同步电机模型的MATLAB仿真

合集下载

MATLABSIMULINK永磁同步电机矢量控制系统仿真

MATLABSIMULINK永磁同步电机矢量控制系统仿真

MATLABSIMULINK永磁同步电机矢量控制系统仿真一、本文概述随着电机控制技术的快速发展,永磁同步电机(Permanent Magnet Synchronous Motor, PMSM)在工业、交通和能源等领域的应用越来越广泛。

矢量控制作为PMSM的一种高效控制策略,能够实现对电机转矩和磁链的精确控制,从而提高电机的动态性能和稳态性能。

然而,在实际应用中,矢量控制系统的设计和调试过程往往复杂且耗时。

因此,利用MATLAB/Simulink进行永磁同步电机矢量控制系统的仿真研究,对于深入理解矢量控制原理、优化控制策略以及提高系统性能具有重要意义。

本文旨在通过MATLAB/Simulink平台,建立永磁同步电机矢量控制系统的仿真模型,并对其进行仿真分析。

本文将对永磁同步电机的基本结构和数学模型进行介绍,为后续仿真模型的建立提供理论基础。

本文将详细阐述矢量控制策略的基本原理和实现方法,包括坐标变换、空间矢量脉宽调制(SVPWM)等关键技术。

在此基础上,本文将利用MATLAB/Simulink中的电机控制库和自定义模块,搭建永磁同步电机矢量控制系统的仿真模型,并对其进行仿真实验。

本文将根据仿真结果,对矢量控制系统的性能进行分析和评价,并提出优化建议。

通过本文的研究,读者可以全面了解永磁同步电机矢量控制系统的基本原理和仿真实现方法,为后续的实际应用提供有益的参考和指导。

本文的研究结果也为永磁同步电机控制技术的发展和应用提供了有益的探索和启示。

二、永磁同步电机数学模型永磁同步电机(Permanent Magnet Synchronous Motor, PMSM)是一种高性能的电机,广泛应用于各种工业领域。

为了有效地对其进行控制,我们需要建立其精确的数学模型。

PMSM的数学模型主要包括电气方程、机械方程和磁链方程。

PMSM的电气方程描述了电机的电压、电流和磁链之间的关系。

在dq旋转坐标系下,电气方程可以表示为:V_d &= R_i I_d + \frac{d\Phi_d}{dt} - \omega_e \Phi_q \ V_q &= R_i I_q + \frac{d\Phi_q}{dt} + \omega_e \Phi_d其中,(V_d) 和 (V_q) 分别是d轴和q轴的电压;(I_d) 和 (I_q) 分别是d轴和q轴的电流;(\Phi_d) 和 (\Phi_q) 分别是d轴和q轴的磁链;(R_i) 是定子电阻;(\omega_e) 是电角速度。

matlab中关于永磁同步电机的仿真例子

matlab中关于永磁同步电机的仿真例子

matlab中关于永磁同步电机的仿真例子MATLAB中关于永磁同步电机的仿真例子1. 基本电机参数配置在进行永磁同步电机的仿真前,需要先配置基本的电机参数,包括电机的额定功率、额定电压、额定转速等。

