人脸识别PCA算法matlab实现及详细步骤讲解
基于matlab程序实现人脸识别

基于matlab程序实现人脸识别
人脸识别已经成为一个广泛被应用的技术,例如手机的解锁方式,安全系统等等。
它是一种基于人脸图像进行身份验证或身份识别的技术,也是近年来计算机视觉和模式识别领域研究的热点方向之一。
在这篇文档中,我们将介绍如何使用matlab编写一个简单的人脸识别程序。
人脸识别是什么?
人脸识别可以被定义为一个过程,旨在使用数字算法识别和验证图像或视频中
人脸身份。
在计算机科学的领域中,这项技术可以被描述为一种模式识别技术,
旨在通过在人脸图像上提取可识别特征来确定身份验证。
通俗易懂地理解,就是计算机能够识别人脸的特征,并将其与已知的数据匹配,从而确定人物身份。
人脸识别程序的开发流程
以下是本文介绍的基本程序开发流程:
1.数据集导入和预处理
2.特征提取和脸部对齐
3.模型训练和分类器设计
4.模型评估和测试
数据集导入和预处理
考虑到一个好的项目,我们需要一个良好的数据集。
在这里,我们可以使用来
自orl人脸数据集的数据。
该数据集中包含的有40个人的400幅灰度图像,每个
人有10个不同的示例。
您可以从该网站下载并使用这些数据来测试您的算法。
在这个过程中,我们需要使用matlab中的imread函数将数据读取为数字矩阵,然后将数据分为训练集和测试集。
这个过程旨在将原始的数据转换为我们算法能
够处理的数字矩阵,并将数据划分为训练集和测试集。
``` % 读取数据集 dataFolderPath =。
MATLAB下人脸图像的PCA重构matlab代码

MATLAB下人脸图像的PCA重构matlab代码主函数clc;clear all;newimage=double(zeros(112*6,92*5));[M,sort_V,avg_face] = averageface( );%返回去均值的矩阵和协方差,以及排列好的特征向量k=1;new_sort_V =sort_V(1:10304,1:30);%取特征向量的前30个,并进行显示for i=1:112:5*112+1for j=1:92:4*92+1newimage(i:i+111,j:j+91)=reshape(new_sort_V(:,k),112,92);k=k+1;endendminum=min(min(newimage));%对特征向量进行标定maxum=max(max(newimage));d=maxum-minum;newimage(:,:)=newimage(:,:)-minum;newimage(:,:)=newimage(:,:)/d;newimage(:,:)=newimage(:,:)*255;newimage=uint8(newimage);subplot(1,3,1);title('特征向量图');imshow(newimage);%显示前30个特征向量avg_face=uint8(avg_face);subplot(1,3,2)title('平均脸');imshow(avg_face);subplot(1,3,3)[ tyxs,re_newimage] = touyingxishu( sort_V ,avg_face);imshow(re_newimage);子函数function []=img2txt()maindir = 'D:\Image';subdir = dir( maindir ); % 先确定子文件夹m=1;k=1;for i = 1 : length( subdir )if( isequal( subdir( i ).name, '.') || isequal( subdir( i ).name, '..') || ~subdir( i ).isdir ) % 如果不是目录跳过continue;endsubdirpath = fullfile( maindir, subdir( i ).name, '*.pgm' );images = dir( subdirpath ); % 在这个子文件夹下找后缀为pgm的文件% 遍历每张图片for j = 1 : length( images )imagepath = fullfile( maindir, subdir( i ).name,images( j ).name );imgdata = imread( imagepath ); % 这里进行你的读取操作[row, col]=size(imgdata); %将数据写入txt中fid = fopen(['C:\Users\Administrator\Desktop\编程实验材料\att_faces','\s',int2str(m),'\',int2str(k),'.txt'],'w'); %新建txt文件存储图像的坐标和灰度值for