2016级八年级上期数学第-周周练卷
八年级数学上册周周练检测试题一(含答案)

八年级数学(上)周周练(1.1~1.3)(满分:100分时间:90分钟)一、选择题(每小题2分,共20分)1.下列图案中,是轴对称图形的是( )2.下列四幅图案中,不是轴对称图形的是( )3.下列图案中,是轴对称图形的有( )A.1个B.2个C.3个D.4个4.下列轴对称图形中,对称轴最多的是( )5.如图是小华在镜子中看到的身后墙上的钟,你认为实际时问最接近8点的是( )6.把一个图形先沿着一条直线进行轴对称变换。
再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.在自然界和日常生活中,大量地存在这种图形变换(如图①).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图②)的对应点所具有的性质是( )A.对应点连线与对称轴垂直B.对应点连线被对称轴平分C.对应点连线被对称轴垂直平分D.对应点连线互相平行7.如图,把一张长方形纸片对折,折痕为AB,再以AB的中点O为顶点把平角∠AOB三等分,沿平角的三等分线折叠,将折叠后的图形剪出一个以O为顶点的等腰三角形,那么剪出的等腰三角形全部展开铺平后得到的平面图形一定是( )A.正三角形B.正方形C.正五边形D.正六边形8.下列语句:①关于一条直线对称的两个图形一定能重合;②两个能重合的图形一定关于某条直线对称;③一个轴对称图形不一定只有一条对称轴;④两个轴对称图形的对应点一定在对称轴的两侧,其中正确的是( )A.①B.①③C.①②③D.①③④9.剪纸是中国的民间艺术,剪纸的方法很多,如图是一种剪纸方法的图示,先将纸折叠,然后再剪,展开即得到图案,则下列的四个图案中,不能用上述方法剪出的是( )10.如图,六边形ABCDEF是轴对称图形,CF所在的直线是它的对称轴,若∠AFC+∠BCF=150°,则∠AFE+OBCD的度数为( )A.150°B.300°C.210°D.330°二、填空题(每小题2分,共16分)11.长方形有______条对称轴,正方形有_______条对称轴,圆有______条对称轴.12.在缩写符号SOS、CCTV、BBC、WWW、TNT中,成轴对称图形的是___________.13.计算器上显示的0~9这十个数字中,是轴对称图形的是__________.14.如图,把图中某两个小方格涂上阴影,使整个图形是以虚线为对称轴的轴对称图形.第14题第15题第16题15.星期天小华去书店买书时,从镜子内看到背后墙上普通时钟的时针(粗)与分针(细)的位置如图所示,此时时钟表示的时间是___________________(按12小时制填写).16.张军是学校足球队的运动员,他在镜子里看到衣服上的号码如图所示,则他是________号运动员.17.如图,桌面上有A、B两个球,若要将B球射向桌面任意一边,使一次反弹后击中A 球,则图中的8个点中,可以瞄准的点有__________个.第17题第18题18.如图,直线l是四边形ABCD的对称轴.若AD∥BC,则下列结论:①AB∥CD;②AB=BC;③A B⊥BC;④AO=OC,其中正确的是____________________(填序号).三、耐心解一解(共64分)19.(10分)在下列图形中找出轴对称图形,并找出它的两组对应点.20.(8分)已知点A和点B关于某条直线对称,请你画出这条直线.21.(8分)如图是方格纸中画出的树形的一半,请你以树干为对称轴画出图形的另一半.22.(12分)如图是由两个等边三角形组成的图形,它是轴对称图形吗?如果不是,可以移动其中一个三角形,使它与另一个三角形一起组成轴对称图形,那么怎样移动才能使所构成的图形具有尽可能多的对称轴?23.(13分)如图,A是锐角∠MON内的一点,试分别在OM、ON上确定点B、C,使△ABC的周长最小.写出你作图的主要步骤,并标明你所确定的点(要求画出草图,保留作图痕迹).24.(13分)某居民小区搞绿化,要在一块矩形空地上铺草坪,现征集设计方案,要使设计的图案由圆或正方形组成(圆和正方形的个数、大小不限),并且使整个矩形场地成轴对称图形,请在矩形中画出你设计的方案.参考答案—、1.C 2.A 3.C 4.A 5.D 6.B 7.D 8.B 9.D 10.B二、11.2 4 无数12.BBC、WWW 13.0、1、3、8 14.如图所示15.下午1:30 16.16 17.2 18.①②④三、19.①、②、③、⑤都是轴对称图形,对应点略20.图略连接AB,作出线段AB 的垂直平分线l,即为它们的对称轴21.如图所示22.不是轴对称图形.将小的等边三角形移动到大的等边三角形内部图略23.分别作点A关于OM、ON的对称点A′、A″,连接A′A″,分别交OM、ON于点B、C,连接AB、AC.则点B、C即为所求.如图所示24.答案不唯一,如图所示。
八年级数学上册15.2.215.2.3周周练新版新人教版

周周练((时间:45分钟 满分:100分)一、选择题(每小题3分,共18分)1.计算1a -1-a a -1的结果为( ) A.1+a a -1 B .-a a -1C .-1D .1-a2.化简2x x 2-9+13-x的结果是( ) A.1x -3 B.1x +3C.13-xD.3x +3x 2-93.下列运算正确的是( ) A.4=2 B .(-3)2=-9C .2-3=8D .20=04.一种细胞的直径约为0.000 001 56米,将0.000 001 56用科学记数法表示应为( )A .1.56×105B .1.56×10-6C .1.56×10-5D .15.6×10-45.若(x -3)0+(x 3x -6)-2有意义,则x 的取值范围是( ) A .x ≠3且x ≠2B .x ≠3或x ≠2C .x ≠3或x ≠2或x ≠0D .x ≠3且x ≠2且x ≠06.