大学物理第二章
大学物理(第三版)热学 第二章

一、 理想气体的微观图象
1. 质点 P nkT P 0
在 T 一定的情况下 n 值小 意味着分子间距大 2 .完全弹性碰撞
3. 除碰撞外 分子间无相互作用 f=0
范德瓦耳斯力(简称:范氏力)
f
斥力
合力
r0
O
s
10 -9m r
d
引力
分子力
气体之间的距离
r 8r0 引力可认为是零 可看做理想气体
第3步:dt时间内所有分子对dA的冲量
dI dIi ix 0
1 2
i
dIi
nimi2xdtdA
i
dIi
2ni mi2xdtdA
第4步:由压强的定义得出结果
P
dF dA
dI dtdA
i
ni
m
2 ix
i dA
ixdt
P
dF dA
dI dtdA
2. 气体分子的自由度
单原子分子 双原子分子 多原子分子
i3 i5 i6
二、 能量按自由度均分原理 条件:在温度为T 的平衡态下 1.每一平动自由度具有相同的平均动能
1 2
kT
1 3
3 2
kT
1 2
m
1
3
2
1 2
m
2 x
1 2
m
2 y
1 2
m
2 z
每一平动自由度的平均动能为 1 kT
2
2.平衡态 各自由度地位相等
每一转动自由度 每一振动自由度也具有 与平动自由度相同的平均动能 其值也为 1 kT
大学物理课件第二章质点动力学

m0g N
N
a’ B mg
联立解得
(m m0 )sin m cos sin a g, a ' g 2 2 m0 m sin m0 m sin
例题2 质量为m的快艇以速率v0行驶,关闭发动 机后,受到的摩擦阻力的大小与速度的大小成 正比,比例系数为k,求关闭发动机后 (1)快艇速率随时间的变化规律; (2)快艇位置随时间的变化规律
B
A
F
B
m0g
A
解:隔离两物体,分别受力分析, aA-地对楔块A N sin m0a
N
F ( N cos m0 g ) 0
N
对物体B(aB地 aB A aA地 )
B
a
B-A
a
N sin m(aB A cos a)
A-地
mg
N cos mg m(aB A sin 0)
m0 m sin
(m m0 )sin 联立解得 a m cos sin g , aB A g 2 2 m0 m sin
B
A
F A a
解:隔离两物体,分别受力分析, 对楔块A N sin m0a N cos m0 g F 物体B相对楔块A以a’加速下滑
二、牛顿第二定律 1.动量: p mv
2.力的定义: dp d (mv ) F dt dt --牛顿第二定律(质点运动微分方程)
v c 物体质量为常量时:
dv F m ma dt
惯性演示实验
当锤子敲击在一大铁块上时,铁块下的手 不会感到有强烈的冲击;而当用一块木头取代 铁块时,木块下的手会感到明显的撞击。
大学物理第二章质点动力学PPT课件

•若物体与流体的相对速度接近空气中的声速时,阻 力将按 f v3 迅速增大。
•常见的正压力、支持力、拉力、张力、弹簧的恢复 力、摩擦力、流体阻力等,从最基本的层次来看, 都属于电磁相互作用。
2021
12
五、牛顿定律的应用
•应用牛顿运动定律解题时,通常要用分量式:
如在直角坐标系中:
在自然坐标系中:
Fn
man
mv2
2021
6
三、牛顿第三定律
物体间的作用是相互的。两个物体之间的作用
力和反作用力,沿同一直线,大小相等,方向相反,
分别作用在两个物体上。
F21F12
第三定律主要表明以下几点:
(1)物体间的作用力具有相互作用的本质:即力总 是成对出现,作用力和反作用力同时存在,同时消 失,在同一条直线上,大小相等而方向相反。
(4)由于力、加速度都是矢量,第二定律的表示式 是矢量式。在解题时常常用其分量式,如在平面直 角坐标系X、Y轴上的分量式为 :
2021
5
Fx mxamddxvtmdd22xt Fy myamddyvtmd d22yt
在处理曲线运动问题时,还常用到沿切线方向 和法线方向上的分量式,即:
Ft
mat
mdv dt
2021
27
1983年第17届国际计量大会定义长度单位用真空中 的光速规定:
c = 299792458 m/s
因而米是光在真空中1299,792,458秒的时间间 隔内所经路程的长度。
❖其它所有物理量均为导出量,其单位为导出单位
如:速度 V=S/ t, 单位:米/秒(m/s)
加速度a=△V/t,单位:米/秒2(m/s2)
•摩擦力:两个相互接触的物体在 沿接触面相对运动时,或者有相对 运动趋势时,在接触面之间产生的
大学物理-第二章-牛顿定律(运动定律)

二 弹性力:(压力、支持力、张力、弹簧弹性力等)
物体在受力形变时,有恢复原状的趋势, 这种抵抗外 力, 力图恢复原状的的力就是弹性力.
