第2章原子的量子态:波尔模型 2
原子物理学第一、二章:卢瑟福模型、玻尔模型

第一章:原子的位形:卢斯福模型
第五节:行星模型的意义及困难 2.原子的同一性
任何元素的原子都是确定的,某一元素的所 有原子之间是无差别的,这种原子的同一性是 经典的行星模型无法理解的。
3.原子的再生性 一个原子在同外来粒子相互作用以后,这个 原子可以恢复到原来的状态,就象未曾发生过 任何事情一样。原子的这种再生性,是卢瑟福 模型所无法说明的.
Automic Physics 原子物理学
第二章:原子的量子态:玻尔模型
第一节 第二节 第三节 第四节 第五节 背景知识 玻尔模型 光 谱
夫兰克--赫兹实验 玻尔理论的推广
第二章:原子的量子态:玻尔模型
第一节:背景知识
卢瑟福模型把原子看成由带正电的原子核和围绕核运动的一 些电子组成,这个模型成功地解释了α粒子散射实验中粒子的 大角度散射现象
2
1
hv
e
c2
1
上式中的 h 就是著名的普朗克常量,其曲线与实验值 完全吻合,而这一公式是普朗克根据实验数据猜出来的。 由此公式当v->0和v->∞时分别都可得到与瑞利--金斯和 维恩公式相同的形式。
第二章:原子的量子态:玻尔模型
第一节:背景知识
此公式虽然符合实验事实但其在公布时仍没有理论根据,就在普朗克公式公 布当天,另一位物理学家鲁本斯将普朗克的结果与他的最新测量数据进行核对, 发现两者以惊人的精确性相符合。 第二天鲁本斯就把这一喜讯告诉了普朗克,从而使普朗克决心:“不惜一切 代价,找到一个理论解释。”
可是当我们准备进入原子内部作进一步的考察时,却发现已经 建立的物理规律无法解释原子的稳定性,同一性和再生性。 玻尔(N.Bohr)基于卢瑟福原子模型,原子光谱的实验规 律以及普朗克的量子化概念,于1913年提出了新的原子模型并 成功地建立了氢原子理论,解释了氢光谱的产生,玻尔理论还 可以准确地推出巴尔末公式,并能算出里德伯常数的理论值。 不过当玻尔理论应用于复杂一些的原子时,就与实验事实 产生了较大的出入。这说明玻尔理论还很粗略,直到1925年量 子力学建立以后,人们才建立了较为完善的原子结构理论。
第2章 玻尔理论

3.光谱 3.光谱 α粒子的大角度散射,肯定了原子核的存在,但核外电 粒子的大角度散射,肯定了原子核的存在, 的大角度散射 子的分布及运动情况仍然是个迷, 子的分布及运动情况仍然是个迷,而光谱是原子结构的反 因此研究原子光谱是揭示这个迷的必由之路。 映,因此研究原子光谱是揭示这个迷的必由之路。 电磁波谱
n = 1, 2 , 3 ....
一个硬性的规定常常是在建立一个新理 论开始时所必须的。 论开始时所必须的。
三、关于氢原子的主要结果
1、量子化轨道半径 电子定态轨道角动量满足量子化条件: 电子定态轨道角动量满足量子化条件: 圆周运动: 圆周运动:
me rn vn = nh
2 vn Ze 2 me = rn 4πε 0 rn2
back next 目录 结束
1 1 1 1 2 ( )A = RA ( 2 − 2 )Z = RA ( m 2 − n 2 ) λ m n ( z ) (Z )
1
对He+,Z=2 ,
( )He+
1
λ
1
1 1 = RA ( m 2 − n 2 ) ( 2 ) (2)
设m=4,则n=5,6,7… 则 …
back
next
目录
结束
毕克林系与巴尔末系的区别 (1)毕克林系的谱线比巴尔末系多; (1)毕克林系的谱线比巴尔末系多; 毕克林系的谱线比巴尔末系多 不同,即使n=k的相应谱线, n=k的相应谱线 (2)RHe+与RH不同,即使n=k的相应谱线,位置 也不同。 也不同。 3.类氢离子公式 3.类氢离子公式
跃迁频率: 跃迁频率:
En − Em ν = h
(3) 角动量量子化假设 为保证定态假设中能量取不连续值, 取不连续值, 为保证定态假设中能量取不连续值,必须 rn 取不连续值, 如何做到? 如何做到?
