一次分式型函数

合集下载

分离常数的常见题型

分离常数的常见题型

分离常数的常见题型
一、分式函数求值域类型
1. 一次分式型
- 比如说()这种形式。

就像。

咱分离常数的话,就把分子凑成分母的倍数加上一个常数。

- 对于,可以写成。

这时候呢,就很容易看出来值域啦。

因为,所以。

2. 二次分式型(可化为一次分式型)
- 像这种。

咱先把分子变形一下,。

- 那这个函数就变成。

这里要注意哦,当和的时候,根据均值不等式能求出值域的范围。

二、数列通项公式类型
1. 形如这种
- 分离常数就得到。

这对于研究数列的单调性啊,极限啊就很有用。

比如说,当越来越大的时候,就越来越小,所以这个数列是单调递减的,而且极限是。

2. 复杂一点的分式形式
- 比如。

先把分子分母同时除以,得到。

然后再把分子凑成关于的式子,进一步分离常数,这样就能方便地分析数列的性质啦。

三、函数单调性证明类型
1. 分式函数的单调性
- 就拿来说吧。

分离常数得到。

- 要证明它的单调性呢,我们就看这部分。

当在不同区间变化的时候,的变化情况就决定了整个函数的单调性。

比如的时候,越大,越小,函数就越小,所以函数在上单调递减。

分式型函数的最值求法及简单应用

分式型函数的最值求法及简单应用

分式型函数的雏形是反 比例 函数 ) , = ( k ≠
0 ) , 通过对函数 图像 的平移 , 可得到形式为“ Y = 口+
时, - 等号成立. 1
所 以函数的最小值为 2 √ + 3 , 此时 = √ + 2 .
由于函数形 式符合了基本 不等式的“ 一正数 ,
二定值 , 三相等” 的要求 , 于是顺理成章 的借助基本 不等式完成了本题 ( 2 )仍然可整理 孥 化为( 1 ) 中的函数形式, 但由 于t 的范围限制, 故基本不等式在本题中不能使用了, 并目 该 函 数不 是初等函数, 故必厮 U 用导数说明 单调性
处不 展开说 明.
( > 2 ) ; ( 3 ≤ ≤5 ) .
6 O・
< 数学之友 )
2 0 1 5年第 2 O期
解 法二 : ‘ . ‘ ∈R, . ‘ . 分子 分 母 I

时, 要 注恿
0的情 况分 开讨论 :
② t ∈ 【 一 丢 , 。 ) u ( 。 , 】 时 , , , + _ = = _


. > 0时, + ≥2 ( 当且仅 当 :1 时, 等号

t= 一
成立) ’ . . . + . = 1 -
l ≥1 , y E( 0 , 1 ] .





・ 菇< 0时 , + ≤一 2 ( 当且仅 当 =一1 时,

所以, 综上, 函数的最小值为 一1 , 此时 = 3;
这类函数与“ ” 型的处理方式有一定相 同之 处, 第一步也是“ 分 离常数” , 然后转化 为 “ ” 型
= , 一 耥 ( 2 一 一 1 ) 2 = 一 ( 2 一 一 1< ) 2 、 o u ’

一次分式型函数(1课时)

一次分式型函数(1课时)

一次分式型函数一、 初中相关知识整理1、 函数的概念:在某个变化的过程中,有两个变量y x ,,如果对于x 的每一个确定的值y 都有唯一确定的值,那么就说x y 是的函数,x 叫做自变量。

()(x f y x y =的函数可以记作是);2、 函数表示方法:解析法、列表法、图像法;3、 函数)0(≠+=k b kx y 叫作一次函数,图像是一条直线;当0=b 时,函数)0(≠=k kx y 叫作正比例函数,图像是过原点的直线;4、 函数()0≠=k xk y 叫作反比例函数,图像是由两支曲线组成,当0>k 时,图像分布在一、三象限;当0<k 时,图像分布在二、四象限。

二、 目标要求在高中阶段,我们将会进一步讨论反比例函数的性质,将会遇到“一次分式型函数”,我们通过回顾反比例函数,补充“一次分式”函数,利用平移的思想解决一次分式型函数的图像、性质等。

用例题和练习提高解决反比例函数问题的能力。

通过对问题的探究与解决,提高思维能力,培养勇于探索的科学精神。

三、必要补充 反比例函数()0≠=k xk y 的图像是双曲线,以坐标原点为中心(对称中心),坐标轴为渐近线(无限接近,但永不相交)我们可以称函数)0(≠++=a bax d cx y 为一次分式型函数 ()ab x a bc ad a c b ax a bc d b ax a c b ax d cx y +-+=+-++=++=2(分离常数法) ∴函数b ax d cx y ++=,一般可化为()0≠-=-k mx k n y 的形式,其中k n m ,,是常数,令n y y m x x -=-='',,则''xk y =,这是一个反比例函数。