在弹性限度内弹性力遵从胡克定律
FP
FT
F FT
FT (l) FT (l)
F kx
al
l
FT (l l) FT (l l)
害处: 消耗大量有用的能量, 使机器运转部分发热等. 减少摩擦的主要方法:
化滑动摩擦为滚动摩擦, 化干摩擦为湿摩擦. 摩擦的必要性:
人行走, 车辆启动与制动, 机器转动(皮带轮), 弦乐器演奏等.
失重状态下悬浮在飞船舱内的宇航员, 因几乎受 不到摩擦力将遇到许多问题. 若他去拧紧螺丝钉, 自 己会向相反的方向旋转, 所以必须先将自己固定才行.
1、关于力的概念
1)力是物体与物体间的相互作用,这种作用可使物体产生形 变,可使物体获得加速度。
2)物体之间的四种基本相互作用;
两种长程作用电引磁力作作用用 两种短程作用弱 强相 相互 互作 作用 用
7
3)力的叠加原理 若一个物体同时受到几个力作用,则合力产生的加速
度,等于这些力单独存在时所产生的加速度之矢量和。 力的叠加原理的成立,不能自动地导致运动的叠加。 牛顿第二定律给出了力、质量、加速度三者间瞬 时的定量关系
17
讨论:胖子和瘦子拔河,两人彼此之间施与的力 是一对作用力和反作用力(绳子质量可略),大小 相等,方向相反,那么他们的输赢与什么有关?
50kg
胜负的关键在于脚下的摩擦力.
18
扩展:
四种基本相互作用
力的种类 相互作用的粒子 力的强度 力程
万有引力 一切质点
大学物理第2章 牛顿运动定律

推论:当你不去追求一个美眉,这个美眉就会待在那里不动。 2、第二定律(F=ma,物体的加速度,与施加在该物体上的外力成正比); 推论:当你强烈地追求一个美眉,这个美眉也会有强烈的反应。 评述:这个显然也是错误的!如果你是一只蛤蟆,那么公主是不会动心的。 你的鲜花送得越勤,电话费花得越多,可能对方越是反感,还可能肥了不费力 气的对手。更可能的情况是,当多个人同时在追求一个美眉时,该美眉反而无 动于衷,心想:机会多着呢,再挑一挑。所以,紧了绷,轻了松,火候要拿捏 得好。
mgR 2 F r2
R2 dv mg 2 m 由牛顿第二定律得: r dt 2 dv dv dr dv gR 又 v dr vdv 2 dt dr dt dr r
当r0 = R 时,v = v0,作定积分,得:
v gR 2 R r 2 dr v0 vdv r
故有
k
例题2-4 不计空气阻力和其他作用力,竖直上抛物体的初速 v0最小应取多大,才不再返回地球?
