2011B题吸波材料及微波暗室问题的数学建模

合集下载

2011年大学生数学建模竞赛试题(全套)

2011年大学生数学建模竞赛试题(全套)

2011高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)A题城市表层土壤重金属污染分析随着城市经济的快速发展和城市人口的不断增加,人类活动对城市环境质量的影响日显突出。

对城市土壤地质环境异常的查证,以及如何应用查证获得的海量数据资料开展城市环境质量评价,研究人类活动影响下城市地质环境的演变模式,日益成为人们关注的焦点。

按照功能划分,城区一般可分为生活区、工业区、山区、主干道路区及公园绿地区等,分别记为1类区、2类区、……、5类区,不同的区域环境受人类活动影响的程度不同。

现对某城市城区土壤地质环境进行调查。

为此,将所考察的城区划分为间距1公里左右的网格子区域,按照每平方公里1个采样点对表层土(0~10 厘米深度)进行取样、编号,并用GPS记录采样点的位置。

应用专门仪器测试分析,获得了每个样本所含的多种化学元素的浓度数据。

另一方面,按照2公里的间距在那些远离人群及工业活动的自然区取样,将其作为该城区表层土壤中元素的背景值。

附件1列出了采样点的位置、海拔高度及其所属功能区等信息,附件2列出了8种主要重金属元素在采样点处的浓度,附件3列出了8种主要重金属元素的背景值。

现要求你们通过数学建模来完成以下任务:(1) 给出8种主要重金属元素在该城区的空间分布,并分析该城区内不同区域重金属的污染程度。

(2) 通过数据分析,说明重金属污染的主要原因。

(3) 分析重金属污染物的传播特征,由此建立模型,确定污染源的位置。

(4) 分析你所建立模型的优缺点,为更好地研究城市地质环境的演变模式,还应收集什么信息?有了这些信息,如何建立模型解决问题?B题交巡警服务平台的设置与调度“有困难找警察”,是家喻户晓的一句流行语。

警察肩负着刑事执法、治安管理、交通管理、服务群众四大职能。

为了更有效地贯彻实施这些职能,需要在市区的一些交通要道和重要部位设置交巡警服务平台。

每个交巡警服务平台的职能和警力配备基本相同。

数模2011 B题

数模2011 B题

承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): B我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):日期:年月日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):交巡警服务平台的设置与调度摘要:本文主要研究交巡警服务平台的设置与调度问题,建立基于图论的P-中心选址问题,将其转化为多目标0-1规划模型,通过LINGO编程求解。

由于A城区程序运行困难,可进一步利用遗传算法改进,得到满意的结果。

针对问题一,(1)利用Floyd算法得出最短路径矩阵,确定A区平台的管辖范围并确保出警时间少于3分钟,由程序运行结果可知,1号,2号服务台管辖节点过多,10号,14号服务台却无管辖区域,其他服务台工作量基本均衡。

(2)对于重大突发事件要实现警服台的快速封锁,将其转化为优化匹配问题,运行立多目标0-1规划模型,通过LINGO编程得到在3分钟限制的前提下,至少需要增加4个平台,具体节点标号为:29、39、48、91。