I=1:rowfor J=1:colfprintf(fid,'%03d\t',imgdata(I,J));endfprintf(fid,'\n') ;endfclose(fid);k=k+1;endm=m+1;k=1;endfunction [M,sort_V,avg_face] = averageface()big_array=double(zeros(10304,400));new_big_array=double(zeros(10304,400));avg_face=double(zeros(112,92));i=1;for m=1:40;for k=1:10FileName = ['C:\Users\Administrator\Desktop\编程实验材料\att_faces','\s',int2str(m),'\',int2str(k),'.txt'];p = load (FileName);big_array(:,i)=reshape(p,10304,1); %将400张脸转换成10304*400的大矩阵new_p=reshape(p,112,92);avg_face(:,:)=avg_face(:,:)+new_p(:,:)/400; %求平均脸i=i+1;endendM=mean(big_array); %对矩阵的每一列求均值for i=1:400new_big_array(:,i)=big_array(:,i)-M(i);%去均值后的矩阵end%用SVD求特征向量C0=new_big_array'*new_big_array;%求低维度的协方差[V0,~]=eig(C0);k=0;V=new_big_array*V0;%特征向量for i=1:400 %将特征向量进行归一化10304*400for j=1:10304k=k+V(j,i)^2;endk=k^(0.5);V(1:10304,i)= V(1:10304,i)/k;k=0;endsort_V=double(zeros(10304,400));k=400;for i=1:400 %将特征向量的列按特征值从大到小排列好sort_V(1:10304,i)=V(1:10304,k);k=k-1;endfunction [ tyxs,re_newimage] = touyingxishu( sort_V ,avg_face)FileName = ['C:\Users\Administrator\Desktop\编程实验材料\att_faces','\s',int2str(1),'\',int2str(1),'.txt'];p = load (FileName);avg_face=double(avg_face);big_array=reshape(p,1,10304);a_big_array=double(reshape(big_array,112,92));big_array=a_big_array(:,:)-avg_face(:,:);big_array=reshape(big_array,1,10304);tyxs=big_array*sort_V;re_newimage=double(zeros(10304,1));for i=1:400re_newimage(:,:)= re_newimage(:,:)+tyxs(i)*sort_V(1:10304,i);endre_newimage= reshape(re_newimage,112,92);re_newimage=re_newimage(:,:)+avg_face(:,:);minum=min(min(re_newimage));%对特征向量进行标定maxum=max(max(re_newimage));d=maxum-minum;re_newimage(:,:)=re_newimage(:,:)-minum;re_newimage(:,:)=re_newimage(:,:)/d;re_newimage(:,:)=re_newimage(:,:)*255;re_newimage=uint8(re_newimage);end。
如何使用Matlab进行人脸检测和人脸识别

如何使用Matlab进行人脸检测和人脸识别人脸检测和人脸识别是计算机视觉领域中的重要技术应用,可以广泛用于人脸识别系统、人脸支付、安全监控等众多领域。
本文将介绍如何使用Matlab进行人脸检测和人脸识别。
1. 背景介绍人脸检测和人脸识别技术的出现,为计算机系统实现对人脸的自动分析和识别提供了可能。
人脸检测是指从一幅图像或视频序列中确定是否存在人脸,并找出人脸的位置和大小。
而人脸识别则是在检测到的人脸图像上进行特征提取和模式匹配,以实现对人脸的身份识别。
2. 人脸检测在Matlab中,可以使用Viola-Jones算法进行人脸检测。