分析:初始条件,r R 时的速度为 v0 只要求出速率方程 v v ( r ) “不会返回地球”的数学表示式为: 当
r 时, v 0
结论:用牛顿运动定律求出加速度后,问 题变成已知加速度和初始条件求速度方程或运动 方程的第二类运动学问题。 解∶地球半径为R,地面引力 = 重力= mg, 物体距地心 r 处引力为F,则有:
说明
1)定义力
2)力的瞬时作用规律
3)矢量性
4)说明了质量的实质 : 物体惯性大小的量度
5)适用条件:质点、宏观、低速、惯性系
在直角坐标系中,牛顿第二定律的分量式为
d ( mv x ) Fx dt
大学物理第二章液体表面现象

日 常 生 活 中 观 察 到 的 现 象
空气中或荷叶上的小水滴呈球状 小昆虫能停留在水面不下沉 加热使玻璃的锐利边缘熔化, 边缘变得圆滑 密度比水大的小钢针可以浮在水面 水滴在水龙头上悬挂一段时间不掉下来
表明液 体表面具有 像绷紧的弹 性膜那样的 张力。这种 张力与固体 弹性膜的张 力不同,它 不是由于弹 性形变引起 的,称为表 面张力。
2 1 1 h ( + ) 5.5 102 (m) g R r
第三节 润湿和不润湿 毛细现象
一、润湿与不润湿
1. 定义
润湿: 液体沿固体表面 延展的现象,称液体润 湿固体。 不润湿:液体在固体表 面上收缩的现象,称液 体不润湿固体。
润湿、不润湿与相互接触的液体、固体的性质有关。
2. 接触角
从表面层中任取 一分子B,其受合力 与液面垂直,指向 液内,这使得表面 层内的分子与液体 内部的分子不同,都 受一个指向液体内 部的合力 。 在这些力作用下, 液体表面的分子有 被拉进液体内部的 趋势。
f
在宏观上就表现为液体表面有收缩的趋势。
②从能量观点来分析
把分子从液体内部移到表面层,需克服 f ⊥ 作功;外力作功,分子势能增加,即表面层内分子 的势能比液体内部分子的势能大,表面层为高 势能区;各个分子势能增量的总和称为表面能, 用E 表示。 任何系统的势能越小越稳定,所以表面层 内的分子有尽量挤入液体内部的趋势,即液面 有收缩的趋势,这种趋势在宏观上就表现为液 体的表面张力。表面张力是宏观力,与液面相 切; f ⊥是微观力,与液面垂直。
2 pi p0 R
2 2 2 R 1.44 106 (m) pi p0 2 p0 p0 p0
例2.5 在内半径r=0.3 mm的细玻璃管中注水,一部分水 在管的下端形成一凸液面,其半径R=3 mm,管中凹 液面的曲率半径与毛细管的内半径相同。求管中所悬 水柱的长度h。设水的表面张力系数=73×10-3N· -1 m
大学物理课后习题答案第二章

(2)小球上升到最大高度所花的时间T.
[解答](1)小球竖直上升时受到重力和空气阻力,两者方向向下,取向上的方向为下,根据牛顿第二定律得方程
,
分离变量得 ,
积分得 .
当t= 0时,v=v0,所以 ,
因此 ,
小球速率随时间的变化关系为
.
(2)当小球运动到最高点时v= 0,所需要的时间为
第二章运动定律与力学中的守恒定律
(一) 牛顿运动定律
2.1一个重量为P的质点,在光滑的固定斜面(倾角为α)上以初速度 运动, 的方向与斜面底边的水平约AB平行,如图所示,求这质点的运动轨道.
[解答]质点在斜上运动的加速度为a = gsinα,方向与初速度方向垂直.其运动方程为
x = v0t, .
将t = x/v0,代入后一方程得质点的轨道方程为
(3)小车自由地从倾斜平面上滑下,斜面与水平面成φ角;
(4)用与斜面平行的加速度 把小车沿斜面往上推(设b1=b);
(5)以同样大小的加速度 (b2=b),将小车从斜面上推下来.
[解答](1)小车沿水平方向做匀速直线运动时,摆在水平方向没有受到力 的作用,摆线偏角为零,线中张力为T = mg.
(2)小车在水平方向做加速运动时,重力和拉力的合力就是合外力.由于
这也是桌子受板的压力的大小,但方向相反.
板在桌子上滑动,所受摩擦力的大小为:fM= μkNM= 7.35(N).
这也是桌子受到的摩擦力的大小,方向也相反.
(2)设物体在最大静摩擦力作用下和板一起做加速度为a`的运动,物体的运动方程为
f =μsmg=ma`,
可得a` =μsg.
