四川省成都市青白江区祥福中学2020-2021学年七年级上学期数学期中试卷

合集下载

2020-2021学年度七年级(上)期中数学试卷 (三)(附答案)

2020-2021学年度七年级(上)期中数学试卷 (三)(附答案)

2020-2021学年度七年级(上)期中数学试卷 (附答案)一、选择题(1-10题,每小题3分;11-16题,每小题3分,共42分)1.(3分)如果水库的水位高于正常水位5m时,记作+5m,那么低于正常水位3m时,应记作()A.+3m B.﹣3m C.+13m D.﹣5m2.(3分)下表是我县四个景区今年1月份某天6时气温,其中气温最低的景区是()景区白莲河三角山策湖湿地花涧谷气温﹣1℃﹣7℃﹣2℃2℃A.白莲河B.三角山C.策湖湿地D.花涧谷3.(3分)下列各式的计算结果中,正确的是()A.﹣3﹣(﹣3)=﹣6B.﹣3+4=﹣1C.2×(﹣4)+1=7D.(﹣2)3﹣1=﹣94.(3分)﹣(﹣6)的相反数是()A.|﹣6|B.﹣6C.0.6D.65.(3分)下列几何体中,其面既有平面又有曲面的有()A.1个B.2个C.3个D.4个6.(3分)建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,拉一条直的参照线,然后沿着线砌墙,其运用到的数学原理是()A.两点确定一条直线B.过一点有无数条直线C.两点之间,线段最短D.连接两点之间的线段叫做两点之间的距离7.(3分)将下列如图的平面图形绕轴l旋转一周,可以得到的立体图形是()A.B.C.D.8.(3分)如图,用圆规比较两条线段A′B′和AB的长短,其中正确的是()A.A′B′>AB B.A′B′=AB C.A′B′<AB D.A′B′≤AB 9.(3分)如图,点O在直线DB上,已知∠1=15°,∠AOC=90°,则∠2的度数为()A.165°B.105°C.75°D.15°10.(3分)在﹣2、3、﹣4、﹣5这四个数中任取两个数相乘,得到的积最大的是()A.20B.﹣20C.10D.811.(2分)在数轴上到原点距离等于10个单位的数是()A.10B.±10C.9D.9或﹣11 12.(2分)如图所示,从O点出发的五条射线,可以组成小于平角的角的个数是()A .10个B .9个C .8个D .4个13.(2分)有理数a ,b ,c 在数轴上的位置如图所示,则下列结论正确的是( )A .a +c =0B .a +b >0C .b ﹣a >0D .bc <014.(2分)若|x ﹣3|+(y ﹣2)2=0,则x 和y 各是多少( )A .x =1,y =2B .x =3,y =1C .x =3,y =2D .x =0,y =015.(2分)如图,数轴的单位长度为1,若点A 和点C 所表示的两个数的绝对值相等,则点B 表示的数是( )A .﹣3B .﹣1C .1D .316.(2分)两根木条,一根长20cm ,另一根长24cm ,将它们一端重合且放在同一条直线上,此时两根木条的中点之间的距离为( )A .2cmB .4cmC .2cm 或22cmD .4cm 或44cm二、填空题(17,18题,每小题3分;19题4分,共10分)17.(3分)若∠α=25°42′,则它余角的度数是 .18.(3分)计算:若规定新运算:a *b =2a ﹣b ,则(﹣2)*4= .19.(4分)用“>”或“<”填空:①−14 −13; ②0 ﹣|﹣5|.三、解答题(20题12分,21,22每题10分,23,24,25每题12分,共68分)20.(12分)计算:(1)(﹣225)﹣(+4.7)﹣(﹣0.4)+(﹣3.3) (2)(+34)﹣(−54)﹣|﹣3|(3)(12−59+712)×(﹣36)(4)(﹣48)÷(﹣2)3﹣(﹣25)×(﹣4)+(﹣2)221.(10分)如图,B 、C 两点在线段AD 上,(1)BD=BC+;AD=AC+BD﹣;(2)如果CD=4cm,BD=7cm,B是AC的中点,则AB的长为多少?22.(10分)如图,已知∠AOC=∠BOD=90°,∠COD=38°,求∠AOB的度数.23.(12分)某检修小组乘一辆汽车沿公路东西方向检修线路,约定向东为正.某天从A地出发到收工时,行走记录为(单位:千米):+15,﹣2,+5,﹣1,+10,+3,﹣2,+12,+4,﹣2,+6.(1)计算收工时检修小组在A地的哪一边?距A地多远?(2)若每千米汽车耗油量为0.4升,求出发到收工汽车耗油多少升.24.(12分)已知∠AOB=40°,OD是∠BOC的平分线.(1)如图1,当∠AOB与∠BOC互补时,求∠COD的度数;(2)如图2,当∠AOB与∠BOC互余时,求∠COD的度数.25.(12分)观察下列各式﹣1×12=−1+12−12×13=−12+13−13×14=−13+14(1)−14×15=;−1n•1n+1=(n≥1的正整数).(2)用以上规律计算:(﹣1×12)+(−12×13)+(−13×14)+…+(−12015×12016)。

2020-2021七年级数学上期中试题(带答案)

2020-2021七年级数学上期中试题(带答案)