针对问题二,首先建立评价指标,用优化模型得到量化的评价指标然后用秩和比方法进行评价,A区配置最合理,而F区配置最不合理。

2011全国数学建模竞赛B题附件2

2011全国数学建模竞赛B题附件2

全市路口节点标号路口所属区域1413359A 1.7说明:2403343A 2.13383.5351A 2.24381377.5A 1.75339376A 2.16335383A 2.57317362A 2.48334.5353.5A 2.49333342A 2.1坐标的长度单位为毫米10282325A 1.611247301A 2.612219316A 2.413225270A 2.214280292A 2.515290335A 2.116337328A 2.617415335A 2.518432371A 1.919418374A 1.820444394A 1.921251277A 1.422234271A 1.423225265A 2.424212290A 1.125227300A 1.626256301A 1.227250.5306A 0.828243328A 1.329246337A 1.430314367A 2.1路口的横坐标X 路口的纵坐标Y 发案率(次数)A列:是全市交通网络中路口节点的标号(序号)B列:路口节点的横坐标X,是在交通网络中的实际横坐标值C列:路口节点的纵坐标Y,是在交通网络中的实际纵坐标值D列:路口节点所属的区E列:各路口节点的发案率是每个路口平均每天的发生报警案件数量地图距离和实际距离的比例是1:100000,即1毫米对应100米31315351A 1.632326355A 1.5案发地P点的标号:32 33327350A 1.434328342.5A 1.735336339A 1.436336334A 1.137331335A0.138371330A 1.239371333A 1.440388.5330.5A 1.741411327.5A 1.442419344A 1.443411343A 1.744394346A 1.145342342A 1.446342348A 1.247325372A 1.648315374A 1.449342372A 1.250345382A 1.151348.5380.5A0.852351377A0.653348369A 1.454370363A0.955371353A156354374A0.557363382.5A0.858357387A 1.159351382A0.960369388A0.761335395A0.662381381A 1.2 63391375A 1.4 64392366A0.8 65395361A0.7 66398362A0.8 67401359A0.8 68405360A0.9 69410355A 1.1 70408350A0.9 71415351A 1.1 72418347A0.8 73422354A0.9 74418.5356A 1.1 75405.5364.5A0.8 76405368A 1.1 77409370A0.8 78417364A0.8 79420370A0.8 80424372A0.8 81438368A 1.4 82438.5373A 1.1 83434376A0.9 84438385A1 85440392A 1.2 86447392A 1.4 87448381A 1.1 88444.5383A0.9 89441385A 1.4 90440.5381.5A0.9 91445380A0.9 92444360A0.893140130B 1.6 94145118B 1.6 9516096B 1.6 96142.571B 2.1 9715070B 1.8 98186145B 1.6 9915873.5B 2.6 10012168B 2.6 101157145B 1.1 102158138.5B0.9 103159135B0.5 104133114B0.7 105137.5113B0.4 106144112B0.8 107139117B0.2 108144.5115B0.8 109151113B0.6 110151.5118B0.9 111150111B0.8 112158118B 1.1 113159109B0.8 114164108.5B0.4 115163105B0.7 11614999.5B 1.2 117143102B0.8 118137103B0.9 119131103B0.5 120130100B0.6 121127102B0.6 12212598B0.8 12312996B0.912413090B0.4 12512490B0.7 12613696B 1.1 12713690B0.8 12814296B0.8 12914896B0.7 13014291B0.6 13114791B0.7 13212871B 1.2 133136.576B0.8 13414279B 1.1 13514781B0.8 13615486B0.9 137148.574.5B 1.1 13814070B0.6 13914063B0.7 140137.563B0.8 14113859B0.4 14214363B 1.1 14315169B0.8 14415363B 1.1 14514360B0.7 14614357B0.6 14714351.5B0.8 14816065B 1.1 14916259B0.6 15014149B0.4 15114340B0.8 15215144B0.5 15315033B0.1 154164124B0.6155171125B0.7 156165.5139B 1.1 157181131B 1.4 158176141B 1.6 159170140B0.8 160168145B0.6 161166150B0.8 162176145B0.6 163180149B0.7 164183145B 1.1 165202131B 1.1 166137.5462C 2.6 167167399C 2.2 168376400C 1.4 169210390C 2.6 170263445C 2.2 171284409C 1.9 172278.5425C 2.2 173295382C2 174299444C 2.6 175362443C 2.2 176410408.5C 2.1 177395520C 2.2 178277496C 1.7 179235465C 2.2 180200466.5C 1.9 181167462C 2.4 182225443C 2.4 183400447C 1.2 184414422C 1.4 185424400C 1.2186411396C 1.4 187420401C0.8 188403404C 1.2 189376406C0.9 190380404C0.8 191377424C0.8 192374424C0.8 193370423C0.4 194368427.5C0.9 195374431C 1.2 196365448C 1.4 197356450C 1.4 198358459C 1.2 199354495C 1.1 200357513C 1.2 201359528C0.4 202347553C0.5 203261537.5C0.8 204270514C 1.4 205313511.5C0.4 206324511C0.8 207333511C0.7 208334497C0.8 209323497C0.7 210312498C 1.1 211317451C 1.1 212316448C0.8 213315.5444C0.7 214316434C0.9 215318412C 1.2 216291.5415C 1.4217284425C 1.4 218281421C 1.6 219299434C 1.4 220302451C 1.4 221305457C 1.2 222281458.5C 1.1 223274448C0.8 224273.5444C0.9 225267446C 1.1 226270440C0.9 227275422C 1.1 228276419C 1.2 229270415C0.8 230276405C 1.4 231288403C 1.4 232293.5392.5C 1.4 233296387C 1.1 234303386C 1.4 235298.5378C 1.6 236293376C 1.2 237296372C 1.7 238276352C1 239250350C 1.4 240247384C 1.2 241262399C 1.4 242269397C 1.2 243276402C 1.3 244282398.5C 1.2 245282386.5C 1.1 246273389C 1.2 247276361C 1.1248138.5378C0.8 249155396C 1.2 250163390C 1.5 251173364C 1.2 252183370C 1.2 253238382C0.7 254213412C0.8 255189413C 1.1 256210433C0.9 257201434C0.9 258150400C 1.2 259135395C 1.2 260143407C 1.1 261142414C0.8 262140430C 1.1 263121432C0.9 264109441C0.5 265138.5442C 1.2 266167442C 1.6 267168435C 1.4 268184440C 1.2 269194442C0.9 270200442C 1.4 271212443C 1.6 272220443C 1.7 273246444C 2.1 274246455C 1.4 275252458C 1.2 276257460.5C 1.5 277255.5466C 1.2 278249464C 1.1279247469C0.8 280254472C0.7 281251.5477C 1.1 282259478C0.8 283261470C0.4 284255494C 1.4 285240495C 1.4 286241514C0.8 287236514C0.7 288235496C0.7 289232487C0.8 290235.5486.5C0.8 291245474C 1.2 292225457.5C 1.4 293225451C 1.6 294219451C 1.4 295219462C 1.2 296228.5472C 1.6 297213481C 1.4 298211487C1 299208.5496C 1.2 300206507C0.8 301206515C 1.2 302200514C0.7 303200507C 1.2 304200497C 1.3 305200484C 1.4 306206466C 1.4 307194466C 1.4 308184463.5C 1.5 309184475C0.8310193.5475C0.7 311193484C0.9 312184484C0.6 313184496.5C0.8 314192.5496.5C0.7 315192507C0.9 316192514C0.8 317170516.5C0.6 318168507C 1.1 319167495.5C 1.4 320101343D 2.4 32191355D 1.7 32270377D 2.5 32346371D 2.4 32456424D 2.1 32520442D 2.2 32674326D 2.6 32776302D 2.1 32815240D 2.6 32928161D0.4 33034.5164.5D0.1 33130181D0.6 33227206D0.2 33342242D 1.4 