板的运动方程为
F – f – μk(m + M)g=Ma`,
大学物理-流体力学

为 U 形管中液体密度, 为流体密度。
较适合于测定气体的流速。
h
A B
常用如图示形式的比多管测液体的流速
1 2
v2
PA
PB
gh
v 2gh
3.飞机机翼周围的空气是如何流动的
假设在机翼右方的空气是水平方向以速度v1向左运动的,如图。 由于机翼倾斜,流经机翼的流线向 下偏移,如图中的v2。这两个矢量 之差v2- v1正是指向机翼对空气的 作用力的方向。根据牛顿第三定律, 空气对机翼施加大小相等、方向相 反的反作用,如图中的F。 这个力 的垂直分量正是飞机的升力(lift)。
所以: E
S
表示增大液体单位表面积所增加的表面能
2、表面张力系数的基本性质 (1)不同液体的表面张力系数不同,密度小、容易蒸发的 液体表面张力系数小。 (2)同一种液体的表面张力系数与温度有关,温度越高, 表面张力系数越小。 (3)液体表面张力系数与相邻物质的性质有关。 (4)表面张力系数与液体中的杂质有关。
二、液体的表面张力现象及微观本质
液体表面像张紧的弹性膜一样,具有收缩的趋势。
(1)毛笔尖入水散开,出水毛聚合; (2)水黾能够站在水面上; (3)硬币能够放在水面上; (4)荷花上的水珠呈球形; (5)肥皂膜的收缩;
液体表面具有收缩趋势的力, 这种存在于液体表面上的张力称为 表面张力。
表面张力的微观本质是表面层分子之 间相互作用力的不对称性引起的。
高尔夫球运动起源于15世纪的苏格兰。
起初,人们认为表面光滑的球飞行阻力 小,因此当时用皮革制球。
最早的高尔夫球(皮革已龟裂)
后来发现表面有很多划痕的旧球反而飞得更远。 这个谜直到20世纪建立流体力学边界层理论后才解开。
光滑的球
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、填空题补充:刚体绕固定转轴转动时角加速度与力矩关系的数学表达式为=M J β;易1、转动惯量为1002.kg m 的刚体以角加速度为52.rad s -绕定轴转动,则刚体所受的合外力矩为500()N m ⋅ N.m 。
中2、一根匀质的细棒,可绕右端o 轴在竖直平内转动。
设它在水平位置上所受重力矩为M ,则当此棒被切去三分之二只剩右边的三分之一时,所受重力矩变为 9M。
易3、在刚体作定轴转动时,公式t t βωω+=0成立的条件是 β=恒量 。
中4、一飞轮以300rad1min -⋅的转速旋转,转动惯量为5kg.m2,现加一恒定的制动力矩,使飞轮在20s 内停止转动,则该恒定制动力矩的大小为 2.5(.)N m π .易5、如图所示,质量为M 、半径为R 的均匀圆盘对通过它的边缘端点A 且垂直于盘面的轴的转动惯量A J =232MR 。
难6、如图示一长为L ,质量为M 的均匀细杆,两端分别固定有质量都为m 的小球。
当转轴垂直通过杆的一端时,其转动惯量为 2213mL ML + ;当转轴通过垂直杆的1/3(1/2;1/4)处时,转动惯量为225199mL ML + 。
易7、瞬时平动刚体上各点速度大小相等,但方向可以 相同 (填不同或相同)。
易8、刚体的转动惯量与刚体的形状、大小、质量分布有关、与转轴位置 有关 (填无关或有关)。
易9、所谓理想流体是指 绝对不可压缩和 完全没有粘滞性 的流体,并且在同一流管内遵循 连续性 原理。
中10、一水平流管,满足定常流动时,流速大处流线分布较密,压强较 小 ; 流线分布较疏时,压强较 大 ;若此两处半径比为1∶2,则其流速比为 4:1易11、已知消防队员使用的喷水龙头入水口的截面直径是-26.410m ´,出水口的截面直径是-22.510m ´,若入水的速度是14.0m S -×,则射出水的速度为 126()m s -⋅易12、一长l 为的均匀细棒可绕通过其端、且与棒垂直的水平o 自由转动,其转动慣量为231ml J =,若将棒拉到水平位置,然后由静止释放,此时棒的角加速度大小为32gl。
易13、一飞轮的转动惯量为J ,在t=0时角加速度为0ω,次后飞轮的经历制动过程,阻力矩的大小与角速度成正比,即ωk M -=,式中比例恒量0φk ,当3ωω=时,飞轮的角加速度为 03k Jω- 。