该算法通过构造Haar特征与Adaboost集成学习算法相结合,能够在较短的时间内实现高效的人脸检测。
具体操作如下:2.1 加载图像首先,在Matlab中加载需要进行人脸检测的图像。
可以使用imread函数进行图像加载,并将其转换为灰度图像进行处理。
例如:```Matlabimage = imread('face.jpg');gray_image = rgb2gray(image);```2.2 构建人脸检测器在Matlab中,可以使用vision.CascadeObjectDetector对象构建人脸检测器。
该对象可以通过Viola-Jones算法进行人脸检测。
具体代码如下:```MatlabfaceDetector = vision.CascadeObjectDetector();bbox = step(faceDetector, gray_image);```2.3 显示检测结果最后,可以使用insertObjectAnnotation函数将检测到的人脸位置在原始图像上标记出来。
代码示例如下:```Matlabdetected_image = insertObjectAnnotation(image, 'rectangle', bbox, 'Face');imshow(detected_image);```3. 人脸识别在Matlab中,可以使用基于人脸特征的Eigenface、Fisherface和LBPH等算法进行人脸识别。
人脸识别核心算法及MATLAB代码

人脸识别核心算法在检测到人脸并定位面部关键特征点之后,主要的人脸区域就可以被裁剪出来,经过预处理之后,馈入后端的识别算法。
识别算法要完成人脸特征的提取,并与库存的已知人脸进行比对,完成最终的分类。
我们在这方面的主要工作包括:∙基于LGBP的人脸识别方法问题:统计学习目前已经成为人脸识别领域的主流方法,但实践表明,基于统计学习的方法往往会存在“推广能力弱”的问题,尤其在待识别图像“属性”未知的情况下,更难以确定采用什么样的训练图像来训练人脸模型。
鉴于此,在对统计学习方法进行研究的同时,我们还考虑了非统计模式识别的一类方法。
思路:对于给定的人脸图像,LGBP方法首先将其与多个不同尺度和方向的Gabor滤波器卷积(卷积结果称为Gabor特征图谱)获得多分辨率的变换图像。
然后将每个Gabor特征图谱划分成若干互不相交的局部空间区域,对每个区域提取局部邻域像素的亮度变化模式,并在每个局部空间区域内提取这些变化模式的空间区域直方图,所有Gabor特征图谱的、所有区域的直方图串接为一高维特征直方图来编码人脸图像。
并通过直方图之间的相似度匹配技术(如直方图交运算)来实现最终的人脸识别。
在FERET四个人脸图像测试集合上与FERET97的结果对比情况见下表。
由此可见,该方法具有良好的识别性能。
而且LGBP方法具有计算速度快、无需大样本学习、推广能力强的优点。
参见ICCV2005表.LGBP方法与FERET'97最佳结果的对比情况∙基于AdaBoost的Gabor特征选择及判别分析方法问题:人脸描述是人脸识别的核心问题之一,人脸识别的研究实践表明:在人脸三维形状信息难以准确获取的条件下,从图像数据中提取多方向、多尺度的Gabor特征是一种合适的选择。
使用Gabor特征进行人脸识别的典型方法包括弹性图匹配方法(EGM)和Gabor特征判别分类法(GFC)。
EGM在实用中需要解决关键特征点的定位问题,而且其速度也很难提高;而GFC则直接对下采样的Gabor特征用PCA降维并进行判别分析,尽管这避免了精确定位关键特征点的难题,但下采样的特征维数仍然偏高,而且简单的下采样策略很可能遗漏了非常多的有用特征。
PCA人脸识别算法详解

识别阶段
• 1测试样本 W Rm*n 向 X1... X p 空间投影后得到样本 W的特征矩阵 Yt 和主成分分量 Yji (1),...,Yji ( p) :
Yt [Yji (1),...,Yji p] WX1,...,WX p
第25页,共28页。
识别阶段
• 2根据测试样本投影特征矩阵与所有训练样本投 影特征矩阵之间的最小距离来判断测试样本所属 的类别。定义如下的距离度量准则:
主成分分析简介
• Principal Component Analysis(PCA) • 主成分分析(Principal Component Analysis,
简称PCA)是一种常用的基于变量协方差矩 阵对信息进行处理、压缩和抽提的有效方 法。
第1页,共28页。
基于PCA算法的人脸识别
• PCA方法由于其在降维和特征提取方面的 有效性,在人脸识别领域得到了广泛 的应用。
j
1,2,...,p
第23页,共28页。
训练阶段
• 5 训练样本 s ji ,i 1,2,...,N, j 1,2,...,K 向 X 1... X p 空间