因此,一次分式型函数)0(≠++=a b ax d cx y ,本质上是一个反比例函数,两者的图像,一般只相差一个平移。

四、例题讲解1基本函数作图例1、画出下列函数的图像:(1)xy 3=;(2)x y 4-=(图略) 2、图像平移例2、指出下列函数的平移变换:(1) 由()2122+-==x y x y 到 (2) 由211-==x y x y 到 (3) 由2121--=-=x y x y 到 解:⑴ 向右平移1个单位,向上平移2个单位;⑵ 向右平移2个单位;⑶ 向右平移2个单位,向上平移2个单位例3、请你说明函数232++=x x y 的图象与xy 1=的图象的关系。

一次分式型函数的对称中心

一次分式型函数的对称中心

一次分式型函数的对称中心一次分式型函数,即函数的分子和分母都是一次函数的函数表达式。

其一般形式为f(x) = (ax + b)/(cx + d),其中a、b、c、d为常数,且c和d不能同时为0。

在这篇文章中,我们将讨论一次分式型函数的对称中心及其性质。

我们来定义一次分式型函数的对称中心。

对于一次分式型函数f(x) = (ax + b)/(cx + d),当满足f(-d/c)存在时,我们称点(-d/c, f(-d/c))为该函数的对称中心。

接下来,我们将讨论一次分式型函数对称中心的性质。

首先,我们可以证明一次分式型函数的对称中心一定在直线x = -d/c上。

这是因为在该直线上,分母为0,但分子不为0,从而可以得到一个有定义的函数值。

对于一次分式型函数f(x) = (ax + b)/(cx + d),如果它的对称中心存在,那么它一定是该函数的一个不动点,即f(-d/c) = (-d/c, f(-d/c))。

这是因为对称中心的横坐标等于f(x)的自变量x,纵坐标等于f(x)的函数值。

进一步地,我们可以通过函数的图像来观察一次分式型函数的对称中心。

以f(x) = (2x + 1)/(3x + 2)为例,我们可以通过绘制函数的图像来找到其对称中心。

在图像上,我们可以看到一条直线x = -2/3,该直线与函数的图像有一个交点,即对称中心。

这个交点的坐标为(-2/3, -1/3)。

一次分式型函数的对称中心还具有以下性质:1. 对称性:对称中心将函数图像关于直线x = -d/c进行对称。

这意味着当点P(x, y)位于函数图像上时,对称中心A(-d/c, f(-d/c))关于直线x = -d/c的对称点P'也在函数图像上。

2. 不动点性质:对称中心满足f(-d/c) = (-d/c, f(-d/c)),即函数在对称中心处的函数值等于对称中心的坐标。

3. 发散性:对称中心是一次分式型函数的“奇点”,即在对称中心处,函数的值可能趋于无穷大或无穷小。

含参一次型分式函数的应用例题

含参一次型分式函数的应用例题

含参一次型分式函数的应用例题
含参一次型分式函数是一种形式的函数,其中分式部分是以一次函数形式加上一个参数。

在实际应用中,这种函数常常被用来进行数据处理和分析。

以下是一些例题:
1. 已知反比例函数的解析式为,求 y 与 x 的函数关系式。

解:将 x2,y1 代入得,解得 k=9。

因此 y 与 x 的函数关系式为。

2. 求分式方程的应用题例题。

解:设步行速度为 x 千米/分,则汽车的速度为 2.5x 千米/分。

得,解得 x=0.38。

经检验,x=0.38 为方程的解,且符合题意。

因此汽车的速度为每千米 0.95 分。

3. 求一次函数表达式的例题。

解:例 1.一个弹簧,不挂物体时长 12cm,挂上物体后会伸长,伸长的长度与所挂物体的质量成正比例。

如果挂上 3kg 物体后,弹簧总长是 13.5cm,求弹簧总长是 y(cm) 与所挂物体质量 x(kg) 之间的函数关系式。

如果弹簧最大总长为 23cm,求自变量 x 的取值范围。

解:由题意设所求函数为 ykx12,则 13.5=3k12,得 k=0.5。

因此函数解析式为 y=0.5x12。

由 230.5x12 得 x=22。

因此自变量 x 的取值范围是 0x22。

通过这些例题,我们可以看到含参一次型分式函数在实际应用中具有广泛的应用,可以用于数据处理和分析。

分式型函数求极限的方法总结

分式型函数求极限的方法总结

黑龙江科学HEILONGJIANG SCIENCE第12卷第7期2021年4月Vol. 12Apr. 2021分式型函数求极限的方法总结孔敏,王娟,梁登星(北京科技大学天津学院,天津301811)摘要:对分式型函数求极限的方法进行总结,以%T%和为例进行说明。

对分式型函数而言,要先判断分母的极限,再判断 分子的极限,要选择正确简单的做题方法,注意洛必达法则的使用条件。

关键词:分式型函数;极限;方法总结中图分类号:0171 -4 文献标志码:B 文章编号:1674-8646(2021 )07 -0128 -02Summary of Fraction Function Ultimate MethodKong Min , Wang Juan , Liang Dengxing(Tianjin College , University of Science and Technology Beijing, Tianjin 301811 , China)Abstract : The research summarizes the fraction function ultimate method , and explains through the example of x —%0 and . For fraction function , it is necessary to judge the extremity of the denominator first , and then judge theextremity of numerator. It is suggested to conectly select simple problem solving method , and pay attention to the service conditions of L' Hospital's rule.Key words : Fraction function ; Extremity ; Method summaiy0引言为0时,根据无穷大和无穷小的关系,取分式函数的倒 数求极限。