2020-2021七年级数学上期中试题(带答案)一、选择题1.有理数a、b、c在数轴上的对应点如图,下列结论中,正确的是()A.a>c>b B.a>b>c C.a<c<b D.a<b<c2.将一副直角三角尺按如图所示摆放,图中锐角∠1的度数为()A.58°B.59°C.60°D.61°3.如图,O在直线AB上,OC平分∠DOA(大于90°),OE平分∠DOB,OF⊥AB,则图中互余的角有()对.A.6B.7C.8D.94.若一个角的两边与另一个角的两边分别平行,则这两个角()A.相等B.互补C.相等或互补D.不能确定5.计算3x2﹣x2的结果是()A.2 B.2x2 C.2x D.4x26.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是()A.81B.508C.928D.13247.将如图所示的Rt△ACB绕直角边AC旋转一周,所得几何体的主视图(正视图)是()A .B .C .D .8.点M 、N 都在线段AB 上, 且M 分AB 为2:3两部分, N 分AB 为3:4两部分, 若MN=2cm, 则AB 的长为( ) A .60cmB .70cmC .75cmD .80cm9.如图,用火柴棒摆出一列正方形图案,第①个图案用了 4 根,第②个图案用了 12 根,第③个图案用了 24 根,按照这种方式摆下去,摆出第⑥个图案用火柴棒的根数是( )A .84B .81C .78D .7610.已知x =2是关于x 的一元一次方程mx+2=0的解,则m 的值为( ) A .﹣1 B .0 C .1 D .211.已知整数01234,,,,,L a a a a a 满足下列条件:01021320,1,2,3==-+=-+=-+L a a a a a a a 以此类推,2019a 的值为( )A .1007-B .1008-C .1009-D .1010- 12.我县人口约为530060人,用科学记数法可表示为( )A .53006×10人 B .5.3006×105人 C .53×104人 D .0.53×106人 二、填空题13.一个圆柱的底面半径为R cm ,高为8cm ,若它的高不变,将底面半径增加了2cm ,体积相应增加了192πcm.则R=________.14.已知3x -8与2互为相反数,则x = ________.15.某校春游,若包租相同的大巴13辆,那么就有14人没有座位;如果多包租1辆,那么就多了26个空位,若设春游的总人数为x 人,则列方程为_____ 16.下面每个表格中的四个数都是按相同规律填写的:根据此规律确定的值为_______.17.小华在计算14a -时,误把“-”看成“+”,求得结果为5-,则14a-=____________.18.某商场将一款空调按标价的八折出售,仍可获利10%,若该空调的进价为2000元,则标价为_________元.19.在数轴上,若点A表示2-,则到点A距离等于2的点所表示的数为______.20.某公园划船项目收费标准如下:船型两人船(限乘两人)四人船(限乘四人)六人船(限乘六人)八人船(限乘八人)每船租金(元/小时)90100130150某班18名同学一起去该公园划船,若每人划船的时间均为1小时,则租船的总费用最低为________元.三、解答题21.先化简再求值:a2﹣(5a2﹣3b)﹣2(2b﹣a2),其中a=﹣1,b=12.22.今年秋季,长白山土特产喜获丰收,某土特产公司组织10辆汽车装运甲、乙、丙三种土特产去外地销售,按计划10辆车都要装运,每辆汽车只能装运同一种土特产,且必须装满.设装运甲种土特产的汽车有x辆,装运乙种土特产的汽车有y辆,根据下表提供的信息,解答以下问题.(1)装运丙种土特产的车辆数为(用含x、y的式子表示);(2)用含x、y的式子表示这10辆汽车共装运土特产的吨数;(3)求销售完装运的这批土特产后所获得的总利润(用含x、y的式子表示).23.已知y1=6﹣x,y2=2+7x,解答下列问题:(1)当y1=2y2时,求x的值;(2)当x取何值时,y1比y2小﹣3.24.某鱼池捕鱼8袋,以每袋25千克为准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如下:1.5,-3, 2,-0.5, 1,-2,-2,-2.5.这8袋鱼一共多少千克?25.在做解方程练习时,学习卷中有一个方程“2y–12=12y+■”中的■没印清晰,小聪问老师,老师只是说:“■是一个有理数,该方程的解与当x=2时代数式5(x–1)–2(x–2)–4的值相同.”小聪很快补上了这个常数.同学们,你们能补上这个常数吗?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据数轴上的数,右边的总比左边的大写出后即可选择答案.【详解】根据题意得,a<c<b.故选C.【点睛】本题考查了利用数轴比较有理数的大小,熟记数轴上的数右边的总比左边的大是解题的关键.2.C解析:C【解析】【分析】根据特殊直角三角形的角度即可解题.【详解】解:由特殊直角三角形可知,∠1=90°-30°=60°,故选C.【点睛】本题考查了特殊直角三角形的认识,属于简单题,熟悉特殊三角形的角度是解题关键.3.D解析:D【解析】【分析】根据角平分线的定义、垂直的定义、角互余的定义、角的和差即可得.【详解】∵OC平分DOA∠∴12AOC COD DOA ∠=∠=∠∵OE平分DOB∠∴DOE BOE ∠=∠∴11()1809022COE COD DOE DOA DOB∠=∠+∠=∠+∠=⨯︒=︒∴90AOC DOE ∠+∠=︒,90AOC BOE ∠+∠=︒,90COD BOE ∠+∠=︒ ∵OF AB ⊥∴90AOF BOF ∠=∠=︒∴90AOC COF ∠+∠=︒,90BOE EOF ∠+∠=︒,90BOD DOF ∠+∠=︒ ∴90COD COF ∠+∠=︒,90DOE EOF ∠+∠=︒ 综上,互余的角共有9对 故选:D . 【点睛】本题考查了角平分线的定义、垂直的定义、角互余的定义、角的和差,熟记角的运算是解题关键.4.C解析:C 【解析】 【分析】分两种情况,作出图形,然后解答即可. 【详解】如图1,两个角相等,如图2,两个角互补,所以,一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补。

2020-2021青白江区七年级上册期中试题(含答案)

2020-2021青白江区七年级上册期中试题(含答案)

2020-2021青白江区七上册期中试题(含答案)第Ⅰ卷选择题(共30分)一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.根据等式的基本性质,下列结论正确的是()A.若,则B.若,则C.若,则D.若,则2.满足下列条件的△ABC,不是直角三角形的是( )A、b2=c2-a2B、a∶b∶c=3∶4∶5C、∠C=∠A-∠BD、∠A∶∠B∶∠C=12∶13∶153.将下列各选项中的平面图形绕轴旋转一周,可得到如图所示的立体图形的是()A. B. C. D.4.据舟山市旅游局统计,2012年舟山市接待境内外游客约2771万人次.数据2771万用科学记数法表示为( )A.2771×107B.2.771×107C.2.771×104D.2.771×1055、下列说法正确的是()A.平方等于本身的数是0和±1 B.1/2一定是负数C.绝对值等于它本身的数是0、1 D.倒数等于它本身的数是±16.在-6,0,1/6,1 这四个数中,最大的数是()A.-6 B.0 C.1/6 D.17、某商品价格a元,降低10%后,又降低了10%,销售量猛增,商店决定再提价20%,提价后这种商品的价格为()A.a元B.1.08a元C.0.972a元D.0.96a元8.已知m≥2,n≥2,且m、n均为正整数,如果将m n进行如图所示的“分解”,那么下列四个叙述中正确的有………………………………()①在25的“分解”中,最大的数是11.②在43的“分解”中,最小的数是13.③若m3的“分解”中最小的数是23,则m=5.④若3n的“分解”中最小的数是79,则n=5.(第8题)A.1个B.2个C.3个D.4个9.下列计算中,正确的是()A.﹣2(a+b)=﹣2a+b B.﹣2(a+b)=﹣2a﹣b2C.﹣2(a+b)=﹣2a﹣2b D.﹣2(a+b)=﹣2a+2b10.若﹣3x2m y3与2x4y n是同类项,则|m﹣n|的值是( )A.0B.1C.7D.﹣1第Ⅱ卷非选择题(共90分)二、填空题(本大题共5个小题,每小题3分,共15分)11.—2的相反数的倒数是_____.12. 如图,∠AOB=90°,以O为顶点的锐角共有个13.1cm2的手机上约有细菌120 000个,120 000用科学记数法表示为.14.如图,方格纸中的每一个小方格都是边长为1个单位长度的正方形,则图中阴影正方形的边长是________.15.为改善学生的营养状况,中央财政从2011年秋季学期起,为试点地区在校生提供营养膳食补助,一年所需资金约为160亿元,用科学记数法表示为__________元.三、解答题 (本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.(20分)计算与求值:(1) 312 +(-12 )-(-13 )+223 (2) (23 -14 -38 +524 )×48(3) -18÷(-3)2+5×(-12)3-(-15) ÷517.(....8.)....(1) x -2(5 + x ) =-4 . (2)x.12 =1.x+23.18.已知代数式:A=2x 2+3xy +2y -1,B=x 2-xy +x -12; (1)当x -y =-1,xy =1时,求A -2B 的值; (2)若A -2B 的值与x 的取值无关,求y 的值.19.小明用172元钱买了语文和数学的辅导书,共10本,语文辅导书的单价为18元,数学辅导书的单价为10元.求小明所买的语文辅导书有多少本?1(第14题图)20.已知在纸面上有一数轴(如图),折叠纸面.(1)若1表示的点与-1表示的点重合,则-2表示的点与数表示的点重合(2)若-1表示的点与3表示的点重合,回答以下问题:① 5表示的点与数表示的点重合;②若数轴上A、B两点之间的距离为9(A在B的左侧),且A、B两点经折叠后重合,求A、B两点表示的数是多少?21.已知数轴上有A,B,C三点,分别表示数-24,-10,10.两只电子蚂蚁甲、乙分别从A,C两点同时相向而行,甲的速度为4个单位/秒,乙的速度为6个单位/秒.(1)问甲、乙在数轴上的哪个点相遇?(2)问多少秒后甲到A,B,C三点的距离之和为40个单位?若此时甲调头往回走,问甲、乙还能在数轴上相遇吗?若能,求出相遇点;若不能,请说明理由.(3)若甲、乙两只电子蚂蚁(用P表示甲蚂蚁、Q表示乙蚂蚁)分别从A,C两点同时相向而行,甲的速度变为原来的3倍,乙的速度不变,直接写出....多少时间后,原点O、甲蚂蚁P与乙蚂蚁Q三点中,有一点恰好是另两点所连线段的中点.AB C0 10-24-1022、规定一种新运算:a*b=(a+1) -(b -1),例如(-6)* (-3)=(-6+1) -(-3-1)=-5+4=-1。