33430246D 1.6 33531254D 1.1 33639254D 1.2 33750289D0.7 33872288D 1.1 33960246D0.7 34095299D 1.434181297D 1.6 34280287D 1.4 34367314D 1.7 34421330D 1.1 34536360D 1.2 34676344D0.8 34797339D 2.4 348103337D 1.2 349104341D 1.1 35097345D 1.6 35189345D0.8 35281344.5D0.8 35381350D0.4 35489350D0.7 35592.5351.5D 1.1 35688353D 1.4 35781.5353D0.9 35887359D 1.1 35984361D0.9 36076355D0.8 36158.5370D0.6 36234306D0.1 36338418.5D 1.4 36461425D 1.4 36557429D 1.6 36660433D 1.4 36785369D 1.9 368107.5362D 1.4 369131366.5D 1.2 370170342D 1.2 371174340D 1.5372232.5264E 2.4 373202223E 1.9 374241210E 2.4 375235197.5E 2.6 376228173E 2.6 377214164E 2.6 378278196E 2.6 379267168E 2.4 38090167E1 381123177.5E 1.1 382143153E 1.9 383192264E 2.6 384145285E 2.4 385133255E 2.4 38690198E 1.7 3872115E 1.1 3886068E0.8 3897084E0.2 39027149E 1.6 39162143E0.9 39258176E 1.4 39358160E0.6 39472163E0.7 39570176.5E0.7 39690178E0.8 397115168E0.6 398115177.5E0.8 399123168E0.7 400123164E0.6 401123155E0.7 402143164E0.9403144168E 1.2 404149177E0.9 405128178E0.9 406128188E 1.5 407164194E 1.7 408156177E0.8 409168177E 1.1 410156169E0.8 411167168E0.8 412172167E0.9 413167164E0.2 414160164E0.7 415163153.5E 1.2 416186168E 1.6 417269133E 1.6 418295112E 1.1 419302112E 1.4 420316141E 1.6 421278143E 1.7 422284173E 1.4 423257.5170E 1.9 424239198E0.4 425241198E0.3 426246199E0.6 427246.5202E0.4 428240202E0.4 429236201E 1.1 430231199E0.1 431232206.5E0.6 432239.5207.5E0.5 433242206E0.2434235209.5E0.4 435237.5212E0.1 436246208E0.4 437200194E 1.1 438170222E 1.6 43959189E0.8 44072189E0.9 44190187.5E0.6 44274198E0.7 44360196E0.4 44490211E 1.6 445151236E 1.4 446160244E 1.5 44790222E0.8 448129248E 1.7 449142265E 2.1 450152255.5E 1.1 451155258E0.6 452163258E0.8 453171258E 1.1 454171252.5E0.4 455171247E 1.2 456214235E 1.1 457244238E 1.1 458268237E 1.1 459259255E 1.1 460188261E 1.4 461184253E 1.2 462171263E 1.1 463171268E0.8 464163268E0.9465154268.5E0.7 466151275E0.4 467148274E 1.5 468162277.5E 1.5 469177281E0.7 470187284E 1.4 471155316E 1.6 472159292E 1.8 473125267E 1.8 474107285E 1.6 475382.5267F 2.4 476373250F 1.9 477330219F0.8 478400247F 2.3 479441442F 1.7 480417312F 1.5 481332246F 1.9 482321275F 1.7 483403140F 2.1 484420269F 2.4 485455335F 1.9 486295.5238F 1.4 487294244F 1.1 488316300F 1.5 489308257.5F 1.2 490327255F0.8 491316236F 1.4 492314230F0.9 493313223F0.6 494317215F0.2 495318.5222F0.3496320229F0.5 497326.5227.5F0.7 498325220F0.6 499323213F0.4 500329212F0.7 501332226F0.7 502334210.5F0.6 503346209F0.7 504342200F0.8 505356202F0.7 506358195F0.6 507345194F0.4 508348188F0.4 509357.5188F0.6 510359159F 1.1 511404161F 1.2 512403202F0.8 513379202F0.7 514386213F0.8 515373213F0.6 516363212F0.4 517362218F0.8 518354216.5F0.6 519348215F0.9 520349222F0.7 521353223F0.8 522371224F0.8 523371218.5F0.6 524375219F0.4 525388.5218F 1.1 526405213.5F0.8527389224.5F0.9 528388233F0.6 529353229.5F0.8 530334232F0.7 531336239F 1.1 532352247F 1.2 533353236F0.6 534362.5236F0.8 535370236F 1.1 536388237F 1.2 537395.5237.5F 1.4 538395233F 1.1 539408.5227F 1.5 540430237F 1.4 541450268F0.1 542394254F 1.4 543387250F0.9 544383250F 1.1 545369249.5F0.8 546367.5249F0.7 547362249F0.8 548350251F0.6 549348255F 1.4 550355265F 1.1 551367265F0.8 552367257.5F 1.2 553375258F 1.4 554376260F 1.1 555381260F 1.7 556378266F 1.4 557380270.5F 1.2558371284F 1.1 559356.5281F 1.4 560338297F 1.2 561372307F 1.4 562398308F 1.5 563392277F 1.1 564382.5276F0.9 565396270F 1.4 566411291F 1.2 567424297F0.8 568435319F0.9 569434307F0.7 570430295F 1.4 571441309F 1.2 572470342F0.2 573468432F 1.2 574455361F0.6 575453400F0.6 576425433F0.8 577462437F 1.4 578481457F0.6 579462447F 1.2 580440449F 1.4 581423448F1 582435507.5F0.4路线终点(节点)标号说明:17517824434536543946354955065973274789847935103411221126122512471142115715311614163817401742178118811883路线起点(节点)标号A列:全市交通网中连接两路口节点路线的起点标号B列:全市交通网中连接两路口节点路线的终点标号1979 2086 2122 22372 2213 2313 23383 2413 2425 2511 2627 2610 2712 2829 2815 2930 307 3048 3132 3134 3233 3334 338 349 3545 3635 3637 3616 3639 377 38393841 3940 402 4117 4192 4243 432 4372 443 4546 468 4655 4748 476 475 4861 4950 4953 5051 5152 5159 5256 5352 5354 5455 5463 553 5657 5758 5760 5745859 6062 6160 624 6285 6364 6465 6476 6566 6667 6676 6744 6768 6869 6875 6970 6971 691 702 7043 7172 7174 7273 7374 7318 741 7480 7576 7677 7778 77197879 7980 8018 8182 8283 8290 8384 8485 8520 8687 8688 8788 8792 8889 8891 8920 8984 8990 9091 9192 93104 94110 95116 95136 96137 96138 96142 9799 97143 98165 99148100132 100150 101102 102103 102156 10393 103154 104105 105106 105107 106111 106117 10794 10894 108107 108106 108109 109110 110112 111109 111113 112113 113114 113116 114115 114154 11595 115165 116117 116129 117118117128 118105 118119 118126 119120 120121 120123 121104 121122 122123 122125 123124 123126 124125 124127 125132 126127 126128 127130 127133 128129 128130 129131 130131 130134 131135 132133 133134 133140 134135 13496135136 135137 13699 13797 138139 139140 139142 140141 141146 142143 142145 143144 144145 144148 145146 146147 147149 147150 148149 149152 150151 150152 151152 152153 154155 155156 155157 156159 157158 157164 