投影得到: Yji [S ji Xi ,...,S ji X p ] [Yji (1),...,Yji ( p)] Rmp
第24页,共28页。
识别阶段
• 第一步:将待识别的人脸图像 与平均脸的差
值脸投影到特征脸空间,得到其特征向量表示:
wT
第13页,共28页。
识别阶段
• 第二步:定义阈值
1 max 2 i, j
i
j
,i, j 1,2,...,200
第14页,共28页。
识别阶段
• 第三步:采用欧式距离来计算 与每个人脸的距
基于主成分分析(PCA)的人脸识别技术

基于主成分分析(PCA)的⼈脸识别技术本科期间做的⼀个课程设计,觉得⽐较好玩,现将之记录下来,实验所⽤。
1、实验⽬的(1)学习主成分分析(PCA)的基础知识;(2)了解PCA在⼈脸识别与重建⽅⾯的应⽤;(3)认识数据降维操作在数据处理中的重要作⽤;(4)学习使⽤MATLAB软件实现PCA算法,进⾏⼈脸识别,加深其在数字图像处理中解决该类问题的应⽤流程。
2、实验简介(背景及理论分析)近年来,由于恐怖分⼦的破坏活动发⽣越发频繁,包括⼈脸识别在内的⽣物特征识别再度成为⼈们关注的热点,各国均纷纷增加了对该领域研究的投⼊。
同其他⽣物特征识别技术,如指纹识别、语⾳识别、虹膜识别、DNA识别等相⽐,⼈脸识别具有被动、友好、⽅便的特点。
该技术在公众场合监控、门禁系统、基于⽬击线索的⼈脸重构、嫌疑犯照⽚的识别匹配等领域均有⼴泛应⽤。
⼈脸识别技术是基于⼈的脸部特征,对输⼊的⼈脸图像或者视频流,⾸先判断其是否存在⼈脸。
如果存在⼈脸,则进⼀步的给出每个脸的位置、⼤⼩和各个主要⾯部器官的位置信息。
其次并依据这些信息,进⼀步提取每个⼈脸中所蕴涵的⾝份特征,并将其与已知的⼈脸进⾏对⽐,从⽽识别每个⼈脸的⾝份。
⼴义的⼈脸识别实际包括构建⼈脸识别系统的⼀系列相关技术,包括⼈脸图像采集、⼈脸定位、⼈脸识别预处理、⾝份确认以及⾝份查找等;⽽狭义的⼈脸识别特指通过⼈脸进⾏⾝份确认或者⾝份查找的技术或系统。
我们在处理有关数字图像处理⽅⾯的问题时,⽐如经常⽤到的图像查询问题:在⼀个⼏万或者⼏百万甚⾄更⼤的数据库中查询⼀幅相近的图像。
其中主成分分析(PCA)是⼀种⽤于数据降维的⽅法,其⽬标是将⾼维数据投影到较低维空间。
PCA形成了K-L变换的基础,主要⽤于数据的紧凑表⽰。
在数据挖掘的应⽤中,它主要应⽤于简化⼤维数的数据集合,减少特征空间维数,可以⽤较⼩的存储代价和计算复杂度获得较⾼的准确性。
PCA法降维分类原理如下图所⽰:如上图所⽰,其中五⾓星表⽰⼀类集合,⼩圆圈表⽰另⼀类集合。
Matlab在视频人脸检测与人脸识别中的应用技巧

Matlab在视频人脸检测与人脸识别中的应用技巧人脸检测和人脸识别是计算机视觉领域中的重要研究方向,近年来得到了广泛的应用。
在视频处理中,人脸的准确检测和识别是实现许多高级应用的基础。
Matlab作为一种功能强大的数学建模与仿真软件,提供了丰富的图像处理工具箱,使得人脸检测与识别算法的实现变得简单与高效。
一、图像预处理在进行人脸检测与识别之前,通常需要对图像进行预处理,以提高算法的准确性。
图像预处理的过程包括灰度化、直方图均衡化、尺寸归一化等。
利用Matlab的图像处理工具箱,可以快速实现这些预处理操作。
1.1 灰度化灰度化是将彩色图像转换为灰度图像的过程,将去除色彩信息,使图像变得更易处理。
在Matlab中,使用rgb2gray函数可以方便地将彩色图像转换为灰度图像。
1.2 直方图均衡化直方图均衡化是一种增强图像对比度的方法,通过对图像的灰度直方图进行变换来实现。
在Matlab中,使用histeq函数可以对图像的灰度直方图进行均衡化操作,提高图像的细节显示能力。
1.3 尺寸归一化不同的人脸图像具有不同的尺寸和角度,这对人脸检测与识别算法会造成影响。
为了提高算法的鲁棒性,通常需要将人脸图像进行尺寸归一化处理。
在Matlab中,可以使用imresize函数将图像进行缩放,使得人脸图像具有相同的尺寸。
二、人脸检测人脸检测是指在一幅图像中自动识别和定位人脸的过程,是人脸识别的首要步骤。
Matlab提供了多种人脸检测算法的实现,其中常用的有Haar特征分类器和基于深度学习的卷积神经网络(CNN)。
2.1 Haar特征分类器Haar特征分类器是一种基于机器学习的人脸检测算法,可以通过训练集的正负样本学习出人脸的特征。
在Matlab中,可以使用vision.CascadeObjectDetector对象和trainCascadeObjectDetector函数来实现Haar特征分类器的训练与检测。
2.2 基于深度学习的卷积神经网络(CNN)近年来,深度学习在图像处理领域取得了巨大的突破,其中卷积神经网络是一种非常有效的人脸检测方法。
人脸识别PCA算法matlab实现和详细步骤讲解