化简2x -6x -2÷(5x -2-x -2)的结果是( ) A .-2x +3 B.2x +3C.2x -115D.2x -65-(x -2)2 二、填空题(每小题4分,共16分)7.计算:(12)-1+(1-2)0=________. 8.某单位全体员工计划在植树节义务植树240棵,原计划每小时植树a 棵,实际每小时植树的棵数是原计划的1.2倍,那么实际比原计划提前了________h 完成任务(用含a 的代数式表示).9.若1m +1n =7m +n ,则n m +m n的值为________. 10.若1(2n -1)(2n +1)=a 2n -1+b 2n +1对任意自然数n 都成立,则a =________,b =________. 三、解答题(共66分)11.(8分)(广东中考)计算:9+|-4|+(-1)0-(12)-1. 12.(24分)计算:(1)a a -b +b b -a+1;(2)x 2+2x +1x +2÷x 2-1x -1-x x +2; (3)a 2+3a a 2-3a -a -3a ·(2a a -3)2; (4)(1x -4+1x +4)÷2x 2-16. 13.(10分)(广东中考)先化简,再求值:(2x -1+1x +1)·(x 2-1),其中x =3-13. 14.(12分)(巴中中考)先化简2a +2a -1÷(a +1)+a 2-1a 2-2a +1,然后a 在-1、1、2三个数中任选一个合适的数代入求值.15.(12分)已知a 为整数,且a +1a -3-a -3a +2÷a 2-6a +9a 2-4也为整数,求所有符合条件的a 的值的和.参考答案1.C2.B3.A4.B5.D6.A7.38.40a9.5 10.12 -1211.原式=3+4+1-2=6.12.(1)原式=a a -b -b a -b +1=a -b a -b+1=1+1=2. (2)原式=1x +2. (3)原式=3-3a a -3. (4)原式=x.13.原式=3x +1.当x =3-13时,原式= 3. 14.原式=a +3a -1. 当a =2时,原式=2+32-1=5. 15.原式=3a -3. ∵a 为整数且3a -3是整数. ∴分母a -3=±1或a -3=±3,解得a =4或2或6或0. 由题意知a ≠3且a ≠±2,∴符合条件的a 的值的和为4+6+0=10.。
八年级数学上学期周练试卷三含解析[新人教版]
![八年级数学上学期周练试卷三含解析[新人教版]](https://img.taocdn.com/s3/m/3f3350aa1711cc7931b716fd.png)
2015-2016学年四川省成都市嘉祥外国语学校八年级(上)周练数学试卷(三)一、用心选一选(每题3分,共30分)1.下列计算中,错误的是()A.﹣62=﹣36 B.()2=C.(﹣4)3=﹣64 D.(﹣1)100+(﹣1)1000=02.数轴上点A表示﹣4,点B表示2,则表示A,B两点间的距离的算式是()A.﹣4+2 B.﹣4﹣2 C.2﹣(﹣4)D.2﹣43.设x是有理数,那么下列各式中一定表示正数的是()A.2008x B.x+2008 C.|2008x| D.|x|+20084.下列各对数中,数值相等的是()A.﹣27与(﹣2)7B.﹣32与(﹣3)2C.﹣3×23与﹣32×2 D.﹣(﹣3)2与﹣(﹣2)35.若x的相反数是3,|y|=5,则x+y的值为()A.﹣8 B.2 C.8或﹣2 D.﹣8或26.已知a、b、c、d是互不相等的整数,且abcd=9,则a+b+c+d的值等于()A.0 B.4 C.8 D.不能求出7.如果a、b互为相反数,c、d互为倒数,m的绝对值为2,那么a+b+m2﹣cd的值为()A.3 B.±3 C.3±D.4±8.当a<0,化简,得()A.﹣2 B.0 C.1 D.29.下列结论不正确的是()A.若a>0,b>0,则a+b>0 B.若a<0,b<0,则a+b<0C.若a>0,b<0,则|a|>|b|,则a+b>0 D.若a<0,b>0,且|a|>|b|,则a+b>0 10. ++++…+的值为()A.1 B.C.1﹣D.二、填空题(11-14每题4分,共16分)11.计算:(﹣1)2008+(﹣1)2009÷|﹣1|= .12.如果a是7的相反数,b比a的相反数小﹣3,则b比a大.13.一口深井,井底有一只青蛙,这只青蛙白天沿着井壁向上爬3米,夜间又落下2米,到了第十天的下午,这只青蛙恰好爬到井口,则这口井的深度是.14.三个有理数a、b、c满足abc<0,a+b+c>0,当x=19÷(﹣7)﹣6÷(﹣7)+15÷(﹣7)时,x的值为.三、计算题15.①|﹣6+2|+(﹣8 )+|﹣3﹣|;②19÷(﹣7)﹣6÷(﹣7)+15÷(﹣7)③(﹣22)+3×(﹣1)6﹣(﹣2)④(﹣2)2010×(﹣)2009+(﹣6)×7⑤﹣12﹣[1+(﹣12)÷6]2×(﹣)3⑥×6﹣(﹣+)×18﹣×6⑦++…+⑧(﹣2)2015+(﹣2)2016.四、解答题16.已知|x﹣1|=2,(y+2)2=9,求xy﹣2y的值.17.若|a|=1,|b|=2,|c|=4,且|a+b﹣c|=a+b﹣c,求a+b+c的值.18.已知有理数a、b、c在数轴上所对应的点位置如图所示,原点为O.试化简|a+2b|﹣|a ﹣c|﹣|c﹣2b|+|c﹣b|.19.读一读:式子“1+2+3+4+5+…+100”表示1开始的100个连续自然数的和.由于上述式子比较长,书写也不方便,为了简便起见,我们可以将“1+2+3+4+5+…+100”表示为n,这里“”是求和符号.例如:1+3+5+7+9+…+99,即从1开始的100以内的连续奇数的和,可表示为(2n﹣1);又如13+23+33+43+53+63+73+83+93+103可表示为n3.通过对上以材料的阅读,请解答下列问题.(1)2+4+6+8+10+…+100(即从2开始的100以内的连续偶数的和)用求和符合可表示为;(2)计算(n﹣1).