð);(II)M ∪N =M ,求实数a 的取值范围。

19.(本小题满分12分)如图,在四棱锥P -ABCD 中,PD ⊥面ABCD ,底面ABCD 为菱形,E 为棱PB 的中点,O 为AC 与BD 的交点。

(I)求证:PD//面EAC ; (II)求二面角C -OE -B 的大小。

20.(本小题满分12分)已知圆C 的圆心在直线y =x 上,且圆C 与直线l :x -y +2=0相切于点A(0,2)。

(I)求圆C 的标准方程;(II)若直线l '过点P(0,3)且被圆C 所截得弦长为2,求直线l '的方程。

21.(本小题满分12分)近年来,中美贸易摩擦不断。

特别是美国对我国华为的限制。

尽管美国对华为极力封锁,百般刁难,并不断加大对各国的施压,拉拢他们抵制华为5G 。

然而这并没有让华为却步。

华为在2019年不仅净利润创下记录,海外增长同样强劲。

今年,我国华为某一企业为了进一步增加市场竞争力,计划在2020年利用新技术生产某款新手机。

通过市场分析,生产此款手机全年需投入固定成本250万,每生产x(千部)手机,需另投入成本R(x)万元,且R(x)=210200,040100008019450,40x x x x x x ⎧+<<⎪⎨+-≥⎪⎩,由市场调研知,每部手机售价0.8万元,且全年内生产的手机当年能全部销售完。

(I)求出2020年的利润Q(x)(万元)关于年产量x(千部)的函数关系式(利润=销售额-成本); (II)2020年产量x 为多少(千部)时,企业所获利润最大?最大利润是多少? (说明:当a>0时,函数y =x +ax在(0单调递减,在,+∞)单调递增) 22.(本小题满分12分) 已知函数134()log 4axf x x -=-为奇函数,其中a 为常数。

(I)求常数a 的值;(II)判断函数f(x)在x ∈(-∞,-4)上的单调性,并证明;(III)对任意x ∈(-∞,-5],都有1()()2xf x m ≤+恒成立,求实数m 的取值范围。

郑州市2019-2020学年上期期末考试高一数学 参考答案13. 4 14. 1 15. 3π 16. {}1,0,1- 三.解答题:17. 解:(I)联立2302380x y x y -+=⎧⎨+-=⎩ ,解得:()1,2M . L L L L 2分所以:与3l 平行的的直线方程为:()231y x -=-,L L L L 4分 整理得:310x y --=.L L L L 5分(II ) 当斜率不存在时,不合题意;L L L L 7分当斜率存在时,设():21l y k x -=-,即:20kx y k -+-= . =,解得:24410k k -+= ,12k =;L L L L 9分所以,所求直线的方程为:230x y -+=. L L L L 10分18. 解:(I )当1a =时,{}|23N x x =≤≤ ,{}|23R C N x x x =<>或 .L L L L 2分.故 }5322|{)(≤<<≤-=x x x N C M R 或I .L L L L 4分(II ),M N M N M =∴⊆Q U L L L L 6分1,N ︒=∅ ,121a a +>+,即:0a <; L L L L 8分 2,N ︒≠∅,即:0a ≥.12,215a N M a +≥-⎧⊆∴⎨+≤⎩Q ,解得:02a ≤≤.L L L L 10分,OC BOC ⊂Q OB BOC ⊂综上:2a ≤.L L L L 12分19. 解:(I)由题可得:O 是BD 的中点,因为E 为棱PB 的中点,所以://EO PD .L L L L 2分又因为:,PD EAC EO EAC ⊄⊂面面;L L L L 4分所以://PD EAC 面.L L L L 6分(II )//,,EO PD EO ABCD EO BO ∴⊥∴⊥Q 面,EO CO ⊥,L L L L 8分面 面 , OB OC O =I .则BOC ∠为二面角B OE C --的平面角.L L L L 10分ABCD BO AC ∴⊥Q 四边形为菱形,, 90,BOC ∴∠=o∴二面角B OE C --的大小为90o .L L L L 12分20. 解:(I)由题可设圆心(),C a a ,显然0,a ≠则21CA a k a-==-,解得:1a =,L L L L 2分所以圆心的坐标:()1,1C,r AC ==;L L L L 4分所以圆的标准方程为:()()22112x y -+-= .L L L L 6分(II)当直线的斜率存在时,可设直线/l 的方程:3y kx =+,即:30kx y -+=.由题得:1d === ,解得:34k =- ,L L L L 8分所求直线l 的方程为:34120x y +-= .L L L L 9分当直线l 的斜率不存在时,直线0:/=x l ,满足题意;L L L L 11分 故:所求直线的方程为:34120x y +-=或0x =.L L L L 12分21.解:(I )当040x << 时 :()()228001020025010600250Q x x x x x x =-+-=-+- ;L L L L 2分当40x ≥时:()100001000080080194502509200Q x x x x x x ⎛⎫=-+--=--+ ⎪⎝⎭. L L L L 4分()210600250,040,100009200,40.x x x Q x x x x ⎧-+-<<⎪∴=⎨--+≥⎪⎩L L L L 6分 (II )当040x <<时,()()210308750Q x x =--+,()()max 308750Q x Q ∴==万元;L L L L 8分当40x ≥时,()100009200Q x x x ⎛⎫=-++ ⎪⎝⎭ ,当且仅当100x =时,()()max 1009000Q x Q ==万元.L L L L 10分所以,2020年年产量为100(千部)时,企业获得的利润最大,最大利润为9000万元. L L L L 12分 22.解:()134log I)4(axf x x -=-Q 为奇函数, ()()2211123334416log log log 04416ax ax a x f x f x x x x-+-∴+-=+==----恒成立,L L 2分 即:21,1-1a a a =∴==或 ,L L L L 3分 检验得:-1a =;L L L L 4分 (II )由(I )得:()134log 4x f x x +=-=138log 14x ⎛⎫+ ⎪-⎝⎭,令()814g x x =+- , ()1212,,4,x x x x ∀∈-∞-<,则: ()()()()()21121212128888811444444x x g x g x x x x x x x -⎛⎫-=+-+=-= ⎪------⎝⎭. ()()()121212,,4,,x x x x g x g x ∈-∞-<∴>Q .()13log f t t =Q 是减函数,()()111233log log g x g x ∴< ,即:()()12f x f x <.所以()f x 在(),4x ∈-∞-上为增函数. L L L L 8分(III )()12x f x m ⎛⎫≤+ ⎪⎝⎭恒成立,即:()()12xm f x h x ⎛⎫≥-= ⎪⎝⎭恒成立.由(II )知:()h x 在(],5x ∈-∞-上为增函数,所以()()max 530m h x h ≥=-=-,所以m 的取值范围是:[)30,-+∞ .L L L L 12分。

相关文档
最新文档