高中物理第2章原子结构第3节玻尔的原子模型第4节氢原子光谱与能级结构课件鲁科版选修3

定态 E1,辐射的光子能量为 hν=E2-E1
基本 内容
假设
原子的不同能量状态对应于电子的不同运行轨道.原
子的能量状态是不连续的,电子不能在任意半径的轨 轨道 道上运行,只有轨道半径 r 跟电子动量 mev 的乘积满 假设 足下式 mevr=n2hπ(n=1,2,3,…)这些轨道才是可
对玻尔原子模型的理解 1.轨道量子化:轨道半径只能够是一些不连续的、某些分立的 数值. 模型中保留了卢瑟福的核式结构,但他认为核外电子的轨道是 不连续的,它们只能在某些可能的、分立的轨道上运动,而不 是像行星或卫星那样,能量大小可以是任意的量值.例如,氢 原子的电子最小轨道半径为 r1=0.053 nm,其余可能的轨道半 径还有 0.212 nm、0.477 nm、…不可能出现介于这些轨道半径 之间的其他值.这样的轨道形式称为轨道量子化.
按照玻尔原子理论,氢原子中的电子离原子核越远, 氢原子的能量________(选填“越大”或“越小”).已知氢原 子的基态能量为 E1(E1<0),电子质量为 m,基态氢原子中的电 子吸收一频率为 ν 的光子被电离后,电子速度大小为 ________(普朗克常量为 h). [思路点拨] 根据玻尔原子理论与能量守恒定律求解.
得到了氢原子的能级结构图(如图所示).
n=∞————————E∞=0 ⋮
n=5 ————————E5=-0.54 eV n=4 ————————E4=-0.85 eV n=3 ————————E3=-1.51 eV n=2 ————————E2=-3.4 eV n=1 ————————E1=-13.6 eV
4.原子跃迁时需注意的几个问题 (1)注意一群原子和一个原子 氢原子核外只有一个电子,这个电子在某个时刻只能处在某一 个可能的轨道上,在某段时间内,由某一轨道跃迁到另一个轨 道时,可能的情况只有一种,但是如果容器中盛有大量的氢原 子,这些原子的核外电子跃迁时就会有各种情况出现.
原子物理学第2章原子的量子态全解

的温度升高时,单色辐射能量密度
最大值向短波方向移动.
0 1 2 3 4 λ(µm) 绝对黑体辐射能量密度按波长分布(实验)曲线
第二章 原子的量子态:玻尔模型
Manufacture: Zhu Qiao Zhong
4
物体辐射总能量按波长分布决定于温度.
800K
1000K
1200K
固体在温度升高时颜色的变化
矛盾二:经典的光强和时间决定光电流大小;而光电效应中只有 在光的频率大于红限时才会发生光电效应.
矛盾三:经典的驰豫时间(or:响应时间)较长 (若光强很小,电 子需较长时间吸收足够能量才能逸出),而光电效应不超过10-9s.
实验表明:光强为1μW/m2的光照射到钠靶上即有光电流产生, 这相当于500W的光源照在6.3km处的钠靶.
第二章 原子的量子态:玻尔模型
Manufacture: Zhu Qiao Zhong
10
“在目前业已基本建成的科学大厦中,物理学家似乎只要 做一些零碎的修补工作就行了;然而在物理学晴朗天空的 远处,还飘着两朵令人不安的愁云.”