五、填空题20.定义a⊙b=是有理数范围内的一种运算,则(⊙)⊙= .21.若a,b为有理数,下列判断正确的个数有(填序号)(1)|m+1|+2总是正数;(2)a2+(ab﹣4)2总是正数;(3)5+(mn﹣5)2的最大值为5;④2﹣(mn+3)2的最大值为3.22.观察下列数:﹣1,2,﹣3,4,﹣5,6,﹣7,…,将这列数排成下列形式:﹣12﹣3 4﹣5 6﹣7 8﹣910﹣11 12﹣13 14﹣15 16…按照上述规律排下去,那么第11行从左边第9个数是;﹣2015在第行.23.若a,b,c为整数,且|a﹣b|+|c﹣a|=1,求|a﹣b|+|b﹣c|+|c﹣a|的值.24.有理数a,b,c均不为0,且a+b+c=0,设,试求x19﹣99x+2009的值.2015-2016学年四川省成都市嘉祥外国语学校八年级(上)周练数学试卷(三)参考答案与试题解析一、用心选一选(每题3分,共30分)1.下列计算中,错误的是()A.﹣62=﹣36 B.()2=C.(﹣4)3=﹣64 D.(﹣1)100+(﹣1)1000=0【考点】有理数的乘方.【分析】根据有理数的乘方的定义对各选项分别进行计算,然后利用排除法求解.【解答】解:A、﹣62=﹣36,故本选项错误;B、()2=,故本选项错误;C、(﹣4)3=﹣64,故本选项错误;D、(﹣1)100+(﹣1)1000=1+1=2,故本选项正确.故选D.2.数轴上点A表示﹣4,点B表示2,则表示A,B两点间的距离的算式是()A.﹣4+2 B.﹣4﹣2 C.2﹣(﹣4)D.2﹣4【考点】数轴.【分析】此题可借助数轴用数形结合的方法求解.结合图形:点A在数轴负方向上,点B 在数轴正方向上,A,B两点间的距离通过有理数减法求得.【解答】解:由数轴得,表示A,B两点间的距离的算式是2﹣(﹣4).故选C.3.设x是有理数,那么下列各式中一定表示正数的是()A.2008x B.x+2008 C.|2008x| D.|x|+2008【考点】非负数的性质:绝对值.【分析】根据任何一个数的绝对值都为非负数,再进行选择即可.【解答】解:A、当x≤0时,2008x<0,故A错误;B、当x≤﹣2008时,x+2008≤0,故B错误;C、当x=0时,2008x=0,故C错误;D、|x|≥0,则|x|+2008>0,故D正确,故选D.4.下列各对数中,数值相等的是()A.﹣27与(﹣2)7B.﹣32与(﹣3)2C.﹣3×23与﹣32×2 D.﹣(﹣3)2与﹣(﹣2)3【考点】有理数的乘方.【分析】根据有理数乘方的法则对个选项的值进行逐一判断,找出数值相同的项.【解答】解:A、根据有理数乘方的法则可知,(﹣2)7=﹣27,故A选项符合题意;B、﹣32=﹣9,(﹣3)2=9,故B选项不符合题意;C、﹣3×23=﹣24,﹣32×2=﹣18,故C选项不符合题意;D、﹣(﹣3)2=﹣9,﹣(﹣2)3=8,故D选项不符合题意.故选:A.5.若x的相反数是3,|y|=5,则x+y的值为()A.﹣8 B.2 C.8或﹣2 D.﹣8或2【考点】绝对值;相反数.【分析】首先根据相反数,绝对值的概念分别求出x、y的值,然后代入x+y,即可得出结果.【解答】解:x的相反数是3,则x=﹣3,|y|=5,y=±5,∴x+y=﹣3+5=2,或x+y=﹣3﹣5=﹣8.则x+y的值为﹣8或2.故选:D.6.已知a、b、c、d是互不相等的整数,且abcd=9,则a+b+c+d的值等于()A.0 B.4 C.8 D.不能求出【考点】有理数的乘法.【分析】根据题意可得出这四个数的值,继而可以确定这四个数的和.【解答】解:由题意得:这四个数小于等于9,且互不相等.再由乘积为9可得,四个数中必有3和﹣3,∴四个数为:1,﹣1,3,﹣3,和为0.故选A.7.如果a、b互为相反数,c、d互为倒数,m的绝对值为2,那么a+b+m2﹣cd的值为()A.3 B.±3 C.3±D.4±【考点】代数式求值;相反数;倒数.【分析】由题意a、b互为相反数,c、d互为倒数,m的绝对值为2,可知a+b=0,cd=1,|m|=2,把其代入a+b+m2﹣cd,从而求解.【解答】解:∵a、b互为相反数,c、d互为倒数,m的绝对值为2,∴a+b=0,cd=1,m2=4,∴a+b+m2﹣cd=0+4﹣1=3,故选A.8.当a<0,化简,得()A.﹣2 B.0 C.1 D.2【考点】绝对值;有理数的混合运算.【分析】负数的绝对值去绝对值符号时,代数式的符号改变.【解答】解:∵a<0,∴原式==﹣2.故选A.9.下列结论不正确的是()A.若a>0,b>0,则a+b>0 B.若a<0,b<0,则a+b<0C.若a>0,b<0,则|a|>|b|,则a+b>0 D.若a<0,b>0,且|a|>|b|,则a+b>0 【考点】有理数的加法.【分析】根据有理数的加法法则,举反例,排除错误选项,从而得出正确结果.【解答】解:∵b=2,a=﹣3,∴a+b=﹣1,∴D都错误;∴A、B、C正确.故选D.10. ++++…+的值为()A.1 B.C.1﹣D.【考点】分式的混合运算.【分析】根据+==1﹣, ++==1﹣,即可得出规律,从而得出正确选项.【解答】解:∵+=, +==1﹣,∴++++…+=1﹣;故选C.二、填空题(11-14每题4分,共16分)11.计算:(﹣1)2008+(﹣1)2009÷|﹣1|= 0 .【考点】有理数的混合运算.【分析】先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.【解答】解:(﹣1)2008+(﹣1)2009÷|﹣1|=1﹣1÷1=1﹣1=0.故答案为:0.12.如果a是7的相反数,b比a的相反数小﹣3,则b比a大17 .【考点】相反数.【分析】根据相反数,即可解答.【解答】解:∵a是7的相反数,∴a=﹣7,∵b比a的相反数小﹣3,∴b=7﹣(﹣3)=10,∴b﹣a=10﹣(﹣7)=17,故答案为:17.13.