一次分式函数

一次分式函数

一次分式函数
一次分式函数是一类非常重要的函数,在数学中扮演着非常重要的角色。

它是一个由有理分式组成的连续函数,可以表示为P(x)/Q(x),其中P、Q是两个多项式。

一次分式函数拥有非常强大的表示能力,它既可以表示连续函数,也
可以表示离散函数。

它是一种图形化函数,因此可以很容易地通过绘
图来理解函数的性质。

它也可以用来分析函数的局部特点,比如极值、拐点和波动性等,从而了解函数的变化趋势。

一次分式函数也可以用来保存数据,它可以把数据表示为函数,从而
可以更精确地描述和分析数据的性质。

因此,一次分式函数也常常被
用来作为数据分析的工具。

一次分式函数也可以用来定义不同的运算操作,比如取余运算、乘方
运算、对数运算和乘法等。

它们对于实现复杂算法有着重要的意义。

总之,一次分式函数在数学中应用广泛,它可以把复杂的数据和运算
表示为一个简单的函数,从而使得精确分析更加容易。

因此,一次分
式函数在数学中扮演着非常重要的角色,不仅在数学学科中,而且在
各种科学和工程领域都有广泛的应用,对人类的发展和进步起着重要
的作用。

一次分式函数

一次分式函数
函数 的图象?
归纳: 图象向右平移1个单位; 图象向下平移2个单位,等等.
联系和反比例函数的关系
提出问题2:作函数 的图象,并归纳一次型分式函数 图象与函数函数 的图象的关系是什么?
一次分式型函数 ( ),本质上是一个反比例函数.两者的图象,一般只相差一个平移.作函数 的图象可用“二线一点”法. 和 是双曲线的两条渐近线,点 是图象的中心对称点.
学生:反函数法、单调性法、分离系数法等求解,
一题多解
例4已知函数 ,其中 。
(1)当函数 的图象关于点P(-1,3)成中心对称时,求a的值及不等式 的解集;
(2)若函数 在(-1,+ )上单调递减,求a的取值范围.
通过例题体会综合考查一次分式函数图象和性质的应用
7、教学评价设计:一次分式函数问题在高考试题中频繁出现,尤其是在近几年,各地实行自主命题后,高考试题更是百花齐放,一次分式函数试题的出现频率就更高。但不管怎样,只要我们抓住了其性质,一次分式函数问题就可迎刃而解。这样的补充课是及时有用的。
激发学习兴趣,形成积极主动的学习方式;突出数学的人文价值,提高数学文化品味;注重构建学生共同的知识基础;让学生成为课堂学习的主体,教师成为课堂上的主持人,把思考,讨论,研究的时间还给学生,让教师成为独具慧眼的发现者,善于发现学生的长处,成为学生的热情观众,精彩时报以掌声,给予充分的肯定,失误时,评论切磋,提出中肯的意见。
对于一次型分式函数 图像作法有几步?
(1)先确定x与y的取值范围: , ,即找到双曲线的渐近线 , ;
(2)再取与一个坐标轴的交点确定图象在“一、三象限”还是在“二、四象限”;
(3)根据双曲线的大致形状画出函数的图象
归纳总结
例3.(考查一次分函数的定义域和值域)求函数y= 的值域.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
:Y
一次分式型函数
一、课前准备:
1.一次分函数的定义
我们把形如 的函数称为一次分函数。
2.一次分函数的图象是双曲线
3.一次分函数 的性质
①.定义域: ;②.值域: ;
③.对称中心: ;④.渐近线方程: 和 ;
⑤.对称轴方程: 和
⑥单调性:当ad>bc时,函数在区间 和 分别单调递减;
当ad<bc时,函数在区间 和 分别单调递增;
7.函数 ( ),则 的值域是________.
8.函数y= 的值域.
9.函数y= ( )的值域.
10.函数y= 的对称中心是.
11.函数y= 的单调增区间是.
12.若函数 在区间 上的值域为 ,则 __________.
13.若函数 的图象关于直线y=x对称,则实数a=.
2..熟练掌握分离常数法,并会用图象的平移作一次分式型函数的图象
步骤:先用分离常数法将函数解析式化为 ,再由 图象平移得到.
例.作函数 的图象,
练习:作函数的图象: . .
1.函数 的图象是.
.函数 的单调增区间是.
5.函数 的对称中心是.
6.函数 ( ),则 的值域是________.
二、教学目标
1.会用“二线一点”法作一次分式型函数的图象
步骤:(1)先确定x与y的取值范围: , ,即找到双曲线的渐近线 , ;(2)再取与一个坐标轴的交点确定图象在“一、三象限”还是在“二、四象限”;
或当ad>bc时,在“一、三象限”;当ad<bc时,在“二、四象限”。
(3)根据双曲线的大致形状画出函数的图象.
相关文档
最新文档