人脸识别% FaceRec.m% PCA 人脸识别修订版,识别率88%% calc xmean,sigma and its eigen decompositionallsamples=[];%所有训练图像for i=1:40for j=1:5a=imread(strcat('e:\ORL\s',num2str(i),'\',num2str(j),'.jpg'));% imshow(a);b=a(1:112*92); % b 是行矢量1×N,其中N=10304,提取顺序是先列后行,即从上到下,从左到右b=double(b);allsamples=[allsamples; b]; % allsamples 是一个M * N 矩阵,allsamples 中每一行数据代表一张图片,其中M=200endendsamplemean=mean(allsamples); % 平均图片,1 × Nfor i=1:200 xmean(i,:)=allsamples(i,:)-samplemean; % xmean 是一个M × N 矩阵,xmean 每一行保存的数据是“每个图片数据-平均图片”end;% 获取特征值及特征向量sigma=xmean*xmean'; % M * M 阶矩阵[v d]=eig(sigma);d1=diag(d);% 按特征值大小以降序排列dsort = flipud(d1);vsort = fliplr(v);%以下选择90%的能量dsum = sum(dsort);dsum_extract = 0;p = 0;while( dsum_extract/dsum < 0.9)p = p + 1;dsum_extract = sum(dsort(1:p));endi=1;% (训练阶段)计算特征脸形成的坐标系base = xmean' * vsort(:,1:p) * diag(dsort(1:p).^(-1/2));% base 是N×p 阶矩阵,除以dsort(i)^(1/2)是对人脸图像的标准化(使其方差为1)% 详见《基于PCA 的人脸识别算法研究》p31% xmean' * vsort(:,i)是小矩阵的特征向量向大矩阵特征向量转换的过程%while (i<=p && dsort(i)>0)% base(:,i) = dsort(i)^(-1/2) * xmean' * vsort(:,i); % base 是N×p 阶矩阵,除以dsort(i)^(1/2)是对人脸图像的标准化(使其方差为1)% 详见《基于PCA 的人脸识别算法研究》p31% i = i + 1; % xmean' * vsort(:,i)是小矩阵的特征向量向大矩阵特征向量转换的过程%end% 以下两行add by gongxun 将训练样本对坐标系上进行投影,得到一个 M*p 阶矩阵allcoor allcoor = allsamples * base; % allcoor 里面是每张训练人脸图片在M*p 子空间中的一个点,即在子空间中的组合系数,accu = 0; % 下面的人脸识别过程中就是利用这些组合系数来进行识别% 测试过程for i=1:40for j=6:10 %读入40 x 5 副测试图像a=imread(strcat('e:\ORL\s',num2str(i),'\',num2str(j),'.jpg'));b=a(1:10304);b=double(b);tcoor= b * base; %计算坐标,是1×p 阶矩阵for k=1:200mdist(k)=norm(tcoor-allcoor(k,:));end;%三阶近邻[dist,index2]=sort(mdist);class1=floor( (index2(1)-1)/5 )+1;class2=floor((index2(2)-1)/5)+1;class3=floor((index2(3)-1)/5)+1;if class1~=class2 && class2~=class3class=class1;elseif class1==class2class=class1;elseif class2==class3class=class2;end;if class==iaccu=accu+1;end;end;end;accuracy=accu/200 %输出识别率特征人脸% eigface.mfunction [] = eigface()% calc xmean,sigma and its eigen decompositionallsamples=[];%所有训练图像for i=1:40for j=1:5a=imread(strcat('e:\ORL\s',num2str(i),'\',num2str(j),'.jpg'));% imshow(a);b=a(1:112*92); % b 