一口深井,井底有一只青蛙,这只青蛙白天沿着井壁向上爬3米,夜间又落下2米,到了第十天的下午,这只青蛙恰好爬到井口,则这口井的深度是12米.【考点】有理数的混合运算.【分析】每天上升的深度为(3﹣2)米,到第十天时井的深度为9×(3﹣2)+3,利用有理数运算法则进行计算.【解答】解:这口井的深度是9×(3﹣2)+3=12米.14.三个有理数a、b、c满足abc<0,a+b+c>0,当x=19÷(﹣7)﹣6÷(﹣7)+15÷(﹣7)时,x的值为﹣4 .【考点】有理数的混合运算.【分析】原式先计算除法运算,再计算加减运算,即可确定出x的值.【解答】解:x=19÷(﹣7)﹣6÷(﹣7)+15÷(﹣7)=﹣+﹣=﹣4,故答案为:﹣4三、计算题15.①|﹣6+2|+(﹣8 )+|﹣3﹣|;②19÷(﹣7)﹣6÷(﹣7)+15÷(﹣7)③(﹣22)+3×(﹣1)6﹣(﹣2)④(﹣2)2010×(﹣)2009+(﹣6)×7⑤﹣12﹣[1+(﹣12)÷6]2×(﹣)3⑥×6﹣(﹣+)×18﹣×6⑦++…+⑧(﹣2)2015+(﹣2)2016.【考点】有理数的混合运算.【分析】①原式利用绝对值的代数意义化简,计算即可得到结果;②原式先计算乘除运算,再计算加减运算即可得到结果;③原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果;④原式逆用积的乘方运算法则变形,计算即可得到结果;⑤原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;⑥原式先计算乘法运算,再计算加减运算即可得到结果;⑦原式利用拆项法变形后,计算即可得到结果;⑧原式提取公因式,计算即可得到结果.【解答】解:①原式=3﹣8+3=7﹣8=﹣;②原式=﹣+﹣=﹣4;③原式=﹣4+3+2=1;④原式=(﹣2)×(2×)2009+(﹣7+)×7=﹣2﹣49+=﹣50;⑤原式=﹣1﹣(1﹣2)2×(﹣)=﹣1﹣×(﹣)=﹣1+=﹣;⑥原式=(﹣)×6﹣(14﹣15+7)=15﹣14+15﹣7=9;⑦原式=(﹣+﹣+…+﹣)=(﹣)=;⑧原式=(﹣2)2015×(1﹣2)=22015.四、解答题16.已知|x﹣1|=2,(y+2)2=9,求xy﹣2y的值.【考点】代数式求值.【分析】利用绝对值的代数意义,以及平方根的定义求出x与y的值,即可确定出xy﹣2y 的值.【解答】解:∵|x﹣1|=5,∴x=﹣4或x=6,∵(y+2)2=9,∴y=﹣5或y=1,当x=﹣4,y=﹣5时,xy﹣2y=20+10=30;当x=﹣4,y=1时,xy﹣2y=﹣4﹣2=﹣6;当x=6,y=﹣5时,xy﹣2y=﹣30+10=﹣20;当x=6,y=1时,xy﹣2y=6﹣2=4.则xy﹣2y的值是30或﹣6或﹣20或4.17.若|a|=1,|b|=2,|c|=4,且|a+b﹣c|=a+b﹣c,求a+b+c的值.【考点】绝对值.【分析】根据绝对值先求出a,b,c的值,再进行分类讨论,即可解答.【解答】解:∵|a|=1,|b|=2,|c|=4,∴a=±1,b=±2,c=±4,∵|a+b﹣c|=a+b﹣c,∴或或或∴a+b+c的值为﹣1或﹣5或﹣3或﹣7.18.已知有理数a、b、c在数轴上所对应的点位置如图所示,原点为O.试化简|a+2b|﹣|a ﹣c|﹣|c﹣2b|+|c﹣b|.【考点】整式的加减;数轴;绝对值.【分析】根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,计算即可得到结果.【解答】解:根据数轴上点的位置得:a<b<0<c,∴a+2b<0,a﹣c<0,c﹣2b>0,c﹣b>0,则原式=﹣a﹣2b+a﹣c﹣c+2b+c﹣b=﹣c﹣b.19.读一读:式子“1+2+3+4+5+…+100”表示1开始的100个连续自然数的和.由于上述式子比较长,书写也不方便,为了简便起见,我们可以将“1+2+3+4+5+…+100”表示为n,这里“”是求和符号.例如:1+3+5+7+9+…+99,即从1开始的100以内的连续奇数的和,可表示为(2n﹣1);又如13+23+33+43+53+63+73+83+93+103可表示为n3.通过对上以材料的阅读,请解答下列问题.(1)2+4+6+8+10+…+100(即从2开始的100以内的连续偶数的和)用求和符合可表示为;(2)计算(n﹣1).【考点】规律型:数字的变化类.【分析】(1)根据求和符号的含义和表示方法,判断出2+4+6+8+10+…+100(即从2开始的100以内的连续偶数的和)用求和符合可表示为多少即可.(2)根据等差数列的求和方法,求出(n﹣1)的值是多少即可.【解答】解:(1)2+4+6+8+10+…+100(即从2开始的100以内的连续偶数的和)用求和符合可表示为:.(2)(n﹣1)=(2+4+6+…+40)﹣20=×﹣20=210﹣20=190故答案为:.五、填空题20.定义a⊙b=是有理数范围内的一种运算,则(⊙)⊙= 1 .【考点】有理数的混合运算.【分析】首先理解a⊙b=的运算法则,然后求出(⊙),再根据刚刚求出结果利用运算法则去求最后的结果.【解答】解:∵(⊙)==,∴(⊙)⊙=⊙==1.故答案为:1.21.若a,b为有理数,下列判断正确的个数有(1)(4)(填序号)(1)|m+1|+2总是正数;(2)a2+(ab﹣4)2总是正数;(3)5+(mn﹣5)2的最大值为5;④2﹣(mn+3)2的最大值为3.【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】根据绝对值、偶次方的非负性进行判断即可.【解答】解:∵|m+1|≥0,∴|m+1|+2>0,即|m+1|+2总是正数,(1)正确;a2≥0,(ab﹣4)2,≥0,则a2+(ab﹣4)2≥0,即a2+(ab﹣4)2总是非负数,(2)错误;5+(mn﹣5)2的最小值为5,(3)错误;2﹣(mn+3)2的最大值为3,(4)正确,故答案为:(1)(4).22.