——《19世纪笼罩在热和光的动力论上的阴影》 1900年4月27日于不列颠皇家科学院
1)光电流与入射光强度的关系
光电子
单色光
I
e
Is
A
V
遏止电压
光强较强 光强较弱
第二章 原子的量子态:玻尔模型
Ua o
U
Manufacture: Zhu Qiao Zhong
15
第二章 原子的量子态:玻尔模型
Manufacture: Zhu Qiao Zhong
16
2)光电子初动能与入射光频率呈线性关系,而与入射光强度
玻尔的量子轨道原子模型

玻尔的量子轨道原子模型【摘要】玻尔的量子轨道原子模型是量子物理学发展的重要里程碑,它对原子结构和光谱的解释起到了重要作用。
本文从玻尔的量子轨道原子模型的基本假设开始介绍,然后探讨了该模型的发展历程和主要内容。
接着分析了实验验证和局限性,指出该模型在解释某些现象时存在一定局限性。
在结论部分总结了玻尔的量子轨道原子模型的重要性和意义,并提出了未来研究的方向,指出可以进一步完善和发展该模型,以更好地理解原子结构和光谱现象。
通过对该模型的深入研究,可以推动量子物理学的发展,拓展我们对自然界的认识。
【关键词】玻尔,量子轨道,原子模型,基本假设,发展历程,主要内容,实验验证,局限性,总结,未来研究方向.1. 引言1.1 玻尔的量子轨道原子模型简介玻尔的量子轨道原子模型是量子物理学的重要里程碑之一,由丹麦物理学家尼尔斯·玻尔于1913年提出。
这一模型是基于爱因斯坦的光电效应和普朗克的量子理论,并与里德堡的光谱定律相联系。
玻尔的模型突破了经典物理学的束缚,引入了量子概念,为原子结构研究开启了全新的篇章。
玻尔的量子轨道原子模型简单明了地描述了电子在原子中的运动状态,通过假设电子围绕原子核以离散的能级运动,且只在特定的轨道上运动。
这一模型为解释氢光谱线的发射和吸收现象提供了合理的解释,并且揭示了原子内部结构的稳定性和量子态的离散性。
玻尔的量子轨道原子模型不仅在原子物理学领域引起了革命性的变革,也为后续量子力学的发展奠定了坚实的基础。
通过对这一模型的深入研究和实验验证,我们可以更好地理解原子内部的微观结构和规律,推动科学技术的进步,为未来的研究和应用提供更多的可能性。
2. 正文2.1 玻尔的量子轨道原子模型的基本假设1. 电子在原子内围绕原子核轨道运动,只在特定的能级上运动,这些能级是离散的。
2. 电子在轨道运动的过程中不发射辐射,也不吸收外界辐射能量。
3. 电子在特定的轨道上运动时,其轨道半径和能量是固定的,不会发生改变。
原子物理课件cap2

黑体辐射
困难。然而,历史很快作出了判断,1922年,
爱因斯坦因光电效应获诺贝尔物理奖。
光电效应
光 谱
back
next
目录
结束
(一)光谱 • 光谱是电磁辐射(不论在可见区或在可见区外)的波 长成分和强度分布的记录;有时只是波长成分的记录。 • 光谱是研究原子结构的重要途径之一。 (二)光谱仪 光谱仪:能将混合光按不同波长成分展开成光谱的仪 器。 光谱仪的组成:光源、分光器、记录仪,若装有照相 设备,则称为摄谱仪。
back
next
目录
结束
第二章:原子的量子态:玻尔模型
第一节:背景知识 例如,用光强为 1 / m 2 的光照到钠金属表 面,根据经典理论的推算,至少要 107 秒(约 合120多天)的时间来积聚能量,才会有光电 子产生;事实上,只要ν >ν 0 ,就立即有光电 子产生,可见理论与实验产生了严重的偏离. 此外,按照经典理论,决定电子能量的是光 强,而不是频率.但实验事实却是:
光电效应
光 谱
back
next
目录
结束
第二章:原子的量子态:玻尔模型