是行矢量1×N,其中N=10304,提取顺序是先列后行,即从上到下,从左到右b=double(b);allsamples=[allsamples; b]; % allsamples 是一个M * N 矩阵,allsamples 中每一行数据代表一张图片,其中M=200endendsamplemean=mean(allsamples); % 平均图片,1 × Nfor i=1:200 xmean(i,:)=allsamples(i,:)-samplemean; % xmean 是一个M × N 矩阵,xmean 每一行保存的数据是“每个图片数据-平均图片”end;% 获取特征值及特征向量sigma=xmean*xmean'; % M * M 阶矩阵[v d]=eig(sigma);d1=diag(d);% 按特征值大小以降序排列dsort = flipud(d1);vsort = fliplr(v);%以下选择90%的能量dsum = sum(dsort);dsum_extract = 0;p = 0;while( dsum_extract/dsum < 0.9)p = p + 1;dsum_extract = sum(dsort(1:p));endp = 199;% (训练阶段)计算特征脸形成的坐标系%while (i<=p && dsort(i)>0)% base(:,i) = dsort(i)^(-1/2) * xmean' * vsort(:,i); % base 是N×p 阶矩阵,除以dsort(i)^(1/2)是对人脸图像的标准化,详见《基于PCA 的人脸识别算法研究》p31% i = i + 1; % xmean' * vsort(:,i)是小矩阵的特征向量向大矩阵特征向量转换的过程%endbase = xmean' * vsort(:,1:p) * diag(dsort(1:p).^(-1/2));% 生成特征脸for (k=1:p),temp = reshape(base(:,k), 112,92);newpath = ['d:\test\' int2str(k) '.jpg'];imwrite(mat2gray(temp), newpath);endavg = reshape(samplemean, 112,92);imwrite(mat2gray(avg), 'd:\test\average.jpg');% 将模型保存save('e:\ORL\model.mat', 'base', 'samplemean');人脸重建% Reconstruct.mfunction [] = reconstruct()load e:\ORL\model.mat;% 计算新图片在特征子空间中的系数img = 'D:\test2\10.jpg'a=imread(img);b=a(1:112*92); % b 是行矢量1×N,其中N=10304,提取顺序是先列后行,即从上到下,从左到右b=double(b);b=b-samplemean;c = b * base; % c 是图片a 在子空间中的系数, 是1*p 行矢量% 根据特征系数及特征脸重建图% 前15 个t = 15;temp = base(:,1:t) * c(1:t)';temp = temp + samplemean';imwrite(mat2gray(reshape(temp, 112,92)),'d:\test2\t1.jpg'); % 前50 个t = 50;temp = base(:,1:t) * c(1:t)';temp = temp + samplemean';imwrite(mat2gray(reshape(temp, 112,92)),'d:\test2\t2.jpg'); % 前100 个t = 100;temp = base(:,1:t) * c(1:t)';temp = temp + samplemean';imwrite(mat2gray(reshape(temp, 112,92)),'d:\test2\t3.jpg'); % 前150 个t = 150;temp = base(:,1:t) * c(1:t)';temp = temp + samplemean';imwrite(mat2gray(reshape(temp, 112,92)),'d:\test2\t4.jpg'); % 前199 个t = 199;temp = base(:,1:t) * c(1:t)';temp = temp + samplemean';imwrite(mat2gray(reshape(temp, 112,92)),'d:\test2\t5.jpg');基于2DPCA与(2D)2PCA的人脸识别(第二版)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