易14、长为1m ,质量为0.6kg 的均匀细杆,可绕其中心且与杆垂直的水平轴转动其 转动惯量为2121ml J =.若杆的转速为30rad.min 1-,其转动动能为0.25()J 。
难15、均匀细棒的质量为M ,长为L ,其一端用光滑铰链固定,另一端固定一质量为m 的小球,现将棒在水平位置释放,则棒经过铅直位置时角速度大小为363Mg mgML mL++ (棒的转动惯量231ML J =)。
中16、一长为L 、质量可以忽略的直杆,可绕通过其一端的固定水平轴在竖直平面内自由转动,在杆的另一端固定着一质量为m 的小球,在杆与水平方向夹角为060时,将杆由静止释放。
则杆的刚被释放时的角加速度为2gL;杆转到水平位置时的角加速度为 gL。
难17、细棒可绕光滑水平轴转动,该轴垂直地通过棒的一个端点。
今使棒从水平位置开始下摆,在棒转到竖直位置的过程中,棒的角速度ω和角加速度β的变化情况是: ω由小到大, β由大到小。
中18、质量为m 和2m 的两个质点A 和B ,用一长为的轻质杆件相连,系统绕通过杆上的o 点与杆垂直的轴转动。
已知o 点与A 点相距l 31,B 点的线速度为v ,且与杆件垂直。
则该系统对转动的转动惯量J 为 2ml 。
二、判断题易1、平动刚体的轨迹可以是曲线; ( )√易2、瞬时平动刚体上各点速度大小相等,但方向可以不同; ( )× 易3、流体连续性原理又称为质量流量守恒定律 ( )√ 易4、在合力矩逐渐减小时,刚体转动的角速度也逐渐减小。
( )× 易5、刚体绕定轴转动的动能221ωJ E k =等于刚体上各质点动能的总和。
( )√ 易6、刚体的转动惯量与刚体的形状、大小、质量分布有关、与转轴位置无关。
( )× 易7、把飞轮的质量集中在轮的边缘上是为了减小飞轮对轴的转动惯量。
( )× 易8、力矩的数学表达式为F r M ×=。
( )√易9、细棒可绕光滑水平轴转动,该轴垂直地通过棒的一个端点。
今使棒从水平位置开始下摆,在棒转到竖直位置的过程中,棒的角速度ω的变化情况是:ω从小到大。
( )√易10、伯努利方程说明,当理想流体在流管中作定常流动时,单位体积的动能(或称动能体密度)和重力势能(或称势能体密度)以及该处的压强之和为一常量。
()√三、选择题易1、一飞轮绕定铀转动,其角坐标与时间的关系为3a bt ct=++,式中a、b、c均为常量。
则:(1)飞轮绕定铀作匀速转动;(2)飞轮绕定铀作匀变速转动;(3)飞轮的角加速度与时间成正比;(4)上述说法都不对。
中2、刚体绕定轴做匀变速转动时,刚体上距转轴为r的任一点的()(1)切向、法向加速度的大小均随时间变化;(2)切向、法向加速度的大小均保持恒定;(3)切向加速度的大小恒定,法向加速度的大小随时间变化;(4)法向加速度的大小恒定,切向加速度的大小随时间变化中3、作定轴转动的刚体,以下说法正确的是:()(1)、作用于它的力越大,则其角速度一定越大;(2)、作用于它的力矩越大,则作用于它的力一定越大;(3)、角速度越大时,它所受的合外力矩越大;(4)、角加速度越大时,它所受的合外力矩越大。
易4、刚体平动时则:()(1)平动刚体的轨迹一定是直线;(2)平动刚体的轨迹可以是曲线;(3)某瞬时平动刚体上各点速度大小相等,但方向可以不同。
(4)上述说法都不对。
中5、对于作定轴转动的刚体,以下说法正确的是:()(1)、若作用于它的力很大,则其角速度一定很大;(2)、若作用于它的力矩很大,则作用于它的力一定很大;(3)、当其角速度很大时,它所受的合外力矩可以为零;(4)、若其转动动能很小,则它所受的合外力矩一定很小易6、花样滑冰运动员绕过自身的竖直轴转动,开始时两臂伸开,然后她将两臂收回;则她的转动惯量:(1)花样滑冰运动员的转动惯量变大;(2)花样滑冰运动员的转动惯量变小;(3)花样滑冰运动员的转动惯量不变;(4)上述说法都不对中7、细棒可绕光滑水平轴转动,该轴垂直地通过棒的一个端点。
今使棒从水平位置开始下摆,在棒转到竖直位置的过程中,棒的角速度ω的变化情况是:()(1)ω从小到大;(2)ω不变;(3)ω从大到小;(4)无法确定。