2. 电机模型的建立使用MATLAB中的Simulink模块,可以方便地建立永磁同步电机的模型。

可以利用Simulink库中的电机模块,如Permanent Magnet Synchronous Machine来构建电机模型。

3. 电机控制策略的设计在建立电机模型后,需要设计适合的控制策略来控制电机的运行。

常见的控制策略包括:•PI控制:使用Proportional-Integral (PI) 控制器来调节电机的转速和电流。

•磁场定向控制(FOC):通过测量电机转子位置和速度,将三相交流信号转换为等效直流信号,实现对电机的控制。

4. 电机仿真完成电机模型和控制策略的设计后,可以进行电机的仿真。

使用Simulink中的仿真工具,可以模拟电机的运行情况,并观察电机的转速、电流、转矩等参数的变化过程。

5. 仿真结果分析根据仿真结果,可以分析电机的性能指标,包括:•转速响应:电机在各种工况下的转速响应特性。

•转矩输出:电机在不同负载情况下的转矩输出。

•电流波形:电机的相电流波形及电流变化情况。

•功率因数:电机在运行过程中的功率因数变化。

6. 优化和改进根据仿真结果分析的情况,可以针对电机的性能进行优化和改进,例如:•调整控制策略的参数,提高转速响应和控制精度。

•优化电机的电气设计,提高效率和功率密度。

•添加降噪措施,减少电机的噪声和振动。

7. 结论根据电机仿真的结果和优化改进的情况,得出结论,总结永磁同步电机的特性和性能,并对未来的研究方向进行展望。

以上是关于MATLAB中关于永磁同步电机的仿真例子的一些列举和详细讲解,通过Simulink工具的电机模型建立、控制策略设计、仿真结果分析和优化改进等步骤,可以深入了解和研究永磁同步电机的性能和特性,并为电机控制系统的设计和优化提供有力支持。

基于matlab的同步发电机组建模与仿真

基于matlab的同步发电机组建模与仿真

基于matlab的同步发电机组建模与仿真基于matlab的同步发电机组建模与仿真I 基于MATLAB 的同步发电机组建模与仿真摘要随着电网的规模越来越大,电力系统的运行也随之越来越复杂。

同步发电机及其控制系统作为电源是电力系统中的重要组成部分,其性能对电力系统有着极大的影响,直接关系到系统的稳定运行。

为了使电力系统安全而经济地运行,我们必须对同步发电机组特性进行深入的研究。

而同步发电机组运行是一个相当复杂的过程,其动态特性随着机组的运行状态而不断变化,所以建立机组的模型并进行仿真研究是掌握发电机动态特性,评价其各个控制系统性能的有效手段,并且对工作人员的培训和研究将起到很大的作用。

同步发电机组模型的建立将涉及到机组的机理分析,有利于从理论建模中引出新的设计方法,为优化设计提供理论依据。

本文将对同步发电机及其励磁系统、调速系统的数学模型进行研究,利用MATLAB/Simulink 搭建同步发电机组的仿真模型,建立单机无穷大系统,最后对模型进行仿真,并分析仿真结果。

关键词:电力系统;单机无穷大系统;MATLAB/Simulink;仿真;同步发电机组华北电力大学本科毕业设计(论文)摘要II SYNCHRONOUS GENERATOR UNIT MODELING AND SIMULATION BASED ON MATLAB Abstract With the enlargement of the power grid scale, the operation of the power system is becoming more and more complex. As supply unit of the system, synchronous generator and its control system plays an important part in the power system. Their performance also imposes great influence to the power system and has a direct connection with the power system stability. In order to ensure the safe and economic operation of the power system, we shall do a profound research on the synchronous generator unit characteristics. However, the operation of the synchronous generator unit is a extremely complex process. Its dynamic characteristics are subject to the changing states of the unit operation. Therefore, it is efficient to build a unit model and do simulations research to acquire the dynamic characteristics of the unit, and evaluate the performance of each control system. This will also play a great role in the staff training and researches. The building of the synchronous generator unit model will involve the mechanic analysis of the unit, do favor to deduce new designing methods from theoretical model buildingand provide theoretical basis to the optimization design. In this paper the mathematical model of the synchronous generator and its excitation system, speed regulating system will be researched; the simulation model of synchronous generator unit will be built based on MATLAB/Simulink; a single-unit infinite system will be established; finally simulate the model and verify the accuracy of the model. Key Words: Power System; Single-unit Infinite System; MATLAB/Simulink; Simulation; Synchronous Generator Unit 华北电力大学本科毕业设计(论文)目录i 目录摘要∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙IAbstract∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙II 1 绪论∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙1 1.1 课题背景和意义∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙1 1.2 电力系统仿真发展现状∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙1 1.3 本课题所完成的主要工作∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙2 2 同步发电机组数学模型∙∙∙∙∙∙4 2.1 同步发电机数学模型∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙4 2.1.1 同步发电机数学建模概述∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙4 2.1.2 同步发电机基本方程∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙4 2.1.3 同步发电机三阶模型∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙4 2.1.4 单机无穷大系统∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙7 2.2 励磁系统数学模型∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙8 2.2.1 同步发电机励磁自动控制系统概述∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙8 2.2.2 同步发电机励磁自动控制系统数学模型∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙8 2.3 调速系统数学模型∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙10 2.3.1 同步发电机组调速控制系统概述∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙10 2.3.2 同步发电机调速系统数学模型于MATLAB 同步发电机组仿真∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙12 3.1 MATLAB 介绍∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙12 3.1.1 MATLAB/Simulink∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙12 3.1.2 常用Simulink 库模块∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙13 3.2 同步发电机组仿真的初值计算∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙14 3.3 同步发电机组仿真模型∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙15 3.3.1 同步发电机模型∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙16 3.3.2 同步发电机励磁自动控制系统仿真模型∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙17 3.3.3 同步发电机调速系统仿真模型∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙18 3.4 系统仿真及结果分析∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙18 3.4.1 稳定运行∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙19 3.4.2 系统电压突增或突降∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙20 3.4.3 增加励磁系统给定电压∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙2 1 3.4.4 增加调速系统给定功率∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙2 3 华北电力大学本科毕业设计(论文)目录ii 3.4.5 三相突然短路∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙24 4 结论与展望∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙26 参考文献∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙27 致谢∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙28 华北电力大学本科毕业设计(论文)1 1 绪论1.1 课题背景和意义随着现代电力系统网络规模的不断扩大和电网电压等级的不断升高,电力系统规划、运行和控制的复杂性亦日益增加。