% FaceRec.m% PCA 人脸识别修订版,识别率88%% calc xmean,sigma and its eigen decompositionallsamples=[];%所有训练图像for i=1:40for j=1:5a=imread(strcat('e:\ORL\s',num2str(i),'\',num2str(j),'.jpg'));% imshow(a);b=a(1:112*92); % b 是行矢量1×N,其中N=10304,提取顺序是先列后行,即从上到下,从左到右b=double(b);allsamples=[allsamples; b]; % allsamples 是一个M * N 矩阵,allsamples 中每一行数据代表一张图片,其中M=200endendsamplemean=mean(allsamples); % 平均图片,1 × Nfor i=1:200 xmean(i,:)=allsamples(i,:)-samplemean; % xmean 是一个M × N 矩阵,xmean每一行保存的数据是“每个图片数据-平均图片”end;% 获取特征值及特征向量sigma=xmean*xmean'; % M * M 阶矩阵[v d]=eig(sigma);d1=diag(d);% 按特征值大小以降序排列dsort = flipud(d1);vsort = fliplr(v);%以下选择90%的能量dsum = sum(dsort);dsum_extract = 0;p = 0;while( dsum_extract/dsum < 0.9)p = p + 1;dsum_extract = sum(dsort(1:p));endi=1;% (训练阶段)计算特征脸形成的坐标系base = xmean' * vsort(:,1:p) * diag(dsort(1:p).^(-1/2));% base 是N×p 阶矩阵,除以dsort(i)^(1/2)是对人脸图像的标准化(使其方差为1)% 详见《基于PCA 的人脸识别算法研究》p31% xmean' * vsort(:,i)是小矩阵的特征向量向大矩阵特征向量转换的过程%while (i<=p && dsort(i)>0)% base(:,i) = dsort(i)^(-1/2) * xmean' * vsort(:,i); % base 是N×p 阶矩阵,除以dsort(i)^(1/2)是对人脸图像的标准化(使其方差为1)% 详见《基于PCA 的人脸识别算法研究》p31% i = i + 1; % xmean' * vsort(:,i)是小矩阵的特征向量向大矩阵特征向量转换的过程%end% 以下两行add by gongxun 将训练样本对坐标系上进行投影,得到一个M*p 阶矩阵allcoor allcoor = allsamples * base; % allcoor 里面是每张训练人脸图片在M*p 子空间中的一个点,即在子空间中的组合系数,accu = 0; % 下面的人脸识别过程中就是利用这些组合系数来进行识别for i=1:40for j=6:10 %读入40 x 5 副测试图像a=imread(strcat('e:\ORL\s',num2str(i),'\',num2str(j),'.jpg'));b=a(1:10304);b=double(b);tcoor= b * base; %计算坐标,是1×p 阶矩阵for k=1:200mdist(k)=norm(tcoor-allcoor(k,:));end;%三阶近邻[dist,index2]=sort(mdist);class1=floor( (index2(1)-1)/5 )+1;class2=floor((index2(2)-1)/5)+1;class3=floor((index2(3)-1)/5)+1;if class1~=class2 && class2~=class3class=class1;elseif class1==class2class=class1;elseif class2==class3class=class2;end;if class==iaccu=accu+1;end;end;end;accuracy=accu/200 %输出识别率特征人脸% eigface.mfunction [] = eigface()% calc xmean,sigma and its eigen decompositionallsamples=[];%所有训练图像for i=1:40for j=1:5a=imread(strcat('e:\ORL\s',num2str(i),'\',num2str(j),'.jpg'));% imshow(a);b=a(1:112*92); % b 