158159158162 158164 159160 160161 160162 161163 162163 163164 16498 165377 166265 166181 167250 167255 168189 170225 170227 171228 171216 171231 172219 173233 173232 173236 174213 174220 175197 175196 176184 176187 177582178210 178284 179291 179274 180305 180270 180306 180307 181308 182273 183184 183196 184185 185186 186168 187185 187186 188176 188186 189190 189192 19062 190191 191192 192193 194193 194175 195194 195188 195196 196197196198 198177 198199 199200 200201 201177 201202 203202 203204 204205 204178 205206 205210 206207 207200 207208 208199 209206 209208 210209 210211 211212 212213 213214 215214 215175 216215 216217 218217 218172 219214219174 220212 221211 221220 221222 222220 222178 222223 223224 224174 225223 225226 226224 226172 227172 227228 228218 229228 229230 230171 231232 232233 233234 234168 235234 23548 235173 236237 23730 237235 237238238239 23929 239240 240241 241242 242243 243230 243244 244231 245244 245232 245236 246241 246242 246245 246247 247237 247238 248369 248239 248249 249167 250251 250252 251252 252253 253240 253254 254169 255256 256257258249 258260 259258 259248 259260 261260 261262 262263 262267 263261 263264 265262 266181 266265 266267 267255 267268 268269 269270 270257 270271 271256 271272 271295 272182 273170 273241 274273 274275 275276 276170276277 277278 277283 278275 279278 279280 280277 280281 281282 282283 284282 285284 285281 286285 286204 286203 286287 287288 288285 289288 289290 290285 290291 291281 291279 292179 292293 293182 293274 294292 294293294272 295292 295296 296179 296290 297296 298289 298297 299298 299288 300299 300301 301287 302301 302303 303300 303304 304299 305304 306297 307269 308307 308268 308309 309310 309312 310307 310311 311305 312311 312313313314 314311 314304 315303 315314 315316 316302 317264 317203 317316 317318 318315 318319 319181 319313 320350 321356 321358 321368 322367 323363 324364 324365 326347 327343 329330 329331 331392 332330 333331 333334333339 334328 334335 335336 336333 336337 337338 337343 338339 338342 338327 339447 340341 341342 341327 343344 343326 344345 345346 345323 346326 346352 346360 347348 347320 348340 348349 349320 349371 350351 350355351352 351354 352353 353354 353357 354355 354356 355321 356357 356358 357358 357360 358359 359360 359367 360361 361362 361323 361322 361264 362332 363325 363324 364367 365364 365366 366369 367368 368349 368369 369370370371 37029 37128 37223 373431 373438 373456 374436 375424 375429 375430 376375 377416 377417 377376 378458 379423 380397 381399 381405 382402 382101 38293 383460 384467 384473 385449 385473 386442 386444 387388387390 388389 388391 388100 389330 389153 390391 390329 392393 392395 392439 393391 393394 394395 394380 395396 395440 396380 396398 396441 397398 398381 399400 399403 400401 400402 401382 402403 402414 403404 403410404405 404407 404408 405406 406407 407437 407438 408409 408410 409411 410411 411412 412413 412416 413414 414415 415101 415161 415416 416437 417418 417421 418419 419420 420421 420422 421379 422379 423376 423424 423378424425 424429 425426 425428 426427 427378 427428 427436 428429 428433 429431 429432 431434 432433 432434 432374 434435 435374 437373 438446 439440 439443 440441 440442 441386 442443 444445 444332 445446 446455 447444447448 448445 448385 449450 449467 450446 450451 451452 451465 452453 453454 453462 454455 454461 455456 456457 456372 457374 457458 457372 458459 458486 45914 45921 460461 460462 462463 463464 464452 465466 466467466468 468464 468469 469463 469470 470383 47024 471472 472468 472384 474447 474473 474471 474340 475555 475565 476545 477501 478542 478566 479577 479580 480568 482489 482559 484539 484570 485571 485572 485573 486487486491 487488 488482 488560 489487 489490 490481 490550 491481 491492 491530 492493 492496 493494 493495 494495 494499 495498 496495 496497 497498 497501 498499 498477 499500 500477 500502 501520 501530 502503 502504504505 505506 505513 506507 506509 507504 508507 508509 508510 509510 510511 511512 511483 512513 513514 514515 515516 516517 517518 517523 518505 518519 518521 519503 519520 520521 521522 521529 522523 522527 523524524515 524525 525514 525526 526512 527525 528527 528529 528536 528538 529530 530531 531481 531532 532533 532547 532548 533529 533534 534535 535536 536537 537538 537478 538539 539526 539540 539478 540541 540484 542543542565 543536 543544 544476 544555 545535 545546 546547 546552 547534 548549 548552 549481 549550 550551 550559 551552 551556 552553 553476 553554 554555 556554 556475 557475 557558 557564 558559 560549 56016 56056156138 561558 561562 562563 562480 563564 563565 565566 566567 567480 567569 568569 568574 569570 569571 570571 572541 572578 573578 574575 575576 576479 577573 577579 580579 580581 581576 581582 581183 582578交巡警平台编号交巡警平台位置标号说明:A11 A22 A33 A44 A55 A66 A77 A88 A99 A1010 A1111 A1212 A1313 A1414 A1515 A1616 A1717 A1818 A1919 A2020 B193 B294 B395 B496 B597 B698 B799 B8100 C1166 C2167 C3168 C4169 C5170 C6171 C7172 C8173 C9174 C10175 C11176 C12177 C13178 C14179 C15180 C16181 C17182 D1320 D2321 D3322A列:表示全市交巡警服务平台的名称编号B列:表示全市交巡警服务平台的位置标号。