基于matlab的永磁同步电机调速系统的仿真

基于matlab的永磁同步电机调速系统的仿真

摘要本文首先介绍了永磁同步电机的国内外发展状况,然后介绍了永磁同步电机的结构及原理,接着建立了永磁同步电机的数学模型,并在此基础上用MATLAB 进行了仿真,最后进行了仿真及仿真结果的分析。

永磁同步电机是具有非线性、强耦合性、时变性的系统,在运行过程中会受到负载扰动等多因素影响。

以往研究永磁同步电机的做法是在硬件上搭建一个平台进行模拟,但是这样在做实验中难免会造成一些损失,而且硬件上的反馈会比较长研究周期长。

目前在国内外关于永磁同步电机调速系统的研究现状上来讲,基于MATLAB环境下仿真模型的构建下进行研究,这可极大的缩短研究周期和研究成本。

在利用MATLAB仿真模型研究永磁同步电机时,我们可以把那些扰动因数做成模拟信号给予模型,这样可以准确的定性分析实验得出结论。

关键字:永磁同步电机,空间矢量调制,MATLAB仿真,数学模型。

ABSTRACTIn the first, this paper introduces the domestic and international development status of Permanent Magnet Synchronous Motor(PMSM), gives a explanation about its basictheory, structure. Then it builds a mathematical model, and uses MATLAB to simulate that model.The PMSM is a nonlinear, strong-coupling and time-varying system, so in the operation process, it will be influenced by many factors such asload disturbance. Therere, it is necessary to take action when researching the control method of PMSM. The former research method is setting up a platform on hardware to perform experimensbut it is undesirable, because it often cause some loss, and the feedback cycle is longer than research cycle. As fordomestic and international current situation on the research of PMSM, it is obvious that researching under the simulation model created by MATLAB could greatly reduce the cost and cycle of researchment. When using MATLAB to build simulation model on the research of PMSM, we can transform these disturbance factors into analog signal, making a qualitative analysis to draw conclusions from them.Keywords:PMSM, SVPWM, MATLAB simulation, mathmatical model目录摘要 (I)ABSTRACT .............................................. I I 目录............................................... I II 第一章绪论 (1)1.1 研究背景及意义 (1)1.1.1 研究背景 (1)1.1.2 研究的目的及意义 (1)1.2 国内外研究现状 (2)1.2.1 国内研究历史及现状 (2)1.2.2 国外研究现状及趋势 (2)1.3 本文的主要内容 (3)第二章永磁同步电机调速系统的结构和数学模型 (5)2.1 引言 (5)2.2 永磁同步电机调速系统的结构 (5)2.3 永磁同步电机调速系统的数学模型 (6)2.3.1 PMSM在ABC坐标系下的磁链和电压方程 (6)坐标系下的磁链和电压方程 (8)2.3.2 PMSM在02.3.3 PMSM在dq0坐标系下的磁链和电压方程 (9)2.4 永磁同步电机的控制策略 (11)2.5 本章小节 (12)第三章永磁同步电机矢量控制及空间矢量脉宽调制 (14)3.1 引言 (14)3.2 永磁同步电动机的矢量控制 (14)3.3 空间矢量脉宽调制概念 (15)3.4 SVPWM模块的建立 (17)3.5 本章小结 (23)第四章基于Matlab的永磁同步调速系统仿真模型的建立 (24)4.1 引言 (24)4.2 MATLAB软件的介绍 (24)4.3永磁同步电机调速系统整体模型的建立 (25)4.4仿真参数调试及结果分析 (28)4.5本章小结 (29)第五章总结与展望 (30)5.1全文总结 (30)参考文献 (31)致谢 (33)第一章绪论1.1 研究背景及意义1.1.1 研究背景随着电力电子技术、微电子技术和现代电机控制理论的发展,交流调速系统逐步具备了宽调速范围、高稳速精度、快速动态响应及四象限运行等良好的技术性能,交流调速系统应用越来越广泛。