是行矢量1×N,其中N=10304,提取顺序是先列后行,即从上到下,从左到右b=double(b);allsamples=[allsamples; b]; % allsamples 是一个M * N 矩阵,allsamples 中每一行数据代表一张图片,其中M=200endendsamplemean=mean(allsamples); % 平均图片,1 × Nfor i=1:200 xmean(i,:)=allsamples(i,:)-samplemean; % xmean 是一个M × N 矩阵,xmean 每一行保存的数据是“每个图片数据-平均图片”end;% 获取特征值及特征向量sigma=xmean*xmean'; % M * M 阶矩阵[v d]=eig(sigma);d1=diag(d);% 按特征值大小以降序排列dsort = flipud(d1);vsort = fliplr(v);%以下选择90%的能量dsum = sum(dsort);dsum_extract = 0;p = 0;while( dsum_extract/dsum < 0.9)p = p + 1;dsum_extract = sum(dsort(1:p));endp = 199;% (训练阶段)计算特征脸形成的坐标系%while (i<=p && dsort(i)>0)% base(:,i) = dsort(i)^(-1/2) * xmean' * vsort(:,i); % base 是N×p 阶矩阵,除以dsort(i)^(1/2)是对人脸图像的标准化,详见《基于PCA 的人脸识别算法研究》p31% i = i + 1; % xmean' * vsort(:,i)是小矩阵的特征向量向大矩阵特征向量转换的过程%endbase = xmean' * vsort(:,1:p) * diag(dsort(1:p).^(-1/2));% 生成特征脸for (k=1:p),temp = reshape(base(:,k), 112,92);newpath = ['d:\test\' int2str(k) '.jpg'];imwrite(mat2gray(temp), newpath);endavg = reshape(samplemean, 112,92);imwrite(mat2gray(avg), 'd:\test\average.jpg');% 将模型保存save('e:\ORL\model.mat', 'base', 'samplemean');人脸重建% Reconstruct.mfunction [] = reconstruct()load e:\ORL\model.mat;% 计算新图片在特征子空间中的系数img = 'D:\test2\10.jpg'a=imread(img);b=a(1:112*92); % b 是行矢量1×N,其中N=10304,提取顺序是先列后行,即从上到下,从左到右b=double(b);b=b-samplemean;c = b * base; % c 是图片a 在子空间中的系数, 是1*p 行矢量% 根据特征系数及特征脸重建图% 前15 个t = 15;temp = base(:,1:t) * c(1:t)';temp = temp + samplemean';imwrite(mat2gray(reshape(temp, 112,92)),'d:\test2\t1.jpg');% 前50 个t = 50;temp = base(:,1:t) * c(1:t)';temp = temp + samplemean';imwrite(mat2gray(reshape(temp, 112,92)),'d:\test2\t2.jpg');% 前100 个t = 100;temp = base(:,1:t) * c(1:t)';temp = temp + samplemean';imwrite(mat2gray(reshape(temp, 112,92)),'d:\test2\t3.jpg'); % 前150 个t = 150;temp = base(:,1:t) * c(1:t)';temp = temp + samplemean';imwrite(mat2gray(reshape(temp, 112,92)),'d:\test2\t4.jpg'); % 前199 个t = 199;temp = base(:,1:t) * c(1:t)';temp = temp + samplemean';imwrite(mat2gray(reshape(temp, 112,92)),'d:\test2\t5.jpg');基于2DPCA与(2D)2PCA的人脸识别(第二版)。