2011高教社杯全国大学生数学建模竞赛B题参考答案

2011高教社杯全国大学生数学建模竞赛B题参考答案

交巡警服务平台的设置与调度优化分析摘要本文以实现警察的刑事执法、治安管理、交通管理、服务群众四大职能为宗旨,利用有限的警务资源,根据城市的实际情况与需求合理地设置了交巡警服务平台、分配各平台的管辖范围及调度警务资源。

并分别对题目的各问,作了合理的解答。

问题一:(1)、根据题目所给数据,确定各节点之间的相邻关系和距离,利用Floyd 算法及matlab编程求出两点之间的最短距离,使其尽量满足能在3分钟内有交巡警平台警力到达案发结点的原则,节点去选择平台,把节点分配给离节点距离最近的平台管辖,据此,我们得到了平台的管辖区域划分。

(2)、我们对进出该区的13条交通要道实现快速全封锁的问题,我们认定在所有调度方案中,某种方案中耗时最长的的围堵时间最短即最佳方案,利用0-1变量确定平台的去向,并利用线性规划知识来求解指派问题,求得了最优的调度方案。

(3)、在确定增添平台的个数和具体位置的问题中,我们将尽量保证每个节点都有一个平台可以在三分钟内到达作为主要原则来求解。

我们先找出到达每个平台的时间都超过三分钟的节点,并尝试在这些节点中选取若干个作为新的平台,求出合理的添加方案。

问题二:(1)、按照设置交巡警服务平台的原则和任务,分析现有的服务平台的设置是否合理,我们以各区覆盖率作为服务平台分布合不合理的评价标准,得到C、D、E、F区域平台设置不合理。

并尝试一些新的设置方案使得设置更为合理,最后以覆盖率最低的E区为例,使用一种修改方案得到一个比原方案更合理的交巡警服务平台的设置方案。

(2)、追捕问题要求在最快的时间内抓到围堵罪犯,在罪犯和警察的行动速度一致的前提假设下,我们先设定一个具体较小的时间,编写程序检验在这个时间内是否可以成功抓捕罪犯,不行则以微小时间间隔增加时间,当第一次成功围堵时,这个时间即为最佳围堵方案。

关健字: MATLAB软件,0-1规划,最短路,Floyd算法,指派问题一、问题重述“有困难找警察”,是家喻户晓的一句流行语。

2011年数学建模B题答案

2011年数学建模B题答案

load B1.txt %巡警站点号、横坐标、纵坐标(前三列)load B2.txt %起始点,末端位置号(两列)hzb=B1(:,2);%横坐标zzb=B1(:,3);%纵坐标start=B2(:,1);%起始位置fina=B2(:,2);%末端位置n=length(hzb);%坐标个数m=length(start);%起始点个数:含重复a=ones(n,n);%n阶矩阵b=10000.*a;%b为矩阵a的值乘上10000for i=1:m %每个始点出去x=start(i);y=fina(i);if y<=92s=((hzb(x)-hzb(y))^2+(zzb(x)-zzb(y))^2)^0.5;b(x,y)=s;b(y,x)=s;%双向图距离endendpath=zeros(n,20);%终点前一个路劲节点distance=b(:,1:20);%二十个站到其他点的最短距离u=0;mindis=10000;%最短距离初始为10000flag=1;s=zeros(n,1);for i=1:20s=0.*s;%每次清零flag=1;%bool型标量for j=1:nif distance(j,i)<10000path(j,i)=i;%若满足,就往下走endends(i)=1;for j=1:n% if flag==1mindis=10000;for k=1:nif s(k)==0 & distance(k,i)<mindisu=k;mindis=distance(k,i);%选择最小的赋给mindisendend% if mindis>30% flag=0;% ends(u)=1;for k=1:nif s(k)==0 & b(u,k)<10000 & distance(u,i)+b(u,k)<distance(k,i)distance(k,i)=distance(u,i)+b(u,k);path(k,i)=u; %选择最短路径endend% endendendfor i=1:20for j=1:nifdistance(j,i)<10000&fprintf(' %d %d %f,%d\n',i,j,distance(j,i),path(j,i));% fprintf('%d %d %f %d\n',i,j,distance(j,i),path(j,i));%fprintf('%f\n',distance(j,i)); %输出路径,始点,终点,及终点前一个结点endendend数学建模文章格式模版题目:明确题目意思一、摘要:500个字左右,包括模型的主要特点、建模方法和主要结果二、关键字:3-5个三.问题重述。

2011年数学建模竞赛B题参考答案(只做了一半)

2011年数学建模竞赛B题参考答案(只做了一半)

2011高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)A题城市表层土壤重金属污染分析随着城市经济的快速发展和城市人口的不断增加,人类活动对城市环境质量的影响日显突出。