第一节:背景知识 早在1887年,德国物理学家赫兹第一个观察 到用紫光照射的尖端放电特别容易发生,这实 际上是光电效应导致的.由于当时还没有电子 的概念,所以对其机制不是很清楚. 直到1897年汤姆逊发现了电子.人们才注意 到一定频率的光照射在金属表面上时,有大量 电子从表面逸出,人们称之为光电效应。光 电效应呈现出以下特点: 1.对一定金属有一个临界频率v0 ,当ν <ν 时,无论光强多大,无电子产生;
黑体辐射实验
前者导致了相对论的诞生后,后者导致了量 子论的诞生。
实验验证之一:光谱

λmaxT=2.898×10-3mK。
维恩位移公式
量子假说根据之一黑体辐射
R( ,T ) c E( ,T )
4
腔内热平衡时的辐 射场的能量密度
1896年,维恩以经典物理为基础,认为能量的吸收和
hv
Tmax
W逸出
1 2
mvmax 2
W逸出
T
1.当光的强度与频率一定时, 当光照在金属表面时,电流几 乎同时产生。(<1 ns)
2.当减速势和光频率固定时, 光电流与光强成正比,即单位 时间内逸出的电子数目正比于 光的强度。
3.当光的强度和频率固定时,光电流随减速势增加而减 小,说明光电子的最大能量和光强无关。
基尔霍夫在光学理论方面的贡献是给出了惠更斯-菲 涅耳原理的更严格的数学形式。
热辐射方面的研究成就:1859年,基尔霍夫证明, 黑体辐射与热辐射达到平衡时,辐射能量密度随频率变 化的曲线与位置只与黑体的热力学温度有关,而与空腔 的形式和组成物质无关。利用黑体可撇开材料的具体性 质来普遍研究热辐射本身的规律
=nhv(n=1,2,3,……)
这一概念严重偏离了经典物理;因此,这一假设提 出后的5年时间内,没有引起人的注意,并且在这以后 的十多年时间里,普朗克很后悔当时的提法,在很多场 合他还极力的掩饰这种不连续性是“假设量子论”。
量子假说根据之二 光电效应
赫兹,(1857-1894) 德国物理学家,生 于汉堡。早在少年时代就被光学和力学 实验所吸引。十九岁入德累斯顿工学院 学工程,由于对自然科学的爱好,次年 转入柏林大学,在物理学教授亥姆霍兹 指导下学习。1885年任卡尔鲁厄大学物 理学教授。1889年,接替克劳修斯担任 波恩大学物理学教授,直到逝世。
第二章 原子的量子态:玻尔理论 89节 实验验证1

§8、§9 玻尔理论的实验验证
掌握玻尔理论对类氢光谱的应用;
掌握弗兰克-赫芝实验的方法和意义。
① 玻尔理论对类氢光谱的应用;
② 折合质量对光谱的影响。
理论讲授
2学时
第二章 原子的量子态位形:玻尔理论
§8 实验验证之一:光谱
一、里德伯常数
氢原子的里德伯常数可以由理论值计算出 132042315.109737)4(2-==cm ch
m e R e πεπ
由光谱分析,氢原子的里德伯常数的实验值为 158.109677-=cm R H
两者非常接近,仅相差5/10000。
当时的光谱学的实验精度可达1/10000。
解释:必须考虑折合质量M m m M
+=μ M
m R M m ch m e ch e R e e e +=+⨯=⨯=111)4(2)4(23204232042πεπμπεπ R R =∞
表8.1 Rydberg 常数A R (P-50)
二、类氢光谱
类氢离子:原子核带Z 个单位的正电荷,核外有一个电子绕核运动。
氦离子He+、锂离子Li++、铍离子Be+++。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2)由
Z E n E1 2 n
2
得电离电势
U He UH
E E He 1 E E H 1
Z
Z
2 He 2 H
4