matlab电机仿真精华50例

matlab电机仿真精华50例

matlab电机仿真精华50例Matlab是一种功能强大的仿真软件,它被广泛应用于电机仿真领域。

在这篇文章中,我们将介绍Matlab电机仿真的50个精华例子,帮助读者更好地了解和应用电机仿真技术。

1. 直流电机的仿真:通过Matlab可以模拟直流电机的性能,包括转速、扭矩和电流等。

2. 交流电机的仿真:使用Matlab可以模拟交流电机的工作原理,包括转子和定子的相互作用。

3. 同步电机的仿真:通过Matlab可以模拟同步电机的运行特性,包括电压和频率的控制。

4. 步进电机的仿真:利用Matlab可以模拟步进电机的运行过程,包括步进角度和步进速度等。

5. 无刷直流电机的仿真:通过Matlab可以模拟无刷直流电机的工作原理,包括转子和定子的相互作用。

6. 电机控制系统的仿真:利用Matlab可以模拟电机控制系统的运行过程,包括速度和位置的闭环控制。

7. 电机噪声的仿真:通过Matlab可以模拟电机噪声的产生和传播过程,帮助优化电机的设计。

8. 电机故障诊断的仿真:利用Matlab可以模拟电机故障的发生和诊断过程,提供故障检测和排除的方法。

9. 电机热仿真:通过Matlab可以模拟电机的热传导和散热过程,帮助优化电机的散热设计。

10. 电机振动的仿真:利用Matlab可以模拟电机的振动特性,帮助优化电机的结构设计。

11. 电机效率的仿真:通过Matlab可以模拟电机的能量转换过程,评估电机的效率和能耗。

12. 电机启动过程的仿真:利用Matlab可以模拟电机的启动过程,包括起动电流和启动时间等。

13. 电机负载仿真:通过Matlab可以模拟电机在不同负载条件下的工作特性,帮助优化电机的设计。

14. 电机饱和仿真:利用Matlab可以模拟电机在饱和状态下的工作特性,提供更准确的仿真结果。

15. 电机电磁干扰的仿真:通过Matlab可以模拟电机产生的电磁干扰对其他设备的影响,提供干扰抑制的方法。

16. 电机电磁场的仿真:利用Matlab可以模拟电机内部的电磁场分布,帮助优化电机的设计。

matlab中关于永磁同步电机的仿真例子

matlab中关于永磁同步电机的仿真例子

matlab中关于永磁同步电机的仿真例子摘要:一、Matlab中永磁同步电机仿真概述二、永磁同步电机仿真模型建立1.参数设置2.控制器设计3.仿真结果分析三、SVPWM算法在永磁同步电机仿真中的应用四、案例演示:基于DSP28035的永磁同步电机伺服系统MATLAB仿真五、总结与展望正文:一、Matlab中永磁同步电机仿真概述Matlab是一款强大的数学软件,其在电机领域仿真中的应用广泛。