对城市土壤地质环境异常的查证,以及如何应用查证获得的海量数据资料开展城市环境质量评价,研究人类活动影响下城市地质环境的演变模式,日益成为人们关注的焦点。

按照功能划分,城区一般可分为生活区、工业区、山区、主干道路区及公园绿地区等,分别记为1类区、2类区、……、5类区,不同的区域环境受人类活动影响的程度不同。

现对某城市城区土壤地质环境进行调查。

为此,将所考察的城区划分为间距1公里左右的网格子区域,按照每平方公里1个采样点对表层土(0~10 厘米深度)进行取样、编号,并用GPS记录采样点的位置。

应用专门仪器测试分析,获得了每个样本所含的多种化学元素的浓度数据。

另一方面,按照2公里的间距在那些远离人群及工业活动的自然区取样,将其作为该城区表层土壤中元素的背景值。

附件1列出了采样点的位置、海拔高度及其所属功能区等信息,附件2列出了8种主要重金属元素在采样点处的浓度,附件3列出了8种主要重金属元素的背景值。

现要求你们通过数学建模来完成以下任务:(1) 给出8种主要重金属元素在该城区的空间分布,并分析该城区内不同区域重金属的污染程度。

(2) 通过数据分析,说明重金属污染的主要原因。

(3) 分析重金属污染物的传播特征,由此建立模型,确定污染源的位置。

(4) 分析你所建立模型的优缺点,为更好地研究城市地质环境的演变模式,还应收集什么信息?有了这些信息,如何建立模型解决问题?题目A题城市表层土壤重金属污染分析摘要:本文研究的是某城区警车配置及巡逻方案的制定问题,建立了求解警车巡逻方案的模型,并在满足D1的条件下给出了巡逻效果最好的方案。

在设计整个区域配置最少巡逻车辆时,本文设计了算法1:先将道路离散化成近似均匀分布的节点,相邻两个节点之间的距离约等于一分钟巡逻路程。

2011年研究生数学建模B10699008

2011年研究生数学建模B10699008
4
ܹᇘ⊶
z
y
O
x
图 2 尖劈吸波体吸波示意
点与目标模拟阵列圆弧的圆心重合。根据导引仿真要求,静区从诸墙面得到的反射信号 的功率之和与从信号源直接得到的微波功率之比γ,始终满足γ ≤ 0.03。设s = 0.3m。
图 3 问题二的诸参数示意图
目标模拟器对导引头的视在目标运动从左端开始,以匀角速运动到右端,前后共4秒, 视在天线中心轴线对准静区中心,中心轴线处的发射功率强度随时间线性增大,结束时 比初始时增大了一倍。并假设:
参赛密码 (由组委会填写)
全国第八届研究生数学建模竞赛
学校 参赛队号 队员姓名
西北工业大学
10699008
1.段睿 2.常晶 3.闫西荡
参赛密码 (由组委会填写)
全国第八届研究生数学建模竞赛
题目
吸波材料与微波暗室问题的数学建模

要:

微波暗室提供了一个几乎没有反射的“自由空间”,是设备测试
的良好平台。本文分别对尖劈形状吸波体和微波暗室吸波性能进行了
5.1.1 模型假设 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.1.2 余弦散射体的性质 . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 符号说明 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4 入射波线在尖劈空缺间反射过程的数学模型
7
4.1 模型准备 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2011高教社杯全国大学生数学建模竞赛B题(题目改变)参考答案

2011高教社杯全国大学生数学建模竞赛B题(题目改变)参考答案

交巡警服务平台的设置与调度优化分析摘要本文综合应用了Floyd算法,匈牙利算法,用matlab计算出封锁全市的时间为1.2012小时。

并在下面给出了封锁计划。

为了得出封锁计划,首先根据附件2的数据将全市的道路图转为邻接矩阵,然后根据邻接矩阵采用Floyd算法计算出该城市任意两点间的最短距离。

然后从上述矩阵中找到各个交巡警平台到城市各个出口的最短距离,这个最短距离矩阵即可作为效益矩阵,然后运用匈牙利算法,得出分派矩阵。

根据分派矩阵即可制定出封锁计划:96-151,99-153,177-177,175-202,178-203,323-264,181-317, 325-325,328-328,386-332,322-362,100-387,379-418,483-483, 484-541,485-572。

除此以外,本人建议在编号为175的路口应该设置一个交巡警平台,这样可以大大减少封锁全市的时间,大约可减少50%。

关键词: Floyd算法匈牙利算法 matlab一、问题重述“有困难找警察”,是家喻户晓的一句流行语。

警察肩负着刑事执法、治安管理、交通管理、服务群众四大职能。

为了更有效地贯彻实施这些职能,需要在市区的一些交通要道和重要部位设置交巡警服务平台。

每个交巡警服务平台的职能和警力配备基本相同。

由于警务资源是有限的,如何根据城市的实际情况与需求合理地设置交巡警服务平台、分配各平台的管辖范围、调度警务资源是警务部门面临的一个实际课题。

试就某市设置交巡警服务平台的相关情况,建立数学模型分析研究下面的问题:警车的时速为60km/h, 现有突发事件,需要全市紧急封锁出入口,试求出全市所有的交巡警平台最快的封锁计划,一个出口仅需一个平台的警力即可封锁。

二、模型假设1、假设警察出警时的速度相同且不变均为60/km h 。

2、假设警察出警的地点都是平台处。

3、假设警察接到通知后同时出警,且不考虑路面交通状况。

三、符号说明及一些符号的详细解释A 存储全市图信息的邻接矩阵 D 任意两路口节点间的最短距离矩阵X 01-规划矩阵ij a ,i j 两路口节点标号之间直达的距离 ij d 从i 路口到j 路口的最短距离 ij b 从i 号平台到j 号出口的最短距离ij x 取0或1,1ij x =表示第i 号平台去封锁j 号出口在本文中经常用到,i j ,通常表示路口的编号,但是在ij d ,ij b ,ij x 不再表示这个意思,i 表示第i 个交巡警平台,交巡警平台的标号与附件中给的略有不同,如第21个交巡警平台为附件中的标号为93的交巡警平台,本文的标号是按照程序的数据读取顺序来标注的,在此声明;j 表示第j 个出口,如:第5个出口对应于附件中的路口编号为203的出口。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2011年全国研究生数学建模竞赛B 题吸波材料与微波暗室问题的数学建模新型隐身歼击机歼-20最近试飞成功,标志着我国在隐身技术领域取得了重大进展。