2020-2021成都七中初中学校七年级数学上期中一模试卷含答案

2020-2021成都七中初中学校七年级数学上期中一模试卷含答案
665 575 306≈6.66×108.故选C.
7.B
解析:B
【解析】
【分析】
根据倒数的定义求解.
【详解】
-2的倒数是-
故选B
【点睛】
本题难度较低,主要考查学生对倒数相反数等知识点的掌握
8.C
解析:C
【解析】
【分析】
分别解出两方程的解,两解相等,就得到关于a的方程,从而可以求出a的值.
【详解】
解第一个方程得:x= ,
【详解】210万=2100000,
2100000=2.1×106,
故选B.
【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
10.D
解析:D
【解析】
【分析】
根据已知和与一个加数,则另一个加数=和-一个加数,然后计算即可.
19.【解析】【分析】根据逆流速度=静水速度-水流速度顺流速度=静水速度+水流速度表示出逆流速度与顺流速度根据题意列出方程求出方程的解问题可解【详解】解:设A港与B港相距xkm根据题意得:解得:x=504
解析:【解析】
【分析】
根据逆流速度=静水速度-水流速度,顺流速度=静水速度+水流速度,表示出逆流速度与顺流速度,根据题意列出方程,求出方程的解问题可解.
现有19张硬纸板,裁剪时 张用A方法,其余用B方法。
(1)用 的代数式分别表示裁剪出的侧面和底面的个数;
(2)若裁剪出的侧面和底面恰好全部用完,问能做多少个盒子?
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.C
解析:C
【解析】
【分析】

2020-2021成都市七年级数学上期中模拟试题(带答案)

2020-2021成都市七年级数学上期中模拟试题(带答案)

2020-2021成都市七年级数学上期中模拟试题(带答案)一、选择题1.大于1的正整数m 的三次幂可“分裂”成若干个连续奇数的和,如23=3+5,33=7+9+11,43=13+15+17+19,…若m 3分裂后,其中有一个奇数是2015,则m 的值是( ) A .43B .44C .45D .462.生物学家发现一种病毒的长度约为0.000043mm ,用科学记数法表示这个数的结果为(单位:mm )( ) A .4.3×10﹣5B .4.3×10﹣4C .4.3×10﹣6D .43×10﹣53.有理数 a ,b 在数轴上的点的位置如图所示,则正确的结论是( )A .a <﹣4B .a+ b >0C .|a|>|b|D .ab >0 4.若一个角的两边与另一个角的两边分别平行,则这两个角( )A .相等B .互补C .相等或互补D .不能确定5.实数a ,b ,c ,d 在数轴上的位置如图所示,下列关系式不正确的是( )A .|a|>|b|B .|ac|=acC .b <dD .c+d >06.我国古代名著《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四,问人数几何?原文意思是:现在有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?如果假设共有x 人,则可列方程为( ) A .8374x x +=+B .8374x x -=+C .8374x x +=-D .8374x x -=-7.2019的倒数的相反数是( ) A .-2019B .12019-C .12019D .20198.下列图形经过折叠不能围成棱柱的是( ).A .B .C .D .9.一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x 双,列出方程( ) A .10%x =330 B .(1﹣10%)x =330 C .(1﹣10%)2x =330 D .(1+10%)x =330 10.已知|m+3|与(n ﹣2)2互为相反数,那么m n 等于( )A .6B .﹣6C .9D .﹣911.如下图,将直角三角形绕一条边所在直线旋转一周后形成的几何体不可能是( )A .B .C .D .12.如果||a a =-,下列成立的是( ) A .0a >B .0a <C .0a ≥D .0a ≤二、填空题13.填在下列各图形中的三个数之间都有相同的规律,根据此规律,a 的值是____.14.已知x=3是方程ax ﹣6=a+10的解,则a= .15.在下列方程中 ①x+2y=3,②139x x -=,③2133y y -=+,④2102x =,是一元一次方程的有_______(填序号).16.用科学记数法表示:-206亿=______.17.实数a ,b 在数轴上的位置如图所示,则化简代数式|a+b|﹣2a =_____.18.若多项式2x 2+3x+7的值为10,则多项式6x 2+9x ﹣7的值为_____. 19.若x 、y 互为相反数,a 、b 互为倒数,c 的绝对值等于2,则201820182()()2x y ab c +--+=_____. 20.如图,AB ∥ED ,AG 平分∠BAC ,∠ECF =80°,则∠F AG =_____.三、解答题21.有20筐白菜,以每筐25千克为标准,超过或不足的分别用正、负来表示,记录如下: 与标准质量的差(单位:千克) 3- 2-1.5- 0 12.5 筐 数14 2328(1)与标准质量比较,20筐白菜总计超过或不足多少千克? (2)若白菜每千克售价2.6元,则出售这20筐白菜可卖多少元?22.任何一个有理数都能写成分数的形式(整数可以看作是分母为1的分数).我们知道:0.12可以写成123,0.12310025=可以写成1231000,因此,有限小数是有理数.那么无限循环小数是有理数吗?下面以循环小数2.61545454 2.6154••=L 为例,进行探索: 设 2.6154x ••=,①两边同乘以100得: 100261.54x ••=,② ②-①得:99261.54 2.61258.93x =-=25893287799001100x ∴== 因此,••261.54是有理数.(1)直接用分数表示循环小数1.5•=(2)试说明3.1415••是一个有理数,即能用一个分数表示. 23.解方程:24.先化简,再求值:(2x 2﹣2y 2)﹣3(x 2y 2+x 2)+3(x 2y 2+y 2),其中x =﹣1,y =2. 25.用四个长为m ,宽为n 的相同长方形按如图方式拼成一个正方形.(1).请用两种不同的方法表示图中阴影部分的面积. 方法①: ; 方法②: .(2).由 (1)可得出()m n +2,2()m n - ,4mn 这三个代数式之间的一个等量关系为: . (3)利用(2)中得到的公式解决问题:已知2a+b=6,ab =4,试求2(2)a b -的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C【解析】【分析】观察可知,分裂成的奇数的个数与底数相同,然后求出到m3的所有奇数的个数的表达式,再求出奇数2015的是从3开始的第1007个数,然后确定出1007所在的范围即可得解.【详解】∵底数是2的分裂成2个奇数,底数为3的分裂成3个奇数,底数为4的分裂成4个奇数,∴m3分裂成m个奇数,所以,到m3的奇数的个数为:2+3+4+…+m=()()221m m+-,∵2n+1=2015,n=1007,∴奇数2015是从3开始的第1007个奇数,∵()()4424412+-=989,()()4524512+-=1034,∴第1007个奇数是底数为45的数的立方分裂的奇数的其中一个,即m=45.故选C.【点睛】本题是对数字变化规律的考查,观察出分裂的奇数的个数与底数相同是解题的关键,还要熟练掌握求和公式.2.A解析:A【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】3.C解析:C【解析】由数轴得:-4<a<-3,1<b<2,∴a+b<0,|a|>|b|,ab<0,则结论正确的选项为C,故选C.4.C解析:C【解析】分两种情况,作出图形,然后解答即可.【详解】如图1,两个角相等,如图2,两个角互补,所以,一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补。

2020-2021学年度七年级上学期期中联考数学试卷(含解答)

2020-2021学年度七年级上学期期中联考数学试卷(含解答)