3)第一激发电势
U He 1 U H1
E He 2 E He 1 EH 2 EH1
Z
Z
2 He 2 H
4
4)由
1 1 2 ~ Z RA ( 2 2 ) n1 n2
4
4 0 n rn me e 2
2
2
角动量量子化条件
h L me vr n n 2
n =1,2,3,…
(4)数值计算法 • 组合常数 c 197nm eV
e
2
4 0
1.44nm eV
me c 2 511keV
玻尔半径
4 0 n 2 2 r1 2 me e 4 0 2 1972 2 me e 511 103 1.44 0.053nm 0.53 1010 m
4 0 n rn me Ze 2
2
2
Z 2 2 En Ekn 2 me c n
Z2 Ekn En 2 me 2 c 2 n
2 1 Z 2 2 Ekn me c 2 2 n
2
1 4 0c 137
1 2 2 Z En me c 2 2 n
巴尔末公式
• J.J.Balmer1885年最先将谱线的波长用公式 表达出来,这个公式叫巴尔末公式
1 1 ~ RH [ 2 2 ] 2 n
n = 3, 4, 5, …
它所表达的一组谱线称为巴尔末系。
J.R.Rydberg方程(1889年)
1 1 ~ RH [ 2 2 ] m n T ( m) T ( n )
1 1 ~ RH [ 2 2 ] m n
hcR hcR hcR hcR h 2 2 2 2 m n n m
氢原子定态能量
hcR En 2 n
• 定态轨道半径
hcR En 2 n
Ze 2 E 4 0 2r 1
• 里德伯常数实验值: • 氢的任一谱线为两光谱项之差
RH 1.0967758 107 m 1
氢原子光谱的经验公式
• 赖曼系 • 巴尔末系
1 1 ] 2 2 1 n ~R [1 1] H 22 n2 ~R [1 1] H 32 n 2 ~R [1 1] H 42 n2 ~R [1 1] H 52 n 2 ~R [ H
2 He 2
RHe
) (
hcZ
2 He 2
RHe
1
)
Li++跃迁辐射的光子的能量
Er E2 E1 ( hcZ
2 Li 2
RLi
2
) (
hcZ
2 Li 2
RLi
1
)
27 1 hc R m 4 1 M Li
m 1 M He Er 27 1 Ei 16 1 m M Li
1 2 Ekn me n 2
2
e
2
• 所以电子轨道运动的速度
Z n c n
例题
• 估算一次电离的He+的第一波尔半径、电离 电势、第一激发电势和赖曼系第一条谱线 波长与氢原子的上述量之比。
解:1)由
n2 rn a1 Z
可得第一波尔半径
rHe rH
ZH 1 Z He 2
(2)类氢原子 • 核外只有一个电子 如:HI、HeII、LiIII、BeIV
氢原子能量
me e En 2 2 2 (4 0 ) 2n
me Z e En 2 2 2 (4 0 ) 2n E1 2 Z2 n
2 4
4
类氢原子能量
me Z e En 2 2 2 (4 0 ) 2n
(Z=1)
2
n e rn 4 0 2hcR
1
2
(3)角动量量子化条件 1 1 ~ RH [ 2 2 ] • 里德伯方程 m n
两相邻定态之间跃迁的频率
2 Rc 3 n
e f 2 Z 4 0 m r3
(Z=1)
电子轨道运动的频率
电子轨道运动的半径
e2 2 3 r n 2 2 2 4 0 16 R c me 1
2 He ZH 1 2 H 4 Z He
得赖曼系第一条谱线波长
• 试问二次电离的Li++从其第一激发态向基态 跃迁时发出的光子能否使处于基态的一次 电离的He+的电子电离?