难8、一均匀细杆绕垂直通过其一端的轴(忽略转轴的摩擦),从水平位置由静止开始下摆。
则在下摆的过程中杆的另一端处的()(1)、ω逐渐增大;(2)、υ逐渐减小;(3)、β逐渐增大;(4)、无法确定。
易9、理想流体的不可压缩性表现在()(1)、它有流线和流管;(2)、满足连续性原理;(3)、满足定常流动;(4)、流体内部没有内摩擦力。
中10、几个力同时作用绕定轴转动的刚体上,如果这几个力的矢量和为零,则:()(1)、刚体必然不会转动;(2)、转速必然不变;(3)、转速必然会变;(4)、不能确定。
易11、如图所示,一圆盘绕通过盘心且与盘面垂直的轴0以角速度ω作转动。
今将两大小相等、方向相反、但不在同一直线上的力F和—F沿盘面同时作用到圆盘上,则圆盘的角速度:( )(1)必然减少; (2)必然增大;(3)不会变化; (4)如何变化,不能确定。
中12、一质量为m ,长为L 的均匀细棒,一端铰接于水平地板,且竖直直立着。
若让其自由倒下,则杆以角速度ω撞击地板。
如果把此棒切成L /2长度,仍由竖直自由倒下,则杆撞击地板的角速度应为 ( )。
(1)2ω; (2)ω2; (3)ω; (4)2ω难13、细棒可绕光滑水平轴转动,该轴垂直地通过棒的一个端点。
今使棒从水平位置开始下摆,在棒转到竖直位置的过程中,棒的角速度ω和角加速度β的变化情况是:( )(1)ω从小到大,β从大到小; (2)ω从小到大,β从小到大; (3)ω从大到小,;β从大到小(4)ω从大到小,β从小到大。
中14、一轻绳绕在具有水平转轴的定滑轮上,绳下端挂一物体,物体的质量为m ,此时滑轮的角加速度为β。
若将物体卸掉,而用大小为mg 、方向向下的力拉绳子,则滑轮的角加速度将:(1)变大; (2)不变; (3)变小; (4)无法判断。
易15、站在转台上的人伸出去的两手各握一重物,然后使他转动。
当他向着胸部收回他的双手及重物时,下列结论中,不正确的有 (1)系统的转动惯量减小。
(2)系统的转动角速度增加。
(3)系统的角动量不变。
(4)系统的转动动能保持不变。
易16、关于刚体的转动惯量:(1)刚体的转动惯量与刚体的形状、大小、质量分布有关、与转轴位置有关。
(2)刚体的转动惯量与刚体的形状、大小、质量分布无关、与转轴位置有关。
(3)刚体的转动惯量与刚体的形状、大小、质量分布有关、与转轴位置无关。
(4)刚体的转动惯量与刚体的形状、大小、质量分布无关、与转轴位置无关。
易17、一水平流管,理想流体满足定常流动时:(1)流速大处流线分布较密,压强较小;(2)流速小处流线分布较疏时,压强较小;(3)流速大处流线分布较密,压强较大;(4)流速小处流线分布较密,压强较大;。
难18、一轻绳绕在具有水平转轴的定滑轮上,绳下端挂一物体,物体的质量为m,此时滑轮的角加速度为β。
若将物体卸掉,而用大小为mg、方向向下的力拉绳子,则滑轮的角加速度、绳子的拉力T将:(1)β变大、T变小;(2)β变小、T变小;(3)β变小、T变大;(4)β变大、T变大;易19、如图所示,管中的水作稳定流动.水流过A管后,分B、C两支管流出。
已知三管的横截面积分别为A、B两管中的流速分别为则C管中的流速等于(1)15(2)35(3) 50(4) 65易20、流体在图所示的水平管中流动,在1处的横截面直径大于2处的横截面直径。
流体的流速和压强在1处和2处分别为、和、。
则它们之间的正确关系为(1)=,>; (2)> ,>;(3 ) > , <; (4) < ,<.四、计算题易1、一飞轮绕定轴转动,其角坐标与时间的关系为3a bt ct=++,式中a、b、c均为常量。
试求(1)飞轮的角速度和角加速度;(2)距转轴r处的质点的切向加速度和法向加速度解:(1)由角速度和角加速度的定义可得飞轮的角速度和角加速度分别为 23==+θωd b ct dt6==ωβd ct dt(2)距转轴r 处的质点的切向加速度和法向加速度分别为 6==τβa r ctr()2223==+ωn a r b ct r易2、一滑轮绕定轴转动,其角加速度随时间变化的关系为2at bt β=-,式中,a 、b均为常量,设t =0时,沿轮的角速度和角坐标分别为0ω和0θ,试求滑轮在t 时刻的角速度和角坐标。