2020-2021学年度七年级上学期期中联考数学试卷一、选择题(共10题,每小题2分,共20分)1.在下列各数:0.51515354…、0、0.333、3π、0.101101101中,无理数的个数是()A. 1B. 2C. 3D. 42.一实验室检测A、B、C、D四个元件的质量(单位:克),超过标准质量的克数记为正数,不足标准质量的克数记为负数,结果如图所示,其中最接近标准质量的元件是()A. B. C. D.3.近年来,华为手机越来越受到消费者的青睐.截至2019年12月底,华为5G手机全球总发货量突破690万台.将690万用科学记数法表示为()A. 0.69×107B. 69×105C. 6.9×105D. 6.9×1064.m表示一个一位数,n表示一个两位数,若把m放在n的左边,组成一个三位数,则这个三位数可表示为()A. mnB. m+nC. 10m+nD. 100m+n5.下列各组数中,互为相反数的是( )A. |+2|与|-2|B. -|+2|与+(-2)C. -(-2)与+(+2)D. |-(-3) |与-|-3|6.在数轴上与-2所在的点的距离等于4的点表示的数是( )A. 2B. -6C. 无数个D. 2或-67.若m2+2m=1,则4m2+8m−3的值是()A. 4B. 3C. 2D. 18.电影《我不是药神》反映了进口药用药贵的事实,从而引起了社会的广泛关注.国家针对部分药品进行改革,看病贵将成为历史.某药厂对售价为m元的药品进行了降价,现在有三种方案.方案一:第一次降价10%,第二次降价30%;方案二:第一次降价20%,第二次降价15%;方案三:第一、二次降价均为20%.三种方案哪种降价最多()A. 方案一B. 方案二C. 方案三D. 不能确定9.如图,在数轴上,点A表示1,现将点A沿数轴做如下移动,第一次将点A向左移动3个单位长度到达点A1,第二次将点A1向右移动6个单位长度到达点A2,第三次将点A2向左移动9个单位长度到达点A3,…按照这种移动规律进行下去,第51次移动到点A51,那么点A51所表示的数为()A. ﹣74B. ﹣77C. ﹣80D. ﹣8310.两个形状大小完全相同的长方形中放入4个相同的小长方形后,得到图①和图②的阴影部分,如果大长方形的长为a,则图①与图②的阴影部分周长之差是( )A. B. C. D.二、填空题(共8题,每小题2分,共16分)11.|−a|=|−3|,则a=________.12.已知a是最大的负整数,b是绝对值最小的数,c是最小的正整数,则a+b+c等于________.13.为了帮助一名白血病儿童治疗疾病,某班全体师生积极捐款,捐款金额共2 800元,已知该班共有5名教师,每名教师捐款a元,则该班学生共捐款________元(用含a的代数式表示).14.若3x m y与−5x2y n是同类项,则m+n=________.15.如图,方格表中的格子填上了数,每一行每一列及两条对角线中所填数的和均相等,则x的值是________.16.一个数是4,另一个数比4的相反数小3,那么这两个数的积是________.17.某数学老师在课外活动中做了一个有趣的游戏:首先发给A,B,C三个同学相同数量的扑克牌(假定发到每个同学手中的扑克牌数量足够多),然后依次完成下列三个步骤:第一步,A同学拿出三张扑克牌给B同学;第二步,C同学拿出三张扑克牌给B同学;第三步,A同学手中此时有多少张扑克牌,B同学就拿出多少张扑克牌给A同学,请你确定,最终B同学手中剩余的扑克牌的张数为________.18.如图是一根起点为1的数轴,现有同学将它弯折,弯折后虚线上由左至右第1个数是1,第2个数是13,第3个数是41,…,依此规律,第5个数是________.三、解答题(共8题;共64分)19.计算:(1)4-(-3)×(-1)- 8×(−12)3×|-2-3|;(2)(-5)3×(- 35)-32÷(-2)2×(+ 54).20.化简,求值(1)﹣(a2﹣6b﹣1)﹣(﹣1+3b﹣2a2)(2)先化简,再求其值:已知2(a2b+ab)﹣2(a2b﹣1)﹣2ab2﹣2,其中a=﹣2,b=221.在数轴上表示下列各数,并用“<”号把它们连接起来.−(−2.5),−|−2|,|−4|,1 ,0 ,−(+3)22.如图,将边长为m的正方形纸板,沿虚线剪成两个正方形和两个长方形,拿掉边长为n的小正方形纸板后,将剩下的三个图形拼成一个新的长方形.(1)求拼成的新的长方形的周长(用含m或n的代数式表示);(2)当m=7,n=4时,直接写出拼成的新的长方形的面积.23.某出租车驾驶员从公司出发,在南北向的人民路上连续接送5批客人.行驶路程记录如下(规定向南为正,向北为负,单位: km):________边(填南或北),距离公司________千米.(2)若该出租车每千米耗油0.2升,那么在这过程中共耗油________升.(3)若该出租车的计价标准为:行驶路程不超过3 km收费10元,超过3 km的部分按每千米1.8元收费,在这过程中该驾驶员共收到车费多少元?24.阅读下述材料,尝试解决问题数学是一门充满思维乐趣的学科,现有一个 3×3 的数阵 A ,数阵 A 中每个位置对应的数都是1,2或3.定义 a ∗b 为数阵中第 a 行、第 b 列的数.例如,数阵 A =(111222333) 第3行、第2列所对应的数是3,所以 3∗2=3 .(1)对于数阵 A , 2∗3 的值为________;若 2∗3=2∗x ,则 x 的值为________.(2)若一个 3×3 的数阵对任意的 a,b,c 均满足以下条件:条件一: a ∗a =a ;条件二: (a ∗b)∗c =a ∗c ;则称这个数阵是“有趣的”.已知一个“有趣的”数阵满足 1∗2=2 ,试计算 2∗1 的值.25.为给同学们创造更好的读书条件,学校准备新建一个长度为L 的读书长廊,并准备用若干块带有花纹和没有花纹的两种规格、大小相同的正方形地面砖搭配在一起,按如图所示的规律拼成图案铺满长廊,已知每个小正方形地面砖的边长均为0.6m .(1)按图示规律,第一图案的长度L 1=________m ;第二个图案的长度L 2=________m .(2)请用代数式表示带有花纹的地面砖块数n 与走廊的长度L n 之间的关系.(3)当走廊的长度L 为36.6m 时,请计算出所需带有花纹图案的瓷砖的块数.26.已知如图,在数轴上有A ,B 两点,所表示的数分别为-10,4,点A 以每秒5个单位长度的速度向右运动,同时点B 以每秒3个单位长度的速度也向左运动,如果设运动时间为t 秒,解答下列问题:(1)运动前线段AB 的长为________; 运动1秒后线段AB 的长为________;(2)运动t 秒后,点A ,点B 运动的距离分别为________;用t 表示A ,B 分别为________.