观察下列数:﹣1,2,﹣3,4,﹣5,6,﹣7,…,将这列数排成下列形式:﹣12﹣3 4﹣5 6﹣7 8﹣910﹣11 12﹣13 14﹣15 16…按照上述规律排下去,那么第11行从左边第9个数是﹣109 ;﹣2015在第45 行.【考点】规律型:数字的变化类.百度文库- 让每个人平等地提升自我【分析】由数字的排列可知:每行的最后一个数的绝对值是所在行数的平方,奇数为负,偶数为正,由此规律求得第10行的最后数字是102,再加上9就是第11行从左边第9个数字;由442=1936<2015<452=2025,可得﹣2015在第45行.【解答】解:根据每行的最后一个数的绝对值是所在行数的平方,所以第10行最后一个数字的绝对值是:10×10=100,第11行从左边第9个数是:100+9=109.∵442=1936,452=2025,﹣2015=﹣,∴﹣2015在第45行.故答案为﹣109;45.23.若a,b,c为整数,且|a﹣b|+|c﹣a|=1,求|a﹣b|+|b﹣c|+|c﹣a|的值.【考点】绝对值.【分析】由a、b、c为整数,且|a﹣b|+|c﹣b|=1,分两种情况①|a﹣b|=0,|c﹣a|=1,②|a ﹣b|=1,|c﹣a|=0求解出|b﹣c|的值,即可解答.【解答】解:∵a、b、c为整数,且|a﹣b|+|c﹣a|=1,∴①|a﹣b|=0,|c﹣a|=1,即a=b,|c﹣b|=|c﹣a|=1,|b﹣c|=1,②|a﹣b|=1,|c﹣a|=0,即c=a,|a﹣b|=|c﹣b|=|b﹣c|=1,综上所述|b﹣c|=1.∴|a﹣b|+|b﹣c|+|c﹣a|=1+1=2.24.有理数a,b,c均不为0,且a+b+c=0,设,试求x19﹣99x+2009的值.【考点】分式的加减法.【分析】根据题意可得a,b,c中不能全同号,必有一正两负或两正一负与a=﹣(b+c),b=﹣(c+a),c=﹣(a+b),则可得的值为两个+1,一个﹣1或两个﹣1,一个+1,即可求得x的值,代入即可求得答案.【解答】解:∵有理数a,b,c均不为0,且a+b+c=0,∴a,b,c中不能全同号,必有一正两负或两正一负,∴a=﹣(b+c),b=﹣(c+a),c=﹣(a+b),即,∴中必有两个同号,另一个符号与其相反,∴的值为两个+1,一个﹣1或两个﹣1,一个+1,∴x=1,∴原式=1﹣99+2009=1911.11。
天津市南开区2016年12月16日八年级数学上周测练习题及答案

2016-2017年八年级数学上册周练习题 12.16题号一二三四五总分得分一、选择题(本大题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.一根长竹签切成四段,分别为3cm、5cm、7cm、9cm.从中任意选取三根首尾依次相接围成不同的三角形,则围成的三角形共有()A. 1个 B. 2个 C.3个 D. 4个2.如图,△ACB≌△A′CB′,∠BCB′=30°,则∠ACA′的度数为()A.20° B.30° C.35° D.40°3.如图所示,△ABD≌△CDB,下面四个结论中,不正确的是()A.△ABD和△CDB的面积相等 B.△ABD和△CDB的周长相等C.∠A+∠ABD=∠C+∠CBD D.AD∥BC,且AD=BC4.下列计算正确的是()A.a6÷a2=a3 B.a2+a2=2a4 C.(a﹣b)2=a2﹣b2 D.(a2)3=a6 5.下列各式中能用平方差公式是()A.(x+y)(y+x)B.(x+y)(y﹣x)C.(x+y)(﹣y﹣x)D.(﹣x+y)(y﹣x)6.下列分式是最简分式的是()A. B. C. D.7.张三和李四两人加工同一种零件,每小时张三比李四多加工5个零件,张三加工120个这种零件与李四加工100个这种零件所用时间相等,求张三和李四每小时各加工多少个这种零件?若设张三每小时经过这种零件x个,则下面列出的方程正确的是()A. = B. = C. = D. =8.若是整数,则正整数n的最小值是()A.2 B.3 C.4 D.59.化简的结果是()A. B. C.- D.-10.如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线.若在边AB上截取BE=BC,连接DE,则图中等腰三角形共有()A.2个 B.3个 C.4个 D.5个二、填空题(本大题共6小题,每小题3分,共18分)11.代数式在实数范围内有意义,则x的取值范围是.12.计算:(x+1)2﹣(x+2)(x﹣2)= .13.如图,AD、A′D′分别是锐角△ABC和△A′B′C′中BC与B′C′边上的高.(只需填写一个你认为适当的条件)14.三角形两外角平分线和第三个角的内角平分线一点,且该点在三角形部.15.方程的解是.16. 如图,在△ABC中,∠C=90°,∠CAB=60°,按以下步骤作图:①分别以A,B为圆心,以大于AB的长为半径做弧,两弧相交于点P和Q.②作直线PQ交AB于点D,交BC于点E,连接AE.若CE=4,则AE= .三、计算题(本大题共10小题,共40分)17.(x+1)2﹣(x+2)(x﹣2).18. (ab2)2•(﹣a3b)3÷(﹣5ab);19.因式分解:9a2(x﹣y)+4b2(y﹣x).20.因式分解:3x﹣12x3;21.因式分解:22.23. 在实数范围内分解下列因式:(1)(2)(3)24.25.计算:(1)(2)(+)+(-)四、解答题(本大题共4小题,共24分)26.若,,试比较,的大小。
八年级上第1周周练数学试卷含答案解析