解:He+的电离能为
Ei E E1 ( hcZ 1 4 En (4 0 ) 2 2n 2 2
hcRA 2 2 Z n
2 2e4 RA 2 3 (4 0 ) h c
h En En
hcRA Z 2 hcRA Z 2 h n2 n2 Z2 Z2 hcRA n 2 n2
返回
棱镜摄谱仪示意图
光源
L1 L3
L2
P
返回
发射光谱和吸收光谱
返回
氢原子光谱
• 氢原子光谱 氢原子受激发出的一系列的线状光谱 • 巴尔末系 分布在可见区和近紫外区,1885年发现, 可见区域的四条谱线为 H、H 、H 、H。 • 赖曼系 分布在紫外区,由T.Lyman1914年发现。 • 帕邢系 分布在红外区,由F.Paschen1908年发现。 • 布拉开系 分布在红外区,由F.Brackett1922年发现。 • 普丰特系 分布在红外区,由H.A.Pfund1924年发现。
1 6563
0
hc
1
1
E3 E2
n3 n2
R R 2 2 1 2 3
n2
n 1
hc
2
1
E2 E1
R R 2 2 1 2
hcR hcR 2 2 1 2
2 1215
0
2
n3
n 1
n 1
hc
3
1
E3 E1
hcR hcR 2 2 1 3
2 2 e 4 RA 2 3 (4 0 ) h c 2 2 e 4 m (4 0 ) 2 h 3c 1 m M 1 R m 1 M
折合质量
• 当原子核质量M→∞时
1 RA R R R m 1 M
R为原子核质量无穷大时(静止)的值
• 波尔模型对氢光谱的解释
• 氢原子能量
me e 1 2 2 1 En me c 2 2 2 2 (4 0 ) 2n 2 n
1 2 2 E m c 13.6eV 基态能量 1 e 2 2 e 1 其中,精细结构常数 4 0c 137
氢原子电离能
4
1 2 2 E me c 13 .6eV 2
1 1 RHe 2 2 n n 4 4
氢原子轨道半径
4 0 n rn me e 2
2
2
类氢原子轨道半径
4 0 n 2 2 rn 2 me Ze n a1 Z
2
(3)氘的存在 (4)非量子化轨道
§9 实验验证之二:弗兰克-赫 兹实验
绕核转动频率
f v 2a1
2.19 106 15 1 6 . 58 10 s 10 2 3.14 0.53 10
加速度为
v (2.19 10 ) 22 2 a 9.05 10 m / s 10 a1 0.53 10
2 6 2
• 用能量为12.5eV的电子去激发基态氢原子。问受 激发的氢原子向低能级跃迁时会出现那些波长的 光谱线?
n = 2, 3, 4, … n = 3, 4, 5, … n = 4, 5, 6, … n = 5, 6, 7, … n = 6, 7, 8, …
• 帕邢系
• 布拉开系 • 普丰特系
§7 波尔模型
• 原子的能量 设r=∞时的势能为零
2
Ze E 4 0 2r
电子轨道运动的频率
1
e f 2
2 2 me e 4 R 2 3 (4 0 ) h c
电子轨道半径
n 2e 2 rn 4 0 2hcR 1 4 0 n h 4 2 me e 2
2 2
4 0 n 2 2 2 me e
体系的能量
2 2 me e 4 hcR En 2 n (4 0 ) 2 n 2 h 2 me e 2 2 2 (4 0 ) 2n
2 2 mee4 E R 2 3 (4 0 ) h c hc
里德伯常数
例题
• 计算氢原子的第一玻尔轨道上电子绕核转 动的频率、线速度和加速度。
解:由量子化条件 电子速度
v
L mvr n h 2
h 2m a1 m a1
1.05 1034 6 2 . 19 10 m/ s 31 10 9.11 10 0.53 10
能级跃迁图
0
R R 2 2 3 1 3
3 1025
§8 实验验证之一:光谱
(1)氢光谱
2 2 me e 4 R (4 0 ) 2 h3c
理论值 实验值
R 1.0973731 107 m1
RH 1.0967758 107 m 1
?
• 如果电子和核绕质心运动
2 2 me e 4 R (4 0 ) 2 h3c