(3)求t 为何值时,点A 与点B 恰好重合;(4)在上述运动的过程中,是否存在某一时刻t ,使得线段AB 的长为6,若存在,求t 的值; 若不存在,请说明理由.答案一、选择题1.解:0是整数,属于有理数;0.333,0.101101101是有限小数,属于有理数;无理数有:0.51515354…、3π共2个.故答案为:B .2.∵|+1.2|=1.2,|-2.3|=2.3,|+0.9|=0.9,|-0.8|=0.8,0.8<0.9<1.2<2.3,∴从轻重的角度看,最接近标准的是选项D中的元件,故答案为:D.3.解:690万=6900000=6.9×106.故答案为:D.4.∵m表示一个一位数,n表示一个两位数,若把m放在n的左边,组成一个三位数,∴这个三位数可表示为:100m+n .故答案为:D.5.解:A、|+2|=2,|-2|=2,故这两个数相等,故此选项错误;B、-|+2|=-2,+(-2)=-2,故这两个数相等,故此选项错误;C、-(-2)=2与+(+2)=2,这两个数相等,故此选项错误;D、|-(-3)|=3,-|-3|=-3,3+(-3)=0,这两个数互为相反数,故此选项正确.故答案为:D.6.解:若这个数在-2的左侧,则这个数是-2-4=-6;若这个数在-2的右侧,则这个数是-2+4=2;故在数轴上与-2所在的点的距离等于4的点表示的数是2或-6;故答案为:D.7.∵m2+2m=1,∴4m2+8m−3= 4(m2+2m)−3=4×1-3=1.故答案为:D.8.解:由题意可得:方案一降价0.1m+m(1-10%)30%=0.37m;方案二降价0.2m+m(1-20%)15%=0.32m;方案三降价0.2m+m(1-20%)20%=0.36m;故答案为A.9.解:第一次点A向左移动3个单位长度至点A1,则A1表示的数,1−3=−2;第2次从点A1向右移动6个单位长度至点A2,则A2表示的数为−2+6=4;第3次从点A2向左移动9个单位长度至点 A 3 ,则 A 3 表示的数为4−9=−5;第4次从点A3向右移动12个单位长度至点 A 4 ,则 A 4 表示的数为−5+12=7;第5次从点A4向左移动15个单位长度至点 A 5 ,则 A 5 表示的数为7−15=−8;…;则点 A 51 表示:51+12×(−3)+1=26×(−3)+1=−78+1=−77,故答案为:B.10.解:设小长方形的长为x ,宽为y ,有图可知:x=a 2 , y=a 4图①:C 1=2a+a 4×2=2a+a 2 ,图②:C 2=a 2×2+a 4×3×2+a 4×2=3a ,∴图①与图②的阴影部分周长之差为:2a+a 2-3a=-a 2 ,故答案为:C.二、填空题11.解:∵ |−a|=|−3|=3 ,∴ −a =±3 ,即 a =±3 ,故答案为:±3.12.∵a 是最大的负整数∴ a =−1∵b 是绝对值最小的数∴ b =0∵c 是最小的正整数∴ c =1∴ a +b +c =(−1)+0+1=0故答案为:0.13.解:根据题意得:该班学生共捐款:(2800-5a )元,故答案为:(2 800-5a ).14.解:由同类项的定义可知,m=2,n=1,∴m+n=3故答案为3.15.解:∵16+11+12=39,∴由39-(11+15)=13得最中间格子上的数为13,再由39-(12+13)=14得右上角格子的数为14,∴x=39-(16+14)=9.故答案为9.16.∵一个数是4,另一个数比4的相反数小3∴另一个数为 −4−3=−7∴这两个数的积是 4×(−7)=−28故答案为:-28.17.设每个同学的扑克牌的数量都是 x ;第一步,A 同学的扑克牌的数量是 x −3 ,B 同学的扑克牌的数量是 x +3 ;第二步,B 同学的扑克牌的数量是 x +3+3 ,C 同学的扑克牌的数量是 x −3 ;第三步,A 同学的扑克牌的数量是2( x −3 ),B 同学的扑克牌的数量是 x +3+3− ( x −3 ); ∴B 同学手中剩余的扑克牌的数量是: x +3+3− ( x −3 ) =9 .故答案为: 9 .18.解:观察根据排列的规律得到:第一行为数轴上左边的第1个数1,第二行为1右边的第6个数13,第三行为13右边的第14个数41,第四行为41右边的第22个数,为2(1+6+14+22)-1=85,第五行为91右边的第30个数,为2(1+6+14+22+30)-1=145.三、解答题19. (1)解:原式=4−(−3)×(−1)−8×(−18)×|−5| =4−3−(−5)=1+5=6(2)解:原式=−125×(−35)−32÷4×54=−125×(−35)−8×54=75−10=6520. (1)解:原式= −a 2+6b +1+1−3b +2a 2= a 2+3b +2(2)解:原式= 2a 2b +2ab −2a 2b +2−2ab 2−2= 2ab −2ab 2将a=﹣2,b=2代入可得2ab −2ab 2 =8.21. 解: −(−2.5)=2.5 , −|−2|=−2 , −(+3)=−3 .如图所示.用“<”号把它们连接起来如下:−(+3)<−|−2|<0<1<−(−2.5)<|−4| .22. (1)解:矩形的长为:m+n.矩形的宽为:m-n.矩形的周长为:2[(m+n)+(m-n)]=4m(2)解:矩形的面积为:S=(m+n)(m−n)=(7+4)(7−4)=11×3=3323. (1)南;10(2)4.8(3)[10+(5-3)×1.8]+10+[10+(4-3)×1.8]+10+[10+(10-3)×1.8]=68(元)答:在这个过程中该驾驶员共收到车费68元.解:(1)5+2+(-4)+(-3)+10=10(km)故答案为:南边,10;(2)(5+2+|-4|+|-3|+10)×0.2=24×0.2=4.8(升)故答案为:4.8;24. (1)2;1,2,3(2)∵1*2=2,∴2*1=(1*2)*1,∵(a*b)*c=a*c,∴(1*2)*1=1*1,∵a*a=a,∴1*1=1,∴2*1=125. (1)1.8;3(2)解:观察图形可得:第1个图案中有花纹的地面砖有1块,第2个图案中有花纹的地面砖有2块,…则第n个图案中有花纹的地面砖有n块;第一个图案边长L=3×0.6,第二个图案边长L=5×0.6,则第n个图案边长为L=(2n+1)×0.6;(3)解:把L=36.6代入L=(2n+1)×0.6中得:36.6=(2n+1)×0.6,解得:n=30,答:需带有花纹图案的瓷砖的块数是30.解:(1)第一图案的长度L1=0.6×3=1.8,第二个图案的长度L2=0.6×5=3;故答案为1.8,3;26. (1)14;6(2)5t,3t;5t-10,4-3t(3)解:根据题意得:5t-10=4-3t,解得:t= 74(4)解:存在,当A,B没有相遇时,可得14-8t=6,解得:t=1;当A,B错开时,可得8t-14=6,,解得:t= 52综上,当t=1秒或5秒时,线段AB的长为62。