永磁同步电机(PMSM)作为一种高效、高性能的电机,其控制策略和性能分析在Matlab中得到了充分的体现。

利用Matlab进行永磁同步电机仿真,可以有效验证控制策略的正确性,优化电机参数,提高系统性能。

二、永磁同步电机仿真模型建立1.参数设置:在建立永磁同步电机仿真模型时,首先需要设定电机的各项参数,如电阻、电感、永磁体磁链等。

这些参数可以根据实际电机的设计值进行设置,以保证模型与实际电机的特性一致。

2.控制器设计:控制器的设计是电机仿真模型的核心部分。

常见的控制器设计包括矢量控制(也称为场导向控制,Field-Oriented Control, FOC)、直接转矩控制(Direct Torque Control, DTC)等。

在Matlab中,可以利用现有的工具箱(如PMSM T oolbox)方便地进行控制器的设计和仿真。

3.仿真结果分析:在完成控制器设计后,进行仿真实验。

通过观察电机的转速、电流、转矩等参数的变化,可以评估控制器的性能。

同时,可以利用Matlab的图像绘制功能,将仿真结果以图表的形式展示,便于进一步分析。

三、SVPWM算法在永磁同步电机仿真中的应用SVPWM(Space Vector Pulse Width Modulation)是一种用于控制永磁同步电机的有效方法。

通过在Matlab中实现SVPWM算法,可以方便地对比不同控制策略的性能。

在仿真过程中,可以观察到SVPWM算法能够有效提高电机的转矩波动抑制能力,减小电流谐波含量,从而提高电机的运行效率。

永磁同步电机矢量控制matlab仿真

永磁同步电机矢量控制matlab仿真

永磁同步电机矢量控制matlab仿真永磁同步电机(Permanent Magnet Synchronous Motor, PMSM)的矢量控制(也称为场向量控制或FOC)是一种先进的控制策略,用于优化电机的性能。

这种控制方法通过独立控制电机的磁通和转矩分量,实现了对电机的高性能控制。

在MATLAB中,你可以使用Simulink和SimPowerSystems库来模拟永磁同步电机的矢量控制。

以下是一个基本的步骤指南:1.建立电机模型:使用SimPowerSystems库中的Permanent Magnet SynchronousMachine模型。

你需要为电机提供适当的参数,如额定功率、额定电压、额定电流、极对数、转子惯量等。

2.建立控制器模型:矢量控制的核心是Park变换和反Park变换,用于将电机的定子电流从abc坐标系变换到dq旋转坐标系,以及从dq坐标系变换回abc坐标系。

你需要建立这些变换的模型,并设计一个适当的控制器(如PI控制器)来控制dq轴电流。

3.建立逆变器模型:使用SimPowerSystems库中的PWM Inverter模型。

这个模型将控制器的输出(dq轴电压参考值)转换为逆变器的开关信号。

4.连接模型:将电机、控制器和逆变器连接起来,形成一个闭环控制系统。

你还需要添加一个适当的负载模型来模拟电机的实际工作环境。

5.设置仿真参数并运行仿真:在Simulink的仿真设置中,你需要设置仿真时间、步长等参数。

然后,你可以运行仿真并观察结果。

6.分析结果:你可以使用Scope或其他分析工具来查看电机的转速、定子电流、电磁转矩等性能指标。

这些指标可以帮助你评估控制算法的有效性。

请注意,这只是一个基本的指南,具体的实现细节可能会因你的应用需求和电机参数而有所不同。

在进行仿真之前,建议你仔细阅读相关的文献和教程,以便更好地理解永磁同步电机的矢量控制原理。

同步电动机的MATLAB仿真

同步电动机的MATLAB仿真

摘要采用电力电子变频装置实现电压频率协调控制,改变了同步电机历来的恒速运行不能调速的面貌,使它和异步电机一样成为调速电机大家庭的一员。

本文针对同步电机中具有代表性的凸极机,在忽略了一部分对误差影响较小而使算法复杂度大大增加的因素(如谐波磁势等),对其内部电流、电压、磁通、磁链及转矩的相互关系进行了一系列定量分析,建立了简化的基于abc三相变量上的数学模型,并将其进行派克变换,转换成易于计算机控制的d/q坐标下的模型。

再使用MATLAB中用于仿真模拟系统的SIMULINK对系统的各个部分进行封装及连接,系统总体分为电源、abc/dq转换器、电机内部模拟、控制反馈四个主要部分,并为其设计了专用的模块,同时对其中的一系列参数进行了配置。