所谓飞机隐身,是指在飞机有关部位涂覆或粘贴吸波材料,合理设计飞机外形与布局等使敌方探测系统(如无线电雷达,红外雷达,激光雷达等)只接收到大大减弱后的飞机反射信号,从而降低被发现或跟踪的可能。

隐身技术的基础研究包括探索不同频段上吸波的机理,研制高效吸波的特殊材料,将吸波材料设计成合理的形状使之发挥最大效能等,其成果不仅可以应用到飞机舰船坦克等军用装备,也可以应用到其他科技领域。

例如,许多以电磁波,光波或声波的传播为信息载体的仪器设备,都需要功能与性能的测试,甚至还要对其工作过程进行尽可能真实的仿真。

早期这类测试常选择在无电磁干扰的偏僻空旷山区进行。

在近代各种干扰已无法全部避免,所以近三十多年来这样的测试与仿真(例如本题将要研究的导弹制导系统的仿真),放置在被称为“无回波暗室”的实验室中进行。

无回波暗室能够屏蔽外界干扰信号,通过内墙(包括地面与天顶面)敷设的吸波体,吸收各类反射信号,使室内反射大为减弱,被测设备接收到的“似乎”只有测试信号源发出的实验所需信号。

这样,它为测试设备提供了一个几乎没有反射信号的“自由空间”。

图1给出了二维示意。

由物理学知道,除了真空,没有一种介质对于各频段的电磁辐射波(甚至包括声波)的传播是绝对透明的,波从一种介质辐射到另一种介质时,都将发生不同程度的反射、折射乃至散射,一部分波的能量被 图1 无回波暗室工作示意图 吸收转化为介质的内能。

定义反射率为反射波功率r P 与入射波功率i P 之比:/r i P P ρ=,显然1ρ<。

吸波材料一般制成平板形状和特殊形状两大类基本形状。

平板形状吸波体的主要性能指标是电磁波从空间向材料表面垂直入射(入射角0i θ=)时的反射率ρ,其值越小,吸波性能越高。

当入射角0i θ≠时称为斜入射,斜入射时将出现反射、折射情况,此时反射率的理论计算较复杂,与入射角、两种介质的电参数和波的极化方向等多种因素有关,本题将反射率简化为满足余弦法则,即()cos ραρα=,其中α为入射角大小,其中ρ为垂直入射反射率。

为了提高无回波暗室的吸波性能,一般使用锥体(正四棱锥或正圆锥体等)或尖劈形状的吸波体,大量锥体或尖劈有规律地排列组成的整体粘贴在墙上构成吸波体。

采用这些形状的主要理由是它们能使得辐射波在尖形的几何空缺间形成多次反射和透射-反射,降低反射出去的能量,实现高效率吸波。

图2示意了一条想象中的辐射线(实际上是在一个微小立体角内辐射)射入尖劈吸波体后, 经过多次反射以及透射过尖劈后进入相邻尖劈空间形成反射的情况。

2α为尖劈角,h 为尖劈的高,d 为尖劈的底部宽度。

理论上还应有多次透射后进入相邻空间的反射,但能量已极小,工程上可以不计。

吸波体的吸波性能计算需要考虑多次反射,微波暗室的电磁特性分析应研究各个墙面间的相互影响(即一个墙面既接受其他墙面的辐射又同时反射给其他墙面)。

尽管理论上可通过求解由Maxwell 方程组和相应的边界条件构成的数学物理问题,来严格地分 析与计算,但模型复杂且计算繁杂量大。

工程上处理此类复杂问题的常用思路是先采用简化模型进行理论分析,再用实验测试数据修正由简化模型得出的分析结果。

若模型较合理、测试数据准确,则这样的处理图2 尖劈形吸波体吸波功能的示意 对实际研究具有较高的指导价值。

本题要求采用上述工程处理的思路,用较简单直观的几何光学模型,来初步研究分析特殊吸波体和微波暗室的性能这两类问题,后续的实验测试与修正不包括在本题中。

问题1:尖劈形状吸波体的性能分析设尖劈形状吸波体及其坐标系如图3所示,尖劈的长度沿x 方向为无限长,其他尺寸记号同图2。

由射向角θ(z 轴正向与入射线负方向的夹角)和方位角ϕ(x轴正向与射线在xOy 平面上投影的夹角)确定入射波线的方向,只考虑波在两种不同介质界面处的反射,不考虑边缘处的绕射。

假设尖劈材料的电性能参数各处均匀,垂直入射的反射率为ρ,斜入射时的反射率满足前述的余弦法则,设入射波线的辐射强度为1单位。

试建立入射波线在一个尖劈几何空缺间反射过程图3 尖劈吸波体吸波示意 的数学模型,即分别刻画最终反射波线的方向,反射次数,反射波的辐射强度与已知反射率、诸几何参数之间的定量关系。

建议:可先从二维问题着手研究起。

问题2:导弹导引仿真实验用的微波暗室的性能研究自主寻的式导弹的制导系统的核心设备之一是安置在头部、能自动寻找和跟踪目标的导引头。

在导弹的研制过程中需要在地面条件下模拟导引头跟踪目标的性能。

设导引头的工作波段在微波段(指频率为0.3-300GHz(波长1m-1mm))。

一种已经研究成功的仿真系统主要由目标模拟器系统,作为导引头支架的三轴转台和微波暗室组成。

目标模拟器用来模拟目标运动,它由天线阵列子系统及其控制子系统组成。

天线阵列是安置在微波暗室靠近一面墙、有规律排列在同一球面的若干个微波天线,各天线的中心轴线对准球心,按某种规律依次发射模拟目标回波的微波信号,模拟自由空间中目标相对于导弹的运动。