2020-2021学年四川省成都七年级上册期中数学试卷

2020-2021学年四川省成都七年级上册期中数学试卷

2020-2021学年四川省成都七年级上册期中数学试卷题号一二三四总分得分一、选择题(本大题共10小题,共30.0分)1.−4的相反数是()A. 14B. 4 C. −14D. −42.用科学记数法表示316000000为()A. 3.16×107B. 3.16×108C. 31.6×107D. 31.6×1063.在下列四个几何体中,以如图为俯视图的是()A. B. C. D.4.下列代数式中整式有()1 x ,2x+y,13a2b,x−yπ,5y4x,0.5,a.A. 4个B. 5个C. 6个D. 7个5.下列正确的式子是()A. −|−12|>0 B. −(−4)=−|−4|C. −56>−45D. −3.14>−π6.如图,矩形ABCD的周长是28,对角线AC,BD相交于点O,点E是CD的中点,AC=10,则△DOE的周长是()A. 12B. 13C. 14D. 157.把−6−(+7)+(−2)−(−9)写成省略加号和括号的形式后的式子是()A. −6−7+2−9B. −6+7−2−9C. −6−7−2+9D. −6+7−2+98.如图是一个数值转换器的示意图,当输入x的值为−3时,输出的数是()A. 15B. 29C. 16D. 139.在数轴上把−3对应的点移动5个单位长度后,所得到的对应点表示的数是()A. 2B. −8C. 2或−8D. 不能确定10.如图是将三角形绕直线L旋转一周,可以得到图中所示的立体图形的是()A.B.C.D.二、填空题(本大题共9小题,共36.0分)11.数轴上点M表示2,N点表示−3.5,点A表示−1,在点M和N中,距离点A较远的是______ .12.多项式−18x3y+2x3+5y−25是_______次_______项式.13.将如图所示的正方体的展开图重新折叠成正方体后,和“应”字相对面上的汉字是______.14.规定一种新运算:a⊗b=(a+b)b,如:2⊗3=(2+3)×3=15,则(−2)⊗2=______.15.已知x−2y=3,那么代数式3−2x+4y的值是______ .16.若|a|=3,|−b|=7,且ab>0,则a−b=______.17.若多项式2x2+3x+7的值为8,则多项式8x2+12x+7的值为______________.18.已知:2+23=22×23,3+38=32×38,4+415=42×415,…,若9+ab=92×ab(a,b为正整数),则a−b=____.19.如图所示,将形状、大小完全相同的“⋅”和线段按照一定规律摆成下列图形,第1幅图形中“⋅”的个数为a1,第2幅图形中“⋅”的个数为a2,第3幅图形中“⋅”的个数为a3,⋯,以此类推,则1a1+1a2+1a3+⋯+1a20的值为.三、计算题(本大题共2小题,共22.0分)20.(−3)2÷(−27)−[6÷(−32)×212+(−73)]21.已知代数式A=x2+xy+2y−12,B=2x2−2xy+x−1.(1)求2A−B;(2)当x=−1,y=−2时,求2A−B的值;(3)若2A−B的值与x的取值无关,求y的值.四、解答题(本大题共7小题,共62.0分)22.化简:(1)−x2−13xy+2x2+xy−34x2;(2)(3a2b−13b2)−3(a2b+2b2).23.已知A=2a2b−ab2,B=−a2b+2ab2.(1)求5A+4B;(2)若|a+2|+(5−b)2=0,求5A+4B的值.24.已知由5个相同的小正方体组成的几何体如图所示,请画出它从三个方向看到的形状图.+2018pq+x2的25.已知m、n互为相反数,p、q互为倒数,x的绝对值为2,求m+n2019值.26.沙坪坝三社电器销售一种微波炉和电磁炉,微波炉每台定价800元,电磁炉每台定价200元.“11/11”期间商场决定开展促销活动,活动期间向客户提供两种优惠方案.方案一:买一台微波炉送一台电磁炉;方案二:微波炉和电磁炉都按定价的90%付款.现某客户要到该卖场购买微波炉10台,电磁炉x台(x>10).(1)若该客户按方案一购买,需付款______ 元.(用含x的代数式表示)若该客户按方案二购买,需付款______ 元.(用含x的代数式表示)(2)若x=30,通过计算说明此时按哪种方案购买较为合算?(3)当x=30时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法.27.如图所示,a是有理数,化简|a|+|−1|+|1+a|.28.如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=20,(1)写出数轴上点B表示的数_____;(2)|5−3|表示5与3之差的绝对值,实际上也可理解为5与3两数在数轴上所对的两点之间的距离.如|x−3|的几何意义是数轴上表示有理数x的点与表示有理数3的点之间的距离.试探索:①:若|x−8|=2,则x=_____.②:|x+12|+|x−8|的最小值为_____.(3)动点P从O点出发,以每秒5个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.求当t为多少秒时?A,P两点之间的距离为2;(4)动点P,Q分别从O,B两点,同时出发,点P以每秒5个单位长度沿数轴向右匀速运动,Q点以P点速度的两倍,沿数轴向右匀速运动,设运动时间为t(t>0)秒.问当t为多少秒时?P,Q之间的距离为4.答案和解析1.【答案】B【解析】解:−4的相反数是:4.故选:B.直接利用相反数的定义分析得出答案.此题主要考查了相反数,正确把握相反数的定义是解题关键.2.【答案】B【解析】【分析】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将316000000用科学记数法表示为:3.16×108.故选:B.3.【答案】C【解析】解:从上面看,可知:A、圆柱的俯视图为圆,不符合题意;B、长方体的俯视图为长方形,不符合题意;C、圆台的俯视图是圆环,符合题意;D、圆锥的俯视图是圆和圆心,不符合题意.故选C.根据俯视图是从上面看所得到的图形判断是圆环的即可.本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.4.【答案】B【解析】解:2x+y,13a2b,x−yπ,0.5,a是整式,故选:B.根据单项式和多项式统称为整式.单项式是字母和数的乘积,只有乘法,没有加减法.多项式是若干个单项式的和,有加减法,可得答案.本题考查了整式,单项式和多项式统称为整式,注意分母中含有字母的式子是分式不是整式.5.【答案】D【解析】【分析】本题考查的是有理数的大小比较,熟知负数比较大小的法则是解答此题的关键.根据有理数比较大小的法则对各选项进行逐一分析即可.【解答】解:A.−|−12|=−12<0,故本选项错误;B.∵−(−4)=4,−|−4|=−4,∴−(−4)≠−|−4|,故本选项错误;C.∵|−56|=56=2530,|−45|=45=2430,2530>2430,∴−56<−45,故本选项错误;D.∵3.14<π,∴−3.14>−π,故本选项正确.故选:D.6.【答案】A【解析】【分析】本题考查了矩形的性质、三角形中位线定理;熟练掌握平行四边形的性质,运用三角形中位线定理是解决问题的关键.由矩形的性质和已知条件得出OD=5,CD+BC=14,再证明OE是△BCD的中位线,得出DE+OE的值,即可得出结果.【解答】解:∵四边形ABCD是矩形,∴AB=CD,AD=BC,AC=BD=10,∴OB=OD=12BD=5,∵矩形ABCD的周长是28,∴CD+BC=14,∵点E是CD的中点,CD,OE是△BCD的中位线,∴DE=12BC,∴OE=12(CD+BC)=7,∴DE+OE=12∴△DOE的周长=OD+DE+OE=5+7=12;故选:A.7.【答案】C【解析】【分析】此题考查了有理数的加减混合运算有关知识,原式利用减法和去括号法则变形,即可得到结果.【解答】解:原式=−6−7−2+9.故选C.8.【答案】B【解析】【分析】本题考查了有理数的混合运算,解题的关键是明确有理数混合运算的计算方法.根据图中的运算规律可以解答本题【解答】解:由图可得,当x=−3时,2(−3−1)2−3=32−3=29,故选B.9.【答案】C【解析】【分析】此题需注意考虑两种情况:点向左移动和点向右移动;数的大小变化规律:左减右加.数轴上点的移动分为向左和向右两种情况,对应的数也就会有两个结果.【解答】解:当数轴上−3的对应点向左移动5个单位时,对应点表示数是−3−5=−8;当向右移动5个单位时,对应点表示数−3+5=2.故选C.10.【答案】B【解析】解:绕直角三角形一条直角边旋转可得到圆锥.要求得到两个圆锥的组合体,那么一定是两个直角三角形的组合体:两条直角边相对,绕另一直角边旋转而成的.故选B.一个平面图形围绕一条边为对称轴旋转一周,根据面动成体的原理即可得解.本题考查面动成体,需注意可把较复杂的体分解来进行分析.11.