系统启动仿真后,在经历了一开始的振荡后,各输出相对于输出时间的响应较稳定。

关键词:同步电机 d/q模型 MATLAB SIMULINK 仿真。

目录第1章引言 ........................................................................................................................................ - 1 - 1.1引言 (1)1.2同步电机概述 (1)1.3系统仿真技术概述 (2)1.4仿真软件的发展状况与应用 (2)1.5MATLAB概述 (2)1.6S IMULINK概述 (4)第2章同步电机基本原理 (5)2.1理想同步电机 (5)2.2 ABC/DQ模型的建立 (5)第3章仿真系统总体设计 (9)3.1系统对象 (9)3.2系统分块 (9)3.3控制反馈环节 (10)第4章仿真系统详细设计 (12)4.1总体设计 (12)4.2具体设计 (12)4.3控制反馈环节 (15)第5章系统仿真运行 (16)5.1输出结果稳定情况 (16)结论 (19)致谢 (20)参考文献 (21)第1章引言1.1引言世界工业进步的一个重要因素是过去几十年中工厂自动化的不断完善。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

同步电机模型的MATLAB仿真采用电力电子变频装置实现电压频率协调控制,改变了同步电机历来的恒速运行不能调速的面貌,使它和异步电机一样成为调速电机大家庭的一员。

本文针对同步电机中具有代表性的凸极机,在忽略了一部分对误差影响较小而使算法复杂度大大增加的因素(如谐波磁势等),对其内部电流、电压、磁通、磁链及转矩的相互关系进行了一系列定量分析,建立了简化的基于abc三相变量上的数学模型,并将其进行派克变换,转换成易于计算机控制的d/q坐标下的模型。

再使用MATLAB中用于仿真模拟系统的SIMULINK对系统的各个部分进行封装及连接,系统总体分为电源、abc/dq转换器、电机内部模拟、控制反馈四个主要部分,并为其设计了专用的模块,同时对其中的一系列参数进行了配置。

系统启动仿真后,在经历了一开始的振荡后,各输出相对于输出时间的响应较稳定。

1.1引言世界工业进步的一个重要因素是过去几十年中工厂自动化的不断完善。

在上个世纪70年代初叶,席卷全球世界先进工业国家的石油危机,迫使他们投入大量人力和财力去研究高效高性能的交流调速系统,期望用它来节约能源。

经过十年左右的努力,到了80年代大见成效,高性能交流调速系统应用的比例逐年上升,能源危机从而得以缓解。

从此以后,高性能交流电机的研究从未再停止过。

而且众所周知,电机的数学模型是多变量、强耦合的非线性系统。

对非线性系统中的混沌和分支现象的研究是当前非线性科学研究的热点,在理论上、计算机仿真以及实验上都有了一些研究成果,提出了一些方法。

但要从理论上研究一个非线性动力系统,一般比较困难,我们往往希望在保持其动力学特性的基础上,将其简化。

要简化一个动力系统,有两条途径:一是减少系统的维数;二是消除非线性[1]。

1.2同步电机概述同步电机历来是以转速与电源频率严格保持同步而著称的,只要电源频率保持恒定,同步电动机的转速就绝对不变。

小到电钟和记录仪表的定时旋转机构,大到大型同步电动机直流发电机组,无不利器转速恒定的特点。

除此以外,同步电动机还有一个突出的优点,就是可以控制励磁来调节它的功率因数,可使功率因数高到1.0甚至超前。

在一个工厂中只需要少数几台大容量恒转速的设备(例如水泵、空气压缩机等)采用同步电动机,就足以改善全厂的功率因数。

由于同步电动机起动费事、重载有振荡以至于失步的危险,因此除了上述要求以外,一般的工业设备很少应用。

自从电力电子变频技术蓬勃发展以后,情况就完全改变了。

采用电压频率协调控制后,同步电动机便和同步电动机一样成为调速电机大家庭的一员。

原来阻碍同步电动机广泛应用的问题已经得到解决。

例如起动问题,既然频率可以由低调到高,转速也就逐渐升高,不需要任何其他起动措施,甚至有些容量达数万千瓦的大型高速拖动电机,还专门配上变频装置作为软起动设备。

再如失步问题,其起因本来就是由于旋转磁场的同步转速固定不变,电机转子落后的角度太大时便造成失步,现在有了转速和频率的闭环控制,同步转速可以跟着改变,失步问题自然也就不存在了[2]。