八年级(上)第1周周练数学试卷一、选择题1.下列各组中是全等形的是()A.两个周长相等的等腰三角形B.两个面积相等的长方形C.两个面积相等的直角三角形D.两个周长相等的圆2.两个全等图形中可以不同的是()A.位置B.长度C.角度D.面积3.如图所示,某同学把一块三角形的玻璃不小心打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带()去.A.①B.②C.③D.①和②4.如图,△ACB≌△A′CB′,∠BCB′=30°,则∠ACA′的度数为()A.20°B.30°C.35°D.40°5.如图,小强利用全等三角形的知识测量池塘两端M、N的距离,如果△PQO ≌△NMO,则只需测出其长度的线段是()A.PO B.PQ C.MO D.MQ6.在下列说法中,正确的有()①三角分别相等的两个三角形全等;②三边分别相等的两个三角形全等;③两角及其中一组等角的对边分别相等的两个三角形全等;④两边及其中一组等边的对角分别相等的两个三角形全等.A.1个B.2个C.3个D.4个7.如图所示,AB∥EF∥CD,∠ABC=90°,AB=DC,那么图中的全等三角形有()A.1对B.2对C.3对D.4对8.如图,点B、C、E在同一条直线上,△ABC与△CDE都是等边三角形,则下列结论不一定成立的是()A.△ACE≌△BCD B.△BGC≌△AFC C.△DCG≌△ECF D.△ADB≌△CEA 9.如图,AE⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S是()A.50 B.62 C.65 D.68二、填空题(共10小题,每小题4分,满分22分)10.如图,△ABC和△AED全等,AB=AE,∠C=20°,∠DAE=130°,则∠D=°,∠BAC=°.11.如图,如果△ABC≌△DEF,△DEF周长是32cm,DE=9cm,EF=13cm,则AC= cm.12.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是.13.如图,AB∥DC,请你添加一个条件使得△ABD≌△CDB,可添条件是.(添一个即可)14.如图,在△ABC中,点D是BC的中点,作射线AD,在线段AD及其延长线上分别取点E、F,连接CE、BF.添加一个条件,使得△BDF≌△CDE,你添加的条件是.(不添加辅助线)15.一个三角形的三边为2、5、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x+y=.16.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=.17.如图,已知在△ABC中,∠A=90°,AB=AC,CD平分∠ACB,DE⊥BC于E,若BC=15cm,则△DEB的周长为cm.18.如图为6个边长等的正方形的组合图形,则∠1+∠2+∠3=°.19.如图,FD⊥AO于D,FE⊥BO于E,下列条件:①OF是∠AOB的平分线;②DF=EF;③DO=EO;④∠OFD=∠OFE.其中能够证明△DOF≌△EOF的条件的个数有个.三、简答题20.如图,AB=AC,AD=AE,∠EAB=∠DAC,问:△ABD与△ACE是否全等?∠D 与∠E有什么关系?为什么?21.如图,BE=CD,∠1=∠2,则AB=AC吗?为什么?22.如图,点E、F在AC上,AB∥CD,AB=CD,AE=CF.求证:(1)△ABF≌△DCE.(2)BF∥DE.23.已知:如图,在△ABC中,D是BC的中点,点E、F分别在AB、AC上,且DE∥AC,DF∥AB,求证:BE=DF,DE=CF.24.已知:如图,△ABC≌△A′B′C′,AD和A′D′分别是△ABC和△A′B′C′的BC和B′C′边上的中线.求证:AD=A′D′.25.如图,AC⊥AB,BD⊥AB,CE⊥DE,CE=DE.求证:AC+BD=AB.26.如图,AB=CD,AD=CB.求证:∠B=∠D.27.如图,已知△ABC中,AB=AC=6cm,∠B=∠C,BC=4cm,点D为AB的中点.(1)如果点P在线段BC上以1cm/s的速度由点B向点C运动,同时,点Q在线段CA上由点C向点A运动.当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以1.5cm/s的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,则经过秒后,点P与点Q第一次在△ABC的AC边上相遇?(在横线上直接写出答案,不必书写解题过程)2016-2017学年江苏省无锡市江阴市夏港中学八年级(上)第1周周练数学试卷参考答案与试题解析一、选择题1.下列各组中是全等形的是()A.两个周长相等的等腰三角形B.两个面积相等的长方形C.两个面积相等的直角三角形D.两个周长相等的圆【考点】全等图形.【分析】根据能够完全重合的两个图形叫做全等形进行分析即可.【解答】解:A、不一定是全等形,故此选项错误;B、不一定是全等形,故此选项错误;C、不一定是全等形,故此选项错误;D、是全等形,故此选项正确;故选:D.【点评】此题主要考查了全等图形,关键是掌握全等图形的概念.2.两个全等图形中可以不同的是()A.位置B.长度C.角度D.面积【考点】全等图形.【分析】根据能够互相重合的两个图形叫做全等图形解答.【解答】解:两个全等图形中对应边的长度,对应角的角度,图形的面积相等,可以不同的是位置.故选A.【点评】本题考查了全等图形,熟记全等图形的概念是解题的关键.3.如图所示,某同学把一块三角形的玻璃不小心打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带()去.A.①B.②C.③D.①和②【考点】全等三角形的应用.【分析】此题可以采用排除法进行分析从而确定最后的答案.【解答】解:第一块,仅保留了原三角形的一个角和部分边,不符合任何判定方法;第二块,仅保留了原三角形的一部分边,所以该块不行;第三块,不但保留了原三角形的两个角还保留了其中一个边,所以符合ASA判定,所以应该拿这块去.故选C.【点评】此题主要考查学生对全等三角形的判定方法的灵活运用,要求对常用的几种方法熟练掌握.4.