【答案】M【解析】解:∵M距A|2|+|−1|=3;A距N|−3.5|−|−1|=2.5.∴距离点A较远的是M.本题应根据数轴上两点间的距离公式求出MA和NA,比较即可求解.主要考查了数轴,要注意数轴上两点间的距离公式是|a−b|.把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.12.【答案】四;四【解析】【分析】本题考查的是多项式的定义有关知识.利用多项式定义进行解答即可.【解答】解:该多项式为四次四项式.故答案为四,四.13.【答案】静【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“沉”与“考”相对,“着”与“冷”相对,“应”与“静”相对.故答案为:静.14.【答案】0【解析】解:(−2)⊗2=(−2+2)×2=0故答案为:0根据新运算,直接运算得结果.本题考查了新运算及有理数的混合运算.题目比较简单,解决本题的关键是理解新运算的规定.15.【答案】−3【解析】解:∵x−2y=3,∴3−2x+4y=3−2(x−2y)=3−2×3=−3;故答案为:−3.将3−2x+4y变形为3−2(x−2y),然后代入数值进行计算即可.本题主要考查的是求代数式的值,将x−2y=3整体代入是解题的关键.16.【答案】4或−4【解析】【试题解析】【分析】直接利用绝对值的性质进而分析得出答案.此题主要考查了有理数的乘法,正确分类讨论是解题关键.【解答】解:∵|a|=3,|−b|=7,且ab>0,∴a,b同号,∴a=3时,b=7或a=−3或b=−7,则a−b=4或−4.故答案为4或−4.17.【答案】11【解析】【分析】本题考查代数式求值和整体代入的求值方法,解本题的关键是观察已知条件中的代数式和要求值的代数式之间的关系.由题意求出2x2+3x的值,再求出8x2+12x+7的值,代入原式计算即可得到结果.【解答】解:由题意得:2x2+3x+7=8,∴2x2+3x=1,∴8x2+12x+7=4(2x2+3x)+7=4×1+7=11.故答案为11.18.【答案】−71【解析】本题考查数字规律问题.先根据题目中给出的数字规律,求出a 、b ,再计算a −b .【解答】解:∵2+23=22×23,3+38=32×38,4+415=42×415,…,9+a b =92×a b (a,b 为正整数),∴9+980=92×980,∴a =9,b =80,a −b =9−80=−71.故答案为−71. 19.【答案】325462【解析】【分析】此题考查图形的变化规律,找出图形之间的联系,找出规律解决问题.首先根据图形中“●”的个数得出数字变化规律,进而求出即可.【解答】解:a 1=3=1×3,a 2=8=2×4,a 3=15=3×5,a 4=24=4×6,⋯,a n =n(n +2),所以1a 1+1a 2+1a 3+⋯+1a 20=11×3+12×4+13×5+⋯+120×22=12×(1−13+12−14+13−15+⋯+120−122)=12×(1+12−121−122)=12×650462=325462. 20.【答案】解:原式=9÷(−27)−[6×(−19)×52−73]=−13−(−53−73) =−13+4 =113.【解析】【试题解析】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.21.【答案】解:(1)2A −B =2(x 2+xy +2y −12)−(2x 2−2xy +x −1)=4xy +4y −x ; (2)当x =−1,y =−2时,2A −B =4xy +4y −x =4×(−1)×(−2)+4×(−2)−(3)由(1)可知2A −B =4xy +4y −x =(4y −1)x +4y ,因为2A −B 的值与x 的取值无关,所以4y −1=0,解得:y =14.【解析】本题考查了整式的加减和化简求值,熟练掌握运算法则是解本题的关键.(1)把A 与B 代入2A −B 中,去括号合并即可得到结果;(2)把x 与y 的值代入2A −B 计算即可得到结果;(3)由2A −B 与x 取值无关,确定出y 的值即可.22.【答案】解:(1)原式=(−1+2−34)x 2+(−13+1)xy=14x 2+23xy ; (2)原式=3a 2b −13b 2−3a 2b −6b 2=−19b 2.【解析】本题考查整式的加减.掌握合并同类项是解题的关键.(1)直接合并同类项即可;(2)先去括号,再合并同类项即可.23.【答案】解:(1)∵A =2a 2b −ab 2,B =−a 2b +2ab 2,∴5A +4B =5(2a 2b −ab 2)+4(−a 2b +2ab 2)=10a 2b −5ab 2−4a 2b +8ab 2=6a 2b +3ab 2;(2)∵|a +2|+(5−b)2=0,∴a +2=0,5−b =0,解得:a =−2,b =5,则5A +4B =6×(−2)2×5+3×(−2)×52=120−150=−30.【解析】此题考查了整式的加减,以及非负数的性质:绝对值与偶次方,熟练掌握去括号法则与合并同类项法则是解本题的关键.(1)把A 与B 代入5A +4B 中,去括号合并即可得到结果;(2)利用非负数的性质求出a 与b 的值,代入计算即可求出值.24.【答案】解:如图:【解析】此题主要考查了三视图的画法,注意三视图分为主视图、左视图、俯视图,分别是从物体正面、左面和上面看,所得到的图形.从正面看,得到从左往右3列正方形的个数依次为2,1,1;从左面看得到从左往右2列正方形的个数依次为2,1;从上面看得到从左往右3列正方形的个数依次为2,1,1,依此画出图形即可.25.【答案】解:∵m、n互为相反数,p、q互为倒数,x的绝对值为2,∴m+n=0,pq=1,x2=4,∴m+n2019+2018pq+x2=2019+2018×1+4=0+2018+4=2022.【解析】根据m、n互为相反数,p、q互为倒数,x的绝对值为2,可以求得m+n、pq 和x2的值,从而可以求得所求式子的值.本题考查有理数的混合运算,解答本题的关键是掌握相反数,倒数,绝对值的概念.26.【答案】解:(1)200x+6000;180x+7200(2)当x=30时,方案一:200×30+6000=12000(元),方案二:180×30+7200=12600(元),所以,按方案一购买较合算.(3)先按方案一购买10微波炉送10台电磁炉,再按方案二购买20台电磁炉,共10×800+200×20×90%=11600(元).【解析】【分析】本题考查了列代数式和求代数式的值的相关的题目,解题的关键是认真分析题目并正确的列出代数式.(1)根据题目提供的两种不同的付款方式列出代数式即可;(2)将x=30代入求得的代数式中即可得到费用,然后比较即可得到选择哪种方案更合算;(3)根据题意考可以得到先按方案一购买10微波炉送10台电磁炉,再按方案二购买20台电磁炉更合算.【解答】解:(1)800×10+200(x−10)=200x+6000(元),(800×10+200x)×90%=180x+7200(元),故答案为200x+6000;180x+7200;(2)当x=30时,方案一:200×30+6000=12000(元),方案二:180×30+7200=12600(元),所以,按方案一购买较合算.(3)先按方案一购买10微波炉送10台电磁炉,再按方案二购买20台电磁炉,共10×800+200×20×90%=11600(元).27.【答案】解:由图可知:a<0<1|a|<1∴1+a>0∴|a|+|−1|+|1+a|=−a+1+1+a=2【解析】本题考查了整式的加减,掌握数轴、绝对值的性质是解题的关键.根据数轴上点的特点,判断正负即可;由数轴得:b>1,0>a>−1,再去绝对值即可.28.【答案】(1)−12;(2)①6或10;②20;(3)根据|A点在数轴上的位置−t秒后P点在数轴上的位置|=A、P两点间的距离列式得│8−5t│=2,因为互为相反数的两个数绝对值相同,所以8−5t=2或5t−8=2,解得t=1.2或2;(4)根据|t秒后Q点在数轴上的位置−t秒后P点在数轴上的位置|=t秒后P,Q的距离列式得│−12+10t−5t│=4,因为互为相反数的两个数绝对值相同,所以−12+10t−5t=4或−(−12+10t−5t)=4,解得t=3.2或1.6.【解析】【分析】本题主要考查了数轴的性质、绝对值与一元一次方程的求解,要注意互为相反数的两个数绝对值相同.(1)根据已知可得B点表示的数为8−20;(2)根据绝对值的定义计算求解;(3)根据│A点在数轴上的位置−t秒后P点在数轴上的位置│=A、P两点间的距离列方程求解;(4)根据│t秒后Q点在数轴上的位置−t秒后P点在数轴上的位置│=t秒后P,Q的距离列方程求解.【解答】(1)数轴上B表示的数为8−20=−12;(2)①因为互为相反数的两个数绝对值相同,所以由│x−8│=2可得x−8=2或−(x−8)=2,解得x=6或10;②根据绝对值的几何意义,所以│x+12│+│x−8│的最小值是20;(3)(4)见答案.。