所以,同步电机的应用已日趋广泛,同步电机将在今后的电机系统研究中占有重要的地位。

1.3系统仿真技术概述系统是由客观世界中实体与实体间的相互作用和相互依赖关系构成的具有某种特定功能的有机整体。

系统的分类方法是多种多样的,习惯上依照其应用范围可以将系统分为工程系统和非工程系统。

工程系统的含义是指由相互关联部件组成的一个整体,以实现特定的目的。

例如电机驱动自动控制系统是由执行部件、功率转换部件、检测部件所组成,用它来完成电机的转速、位置和其他参数控制的某个特定目标。

非工程系统的定义范围很广,大至宇宙,小至原子,只要存在着相互关联、相互制约的关系,形成一个整体,实现某种目的的均可以认为是系统。

如果想定量地研究系统地行为,可以将其本身的特性及内部的相互关系抽象出来,构造出系统的模型。

系统的模型分为物理模型和数学模型。

由于计算机技术的迅速发展和广泛应用,数学模型的应用越来越普遍。

系统的数学模型是描述系统动态特性的数学表达式,用来表示系统运动过程中的各个量的关系,是分析、设计系统的依据。

从它所描述系统的运动性质和数学工具来分,又可以分为连续系统、离散时间系统、离散事件系统、混杂系统等。

还可细分为线性、非线性、定常、时变、集中参数、分布参数、确定性、随机等子类。

系统仿真是根据被研究的真实系统的数学模型研究系统性能的一门学科,现在尤指利用计算机去研究数学模型行为的方法。

计算机仿真的基本内容包括系统、模型、算法、计算机程序设计与仿真结果显示、分析与验证等环节[3]。

1.4仿真软件的发展状况与应用早期的计算机仿真技术大致经历了几个阶段:20世纪40年代模拟计算机仿真;50年代初数字仿真;60年代早期仿真语言的出现等。

80年代出现的面向对象仿真技术为系统仿真方法注入了活力。

我国早在50年代就开始研究仿真技术了,当时主要用于国防领域,以模拟计算机的仿真为主。

70年代初开始应用数字计算机进行仿真[4]。

随着数字计算机的普及,近20年以来,国际、国内出现了许多专门用于计算机数字仿真的仿真语言与工具,如CSMP,ACSL,SIMNOM,MATLAB/Simulink,Matrix/System Build,CSMP-C等。

1.5MATLAB概述MATLAB是国际上仿真领域最权威、最实用的计算机工具。

它是MathWork公司于1982年推出的一套高性能的数值计算和可视化数学软件,被誉为“巨人肩上的工具”。

[8] MATLAB是一种应用于计算技术的高性能语言。

它将计算,可视化和编程结合在一个易于使用的环境中,此而将问题解决方案表示成我们所熟悉的数学符号,其典型的使用包括: .数学计算.运算法则的推导.模型仿真和还原.数据分析,采集及可视化.科技和工程制图.开发软件,包括图形用户界面的建立MATLAB是一个交互式系统,它的基本数据元素是矩阵,且不需要指定大小。

通过它可以解决很多技术计算问题,尤其是带有矩阵和矢量公式推导的问题,有时还能写入非交互式语言如C和Fortran等。

MATLAB的名字象征着矩阵库。

它最初被开发出来是为了方便访问由LINPACK和EISPAK开发的矩阵软件,其代表着艺术级的矩阵计算软件。

MATLAB在拥有很多用户的同时经历了许多年的发展时期。

在大学环境中,它作为介绍性的教育工具,以及在进阶课程中应用于数学,工程和科学。

在工业上它是用于高生产力研究,开发,分析的工具之一。

MATLAB的一系列的特殊应用解决方案称为工具箱(toolboxes)。

作为用户不可缺少的工具箱,它可以使你学习和使用专门技术。

工具箱包含着M-file集,它使MATLAB可延展至解决特殊类的问题。

在工具箱的范围内可以解决单个过程,控制系统,神经网络,模糊逻辑,小波,仿真及其他很多问题。

经过几十年的完善和扩充,它已发展成线形代数课程的标准工具。

在美国,MATLAB 是大学生和研究生必修的课程之一。

美国许多大学的实验室都安装有MA TLAB,供学习和研究之用。

它集数值分析、矩阵运算、信号处理和图形显示于一体,构成了一个方便的、界面友好的用户环境。

其包含的SIMULINK是用于在MATLAB下建立系统框图和仿真环境的组件,其包含有大量的模块集,可以很方便的调取各种模块来搭建所构想的试验平台,同时SIMULINK还提供时域和频域分析工具,能够直接绘制系统的Bode图和Nyquist图。