需要测试的导引头安装在三轴转台上,转台根据导引头跟踪目标时发出的制导指令作三自由度 角度的转动,带动导引头模拟导弹在空间的三自由度运动。

微波暗室提供一个微波“自由空间”。

图4中只画出一面墙上的吸波材料,实际上所有6个墙面均铺设吸波材料。

本题研究一个简化问题。

目标模拟器是圆弧形线阵列,而非球面阵列,它安装在靠近一面墙的中心水平面内,圆弧线对两边的墙处于对称位置,圆弧半径R ,各天线轴线对准圆心(即导引头位置)。

设目标模拟器对导引头的总张角45β=︒,每3︒安装一个天线,共16个天线。

设天线属于余弦辐射体(见附录2),辐射强度cos i N I I i =,N I 为天线轴线图4 导引仿真实验室示意 方向辐射强度,i I 为与法线成i 角方向的辐射强度。

目标模拟器的工作基于所谓“等价重心原理”:如果两个相邻天线,A B 对导引头O 的张角AOB ∠小于某个阈值(见图5),,A B 同时发射同频率同相位且相同极化方向、但功率不同的微波信号时,根据导引头的功能,它将对准,A B 中间的“重心”P ,它满足: B A P AOP BOP P ∠=∠, (1) 图5 模拟目标运动的原理 其中,A B P P 分别为,A B 发射的微波功率,角度均以弧度计。

OP 就是导引头“感觉”到的目标方向,这个方向称为导引头的视在方向。

这等价于,A B 不工作,代之以在P 点存在着一个辐射,A B 两者功率之和的“视在天线”。

于是,连续地改变天线,A B 的功率之比,且两者之和为常值时,导引头就“感觉”到视在目标在,A B 之间运动,距离不变。

又因为视在目标功率的大小模拟了导弹与目标之间距离的远近,故若两者功率之和变化,功率之比不变,则模拟了目标与导弹间的距离变化,但方向不变。

这样,控制两相邻天线的功率比及它们的功率之和,并连续地控制相邻的两两一组的天线的开关,使之时间上前后衔接,对导引头相当于在目标阵列上有一个运动的视在天线,模拟了导弹与目标之间的相对连续的运动。

(注:上述原理是产生视在目标的背景介绍,本题的重点宜放在微波暗室的性能分析上)图6 问题2的诸参数示意图现在回到问题本身。

设暗室的宽B =18,高H =14,长L =15,1b =,线阵列的圆弧半径14R =,单位均为米。

所有墙面铺设同一规格的吸波体(上述数据均从吸波体的顶端平面算起)。

图6所示暗室右端中心的s s ⨯的小方块面积处是安置导引头的部位,称为“静区”。

静区小方块的中心点与目标模拟阵列圆弧的圆心重合。

静区接收到的电磁能量直接对导弹的导引仿真有重要影响,根据导引仿真要求,静区从诸墙面得到的反射信号的功率之和与从信号源直接得到的微波功率之比γ,始终满足γ≤0.03。

设0.3s =m 。

目标模拟器对导引头的视在目标运动从左端开始,以匀角速运动到右端,前后共4秒,视在天线中心轴线对准静区中心,中心轴线处的发射功率强度随时间线性增大,结束时比初始时增大了一倍。

并假设:(1)视在天线发射功率强度分布满足余弦辐射体(见附录2);(2)只考虑所有墙面对辐射的反射,不计入墙面的散射;(3)不计入模拟器的天线及其安装支架,以及导引头本身对辐射的影响;若暗室铺设平板形吸波材料,其垂直反射率ρ=0.50。

试建立合适的数学模型,在上述假设下,根据提供的数据,通过对模型的分析与数值计算,判断这样的微波暗室能否能满足仿真技术要求? 在此弹目相对运动过程中,何时的γ值最小?进一步,若暗室改为铺设尖劈形吸波材料,由于沿尖劈形吸波体各平面处的吸波效果不是常数,所以常用统计的方法求出其平均值,称此平均值为平均反射率。

现设此平均反射率已经求出,为ρ=0.05(相当于尖劈形吸波体被换成另一种吸波性能更好材料的平板形吸波体的垂直反射率),请你再次用模型进行计算,根据结果判断,这样的暗室是否能满足仿真技术要求?何时的γ值最小?【附录1】 立体角的基本概念辐射能在立体锥角范围内传播,需要一个描述立体锥角“大小”的数学量——立体角。

平面角的大小是用过一个顶点的两条射线所夹的范围来衡量,以弧度或度为单位,弧长等于半径的圆弧所对的平面角的大小定义为一弧度(rad )。

圆的平面角为2πrad 。

三维空间里立体角定义:以立体锥角的顶点为球心,作一半径为R 的球面,用此锥角在球面上所截微元面积d S ,除以半径R 的平方,来表示此立体角元的大小: 附图1 立体角定义 2d d S Rω=。

(f1.1) 若微元面积的法向量与辐射方向单位向量n 成α角,则22d cos d d n S S R R αω⋅⋅==, (f1.2) 立体角的单位为立体弧度或球面度(sr ),当截出的球面积等于半径平方时,该立体角的大小为1球面度。

在球坐标系中立体角的计算如下。

设辐射源O 位于球坐标的原点,在球坐标系里辐射方向由方位角ϕ和高低角i 给出。

球面上的一微元面积d S 对原点O 构成的立体角为附图2 球坐标系中的立体角元 d ω,由于 2d (sin d )(di)sin d d S R i R R i i ϕϕ==,故立体角微元为 2d d sin d d S i i R ωϕ==。

(f1.3) 原点周围的全部空间的立体角大小为:200sin d d 4i i ππωϕπ==⎰⎰。

(f1.4)【附录2】 关于辐射的几个描述参量1. 辐射通量 本身发射辐射能的物体,称为一次辐射源。

受到别的辐射源照射后透射或反射辐射能的物体称为二次辐射源。

这两种辐射源统称为辐射体。

辐射体向周围空间发出辐射能,用辐射功率来描述这些辐射能。

相关文档
最新文档