2020-2021学年七年级数学上学期期中测试卷03(人教版)(原卷版)

2020-2021学年七年级数学上学期期中测试卷03(人教版)(原卷版)
本文档为2020-2021学年七年级数学上学期期中测试卷,包含了一系列数学题目,用以考察学生的数学知识与技能。试卷由选择题、填空题和解析题组成,涵盖了数轴、时差计算、单项式与同类项、有理数运算等多个知识点。尽管此文档并非直接针对2024-2025学年的试题,但它提供了类似考试的题型和难度,可作为学生复习和准备未来数学期中考试的参考资料。通过练习这些题目,学生可以提升解题技巧,加深对数学概念的解,为即将到来的数学期中考试做好充分准备。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四川省成都市青白江区祥福中学2020-2021学年七年级上学期数学期中试卷
一、单选题(共10题;共20分)
1.﹣2的相反数是()
A. 2
B. ﹣2
C.
D.
2.我国首艘国产航母于2018年4月26日正式下水,排水量约为65000吨,将65000用科学记数法表示为()
A. 6.5×10﹣4
B. 6.5×104
C. ﹣6.5×104
D. 65×104
3.如图所示,是由5个相同的小正方体组合而成的几何体,它的左视图是()
A. B. C. D.
4.下列算式正确的是()
A. (-14)-5=-9
B. 0-(-3)=3
C. (-3)-(-3)=-6
D.
5.下面几何体的截面图不可能是圆的是()
A. 圆柱
B. 圆锥
C. 球
D. 棱柱
6.下列图形中,是正方体表面展开图的是()
A. B.
C. D.
7.如图,检测4个足球的质量,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数.从符合标准质量的角度看,最接近标准的是()
A. B. C. D.
8.下列代数式中符号代数式书写要求的有()
①1 x2y;②ab÷c2;③ ;④mb·4;⑤2(m+n)
A. 1个
B. 2个
C. 3个
D. 4个
9.如果a+b<0,并且ab>0,那么()
A. a<0,b<0
B. a>0,b>0
C. a<0,b>0
D. a>0,b<0
10.某企业今年3月份产值为万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是()
A. (-10%)(+15%)万元
B. (1-10%)(1+15%)万元
C. (-10%+15%)万元
D. (1-10%+15%)万元
二、填空题(共9题;共11分)
11.平方等于16的数是________,立方等于﹣27的数是________.
12.如图,这是一个正方体的展开图,则“喜”代表的面所相对的面的字是________.
13.火车以48千米/时的速度开了2小时后,又以50千米/时的速度开x小时后,火车共走了________千米.
14.在数-5,1,-3,5,-2中,任取三个相乘,其中最大的积是________
15.一个几何体由若干大小相同的小立方块搭成,如图所示的分别是从它的正面、左面看到的图形,则搭成该几何体最多需要________个小立方块.
16.若m2+2m=1,则4m2+8m-3的值是________.
17.如果数轴上点A到原点的距离为2,点B到原点的距离为4,那么A,B两点之间的距离是________.
18.如图所示,a,b,c表示数轴上的三个有理数,则|a+c|+|b-a|-|c-b|=________.
19.100米长的小棒,第1次截去,第2次截去剩下的,第3次截去剩下的,如此下去,第5次后
剩下的小棒长________米,第49次后剩下的小棒长________米.
三、解答题(共9题;共93分)
20.计算:
(1)﹣20+(﹣14)﹣(﹣18)﹣13
(2)4﹣8×(﹣)3
(3)
(4)
21.已知a、b互为相反数,c、d互为倒数,m是绝对值最小的数,求的值.
22.求a+b的值.
23.某一出租车一天下午以鼓楼为出发地在东西方向营运,向东为正,向西为负,行车里程(单位:)
依先后次序记录如下:+9、-4、-5、+4、-8、+6、-3、-7、-4、+10.
(1)将最后一名乘客送到目的地,出租车离鼓楼出发点多远?在鼓楼的什么方向?
(2)若每千米的价格为2.4元,司机一个下午的营业额是多少?
24.已知下图为一几何体的三视图.
主视图左视图俯视图
(1)写出这个几何体的名称;
(2)画出这个几何体的侧面展开图;
(3)若主视图的长为,俯视图中圆的半径为,求这个几何体的表面积和体积?(结果保留)25.小王购买了一条经济适用房,地面结构如图所示(单位:m2)
(1)用含x,y的式子表示地面总面积;
(2)准备在地面铺设地砖,铺1m2地砖的平均费用为80元,当x=4,y=1.5时,求铺地砖的总费用为多少元?
26.已知a、b均为有理数,现定义一种新的运算,规定:,例如

求:
(1)的值;
(2)的值
27.已知代数式,当x=0时,该代数式的值为-1
(1)求c的值;
(2)若x=1时,该代数式的值为-1,试求a+b的值;
(3)若x=3时,该代数式的值为-10,试求当x=-3时该代数式的值.
28.下面材料:
已知点在数轴上分别表示有理数,两点之间的距离表示为
当两点中有一点在原点时,不妨设点为原点,如图1,
当两点都不在原点时,
①如图2,点都在原点的右边,则
②如图3,点都在原点的左边,则
③如图4,点都在原点的两边,则
综上,数轴上两点的距离
回答下列问题:
(1)数轴上表示-2和5的两点之间的距离是________;
(2)数轴上表示和-1的两点之间的距离是,如果,那么________;(3)拓展:若点表示的数为
①则当为________时,与的值相等.
②当时,整数有________个
③ 的最小值是________
④ 的最小值是________
答案解析部分
一、单选题
1.【答案】A
2.【答案】B
3.【答案】D
4.【答案】B
5.【答案】D
6.【答案】A
7.【答案】C
8.【答案】B
9.【答案】A
10.【答案】B
二、填空题
11.【答案】±4;﹣3
12.【答案】学
13.【答案】96+5x
14.【答案】75
15.【答案】14
16.【答案】1
17.【答案】2或6
18.【答案】-2a
19.【答案】;2
三、解答题
20.【答案】(1)解:原式=-20-14+18-13=-29
(2)解:原式=4-8× =5
(3)解:原式=(--+ )×36=-×36-×36+ ×36=-27-20+21=-26
(4)解:原式= ÷ -= × -= -=-
21.【答案】解:∵a、b互为相反数

∵c、d互为倒数
∴,
∵m是绝对值最小的数

∴原式=
22.【答案】解:,



当时,,
当时,,
故答案为:-5或-13.
23.【答案】(1)解:+9-4-5+4-8+6-3-7-4+10=-2. 所以出租车离鼓楼出发点2km远,在鼓楼的正西方向;
(2)解:司机一个下午的营业额是:
元.
24.【答案】(1)该几何体是:圆柱体
(2)解:该几何体的侧面展开图如图所示:
(3)解:圆柱的表面积,圆柱的体积.
故答案为:,.
25.【答案】(1)解:地面总面积=3×4+2y+3×2+6x
=18+2y+6x;
(2)解:铺1m2地砖的平均费用为80元,当x=4,y=1.5,(18+2×1.5+6×4)×80
=(18+3+24)×80
=3600(元)
铺地砖的总费用为3600元.
26.【答案】(1)解:(-3)6,
=(-3)2+(-3)×6-5,
=9-18-5,
=-14;
(2)解:[2 (- )]-[(-5)9],
=[22+2×(- )-5]-[(-5)2+(-5)×9-5],
=[4-3-5]-[25-45-5],
=-4+25,
=21.
27.【答案】(1)解:把代人代数式,
得:.
(2)解:把代人代数式,
得:,
∴;
(3)解:把代人代数式,
得,
把代人代数式,
原代数式

28.【答案】(1)7 (2)0或-2
(3)-1;6;2020;20。

相关文档
最新文档