[3] MATLAB系统可分为五个部分:MATLAB语言。

这是一种高级矩阵语言,其有着控制流程状态,功能,数据结构,输入输出及面向对象编程的特性。

它既有“小型编程”的功能,快速建立小型可弃程序,又有“大型编程”的功能,开发一个完整的大型复杂应用程序。

MATLAB的工作环境。

这是一套工具和设备方便用户和编程者使用MATLAB。

它包含有在你的工作空间进行管理变量及输入和采集数据的设备。

同时也有开发,管理,调试,( profiling M-files,MATLAB’s applications。

)的系列工具。

图形操作。

这是MA TLAB的图形系统。

它包含有系列高级命令,其内容包括二维及三维数据可视化,图形处理,动画制作,表现图形。

同时它也提供低级命令便于用户完全定制图形界面并在你的MATLAB软件中建立完整的用户图形界面。

MATLAB数据功能库。

它拥有庞大的数学运算法则的集合,包含有基本的加,正弦,余弦功能到复杂的求逆矩阵及求矩阵的特征值,Bessel功能和快速傅立叶变换。

MATLAB应用程序编程界面。

这是一个允许你在MATLAB界面下编写C和Fortran程序的库。

它方便从MATLAB中调用例程(即动态链接),使MA TLAB成为一个计算器,用于读写MAT-files。

1.6Simulink概述Simulink是用于仿真建模及分析动态系统的一组程序包,它支持线形和非线性系统,能在连续时间,离散时间或两者的复合情况下建模。

系统也能采用复合速率,也就是用不同的部分用不同的速率来采样和更新。

Simulink提供一个图形化用户界面用于建模,用鼠标拖拉块状图表即可完成建模。

在此界面下能像用铅笔在纸上一样画模型。

相对于以前的仿真需要用语言和程序来表明不同的方程式而言有了极大的进步。

Simulink拥有全面的库,如接收器,信号源,线形及非线形组块和连接器。

同时也能自己定义和建立自己的块。

模块有等级之分,因此可以由顶层往下的步骤也可以选择从底层往上建模。

可以在高层上统观系统,然后双击模块来观看下一层的模型细节。

这种途径可以深入了解模型的组织和模块之间的相互作用。

在定义了一个模型后,就可以进行仿真了,用综合方法的选择或用Simulink的菜单或MATLAB命令窗口的命令键入。

菜单的独特性便于交互式工作,当然命令行对于运行仿真的分支是很有用的。

使用scopes或其他显示模块就可在模拟运行时看到模拟结果。

进一步,可以改变其中的参数同时可以立即看到结果的改变,仿真结果可以放到MATLAB工作空间来做后处理和可视化。

模型分析工具包括线性化工具和微调工具,它们可以从MATLAB命令行直接访问,同时还有很多MATLAB的toolboxes中的工具。

因为MATLAB和Simulink是一体的,所以可以仿真,分析,修改模型在两者中的任一环境中进行。

1.7小结综上所述,利用MA TLAB来仿真同步电机的运行情况,可以帮助研究者更好更方便的了解同步电机的特性,以便进一步改善其效率。

第2章同步电机基本原理2.1理想同步电机2.1.1理想同步电机假设众所周知,由于转子结构的不同,同步电机可分为隐极机和凸极机两类。

以下的研究对象像都是凸极机。

同步电机的主要特点是:定子有三相交流绕组,转子为直流励磁。

将电机结构简化后,电机内部的磁场分布和相应的感应电势的变化规律仍相当复杂,如步采取一定的假设,仍难以对它们的运行方式作定量分析。

相关文档
最新文档