如图,△ACB≌△A′CB′,∠BCB′=30°,则∠ACA′的度数为()A.20°B.30°C.35°D.40°【考点】全等三角形的性质.【分析】本题根据全等三角形的性质并找清全等三角形的对应角即可.【解答】解:∵△ACB≌△A′CB′,∴∠ACB=∠A′CB′,即∠ACA′+∠A′CB=∠B′CB+∠A′CB,∴∠ACA′=∠B′CB,又∠B′CB=30°∴∠ACA′=30°.故选:B.【点评】本题考查了全等三角形的判定及全等三角形性质的应用,利用全等三角形的性质求解.5.如图,小强利用全等三角形的知识测量池塘两端M、N的距离,如果△PQO ≌△NMO,则只需测出其长度的线段是()A.PO B.PQ C.MO D.MQ【考点】全等三角形的应用.【分析】利用全等三角形对应边相等可知要想求得MN的长,只需求得其对应边PQ的长,据此可以得到答案.【解答】解:要想利用△PQO≌△NMO求得MN的长,只需求得线段PQ的长,故选:B.【点评】本题考查了全等三角形的应用,解题的关键是如何将实际问题与数学知识有机的结合在一起.6.在下列说法中,正确的有()①三角分别相等的两个三角形全等;②三边分别相等的两个三角形全等;③两角及其中一组等角的对边分别相等的两个三角形全等;④两边及其中一组等边的对角分别相等的两个三角形全等.A.1个B.2个C.3个D.4个【考点】全等三角形的判定.【分析】根据全等三角形的判定定理SSS、SAS、ASA、AAS、HL进行分析即可.【解答】解:①三角分别相等的两个三角形全等,说法错误;②三边分别相等的两个三角形全等,说法正确;③两角及其中一组等角的对边分别相等的两个三角形全等,说法正确;④两边及其中一组等边的对角分别相等的两个三角形全等,说法错误.故选:B.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.7.如图所示,AB∥EF∥CD,∠ABC=90°,AB=DC,那么图中的全等三角形有()A.1对B.2对C.3对D.4对【考点】全等三角形的判定.【分析】根据平行的性质及全等三角形的判定方法来确定图中存在的全等三角形共有三对:△ABC≌△DCB,△ABE≌△CDE,△BFE≌△CFE.再分别进行证明.【解答】解:∵AB∥EF∥DC,∴∠ABC=∠DCB,在△ABC和△DCB中,∵,∴△ABC≌△DCB(SAS);在△ABE和△CDE中,∵,∴△ABE≌△CDE(AAS);在△BFE和△CFE中,∵,∴△BFE≌△CFE.∴图中的全等三角形共有3对.故选C.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.8.如图,点B、C、E在同一条直线上,△ABC与△CDE都是等边三角形,则下列结论不一定成立的是()A.△ACE≌△BCD B.△BGC≌△AFC C.△DCG≌△ECF D.△ADB≌△CEA 【考点】全等三角形的判定;等边三角形的性质.【分析】首先根据角间的位置及大小关系证明∠BCD=∠ACE,再根据边角边定理,证明△BCE≌△ACD;由△BCE≌△ACD可得到∠DBC=∠CAE,再加上条件AC=BC,∠ACB=∠ACD=60°,可证出△BGC≌△AFC,再根据△BCD≌△ACE,可得∠CDB=∠CEA,再加上条件CE=CD,∠ACD=∠DCE=60°,又可证出△DCG≌△ECF,利用排除法可得到答案.【解答】解:∵△ABC和△CDE都是等边三角形,∴BC=AC,CE=CD,∠BCA=∠ECD=60°,∴∠BCA+∠ACD=∠ECD+∠ACD,即∠BCD=∠ACE,∴在△BCD和△ACE中,∴△BCD≌△ACE(SAS),故A成立,∴∠DBC=∠CAE,∵∠BCA=∠ECD=60°,∴∠ACD=60°,在△BGC和△AFC中,∴△BGC≌△AFC,故B成立,∵△BCD≌△ACE,∴∠CDB=∠CEA,在△DCG和△ECF中,∴△DCG≌△ECF,故C成立,故选:D.【点评】此题主要考查了三角形全等的判定以及等边三角形的性质,解决问题的关键是根据已知条件找到可证三角形全等的条件.9.如图,AE⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S是()A.50 B.62 C.65 D.68【考点】全等三角形的判定与性质.【分析】由AE⊥AB,EF⊥FH,BG⊥AG,可以得到∠EAF=∠ABG,而AE=AB,∠EFA=∠AGB,由此可以证明△EFA≌△ABG,所以AF=BG,AG=EF;同理证得△BGC≌△DHC,GC=DH,CH=BG.故FH=FA+AG+GC+CH=3+6+4+3=16,然后利用面积的割补法和面积公式即可求出图形的面积.【解答】解:∵AE⊥AB且AE=AB,EF⊥FH,BG⊥FH⇒∠EAB=∠EFA=∠BGA=90°,∠EAF+∠BAG=90°,∠ABG+∠BAG=90°⇒∠EAF=∠ABG,∴AE=AB,∠EFA=∠AGB,∠EAF=∠ABG⇒△EFA≌△ABG∴AF=BG,AG=EF.同理证得△BGC≌△DHC得GC=DH,CH=BG.故FH=FA+AG+GC+CH=3+6+4+3=16故S=(6+4)×16﹣3×4﹣6×3=50.故选A.【点评】本题考查的是全等三角形的判定的相关知识,是中考常见题型.二、填空题(共10小题,每小题4分,满分22分)10.如图,△ABC和△AED全等,AB=AE,∠C=20°,∠DAE=130°,则∠D=20°,∠BAC=130°.【考点】全等三角形的性质.【分析】根据全等三角形的性质得出∠DAE=∠BAC,∠C=∠D即可.【解答】解:∵△ABC≌△ADE,AB=AE,∴∠DAE=∠BAC,∴∠C=∠D,∵∠C=20°,∠DAE=130°,∴∠D=20°,∠BAC=130°,故答案为:20;130【点评】本题考查了全等三角形的性质和三角形内角和定理的应用,注意:全等三角形的对应边相等,对应角相等.11.如图,如果△ABC≌△DEF,△DEF周长是32cm,DE=9cm,EF=13cm,则AC= 10cm.【考点】全等三角形的性质.【分析】求出DF的长,根据全等三角形的性质得出AC=DF,即可得出答案.【解答】解:∵△DEF周长是32cm,DE=9cm,EF=13cm,∴DF=32cm﹣9cm﹣13cm=10cm,∵△ABC≌△DEF,∴AC=DF=10cm,故答案为:10.【点评】本题考查了全等三角形的性质的应用,注意:全等三角形的对应边相等,对应角相等.12.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是三角形稳定性.【考点】三角形的稳定性.【分析】将其固定,显然是运用了三角形的稳定性.【解答】解:一扇窗户打开后,用窗钩BC可将其固定,这里所运用的几何原理是三角形的稳定性.【点评】注意能够运用数学知识解释生活中的现象,考查三角形的稳定性.13.如图,AB∥DC,请你添加一个条件使得△ABD≌△CDB,可添条件是AB=CD 等(答案不唯一).(添一个即可)【考点】全等三角形的判定.【分析】由已知二线平行,得到一对角对应相等,图形中又有公共边,具备了一组边和一组角对应相等,还缺少边或角对应相等的条件,结合判定方法及图形进行选择即可.【解答】解:∵AB∥DC,∴∠ABD=∠CDB,又BD=BD,①若添加AB=CD,利用SAS可证两三角形全等;②若添加AD∥BC,利用ASA可证两三角形全等.(答案不唯一)故填AB=CD等(答案不唯一)【点评】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关健.14.如图,在△ABC中,点D是BC的中点,作射线AD,在线段AD及其延长线上分别取点E、F,连接CE、BF.添加一个条件,使得△BDF≌△CDE,你添加的条件是DF=DE.(不添加辅助线)【考点】全等三角形的判定.【分析】由已知可证BD=CD,又∠EDC﹦∠FDB,因为三角形全等条件中必须是三个元素.故添加的条件是:DE=DF(或CE∥BF或∠ECD=∠DBF或∠DEC=∠DFB 等);【解答】解:添加的条件是:DF=DE(或CE∥BF或∠ECD=∠DBF或∠DEC=∠DFB 等).理由如下:∵点D是BC的中点,∴BD=CD.在△BDF和△CDE中,∵,∴△BDF≌△CDE(SAS).故答案可以是:DF=DE.【点评】考查了三角形全等的判定.三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.15.一个三角形的三边为2、5、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x+y=11.【考点】全等三角形的性质.【分析】根据已知条件分清对应边,结合全的三角形的性质可得出答案.【解答】解:∵这两个三角形全等,两个三角形中都有2∴长度为2的是对应边,x应是另一个三角形中的边6.同理可得y=5∴x+y=11.故填11.【点评】本题考查了全等三角形的性质及对应边的找法;根据两个三角形中都有2找对对应边是解决本题的关键.16.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=55°.【考点】全等三角形的判定与性质.【分析】求出∠BAD=∠EAC,证△BAD≌△EAC,推出∠2=∠ABD=30°,根据三角形的外角性质求出即可.【解答】解:∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠1=∠EAC,在△BAD和△EAC中,∴△BAD≌△EAC(SAS),∴∠2=∠ABD=30°,∵∠1=25°,∴∠3=∠1+∠ABD=25°+30°=55°,故答案为:55°.【点评】本题考查了全等三角形的性质和判定,三角形的外角性质的应用,解此题的关键是推出△BAD≌△EAC.17.如图,已知在△ABC中,∠A=90°,AB=AC,CD平分∠ACB,DE⊥BC于E,若BC=15cm,则△DEB的周长为15cm.【考点】全等三角形的判定与性质.【分析】先根据ASA判定△ACD≌△ECD得出AC=EC,AD=ED,再将其代入△DEB 的周长中,通过边长之间的转换得到,周长=BD+DE+EB=BD+AD+EB=AB+BE=AC+EB=CE+EB=BC,所以为15cm.【解答】解:∵CD平分∠ACB∴∠ACD=∠ECD∵DE⊥BC于E∴∠DEC=∠A=90°∵CD=CD∴△ACD≌△ECD∴AC=EC,AD=ED∵∠A=90°,AB=AC∴∠B=45°∴BE=DE∴△DEB的周长为:DE+BE+BD=AD+BD+BE=AB+BE=AC+BE=EC+BE=BC=15cm.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.18.如图为6个边长等的正方形的组合图形,则∠1+∠2+∠3=135°.【考点】全等三角形的判定与性质.【分析】观察图形可知∠1与∠3互余,∠2是直角的一半,利用这些关系可解此题.【解答】解:观察图形可知:△ABC≌△BDE,∴∠1=∠DBE,又∵∠DBE+∠3=90°,∴∠1+∠3=90°.∵∠2=45°,∴∠1+∠2+∠3=∠1+∠3+∠2=90°+45°=135°.故填135.【点评】此题综合考查角平分线,余角,要注意∠1与∠3互余,∠2是直角的一半,特别是观察图形的能力.19.如图,FD⊥AO于D,FE⊥BO于E,下列条件:①OF是∠AOB的平分线;②DF=EF;③DO=EO;④∠OFD=∠OFE.其中能够证明△DOF≌△EOF的条件的个数有4个.【考点】全等三角形的判定;角平分线的性质.【分析】根据题目所给条件可得∠ODF=∠OEF=90°,再加上添加条件结合全等三角形的判定定理分别进行分析即可.【解答】解:∵FD⊥AO于D,FE⊥BO于E,∴∠ODF=∠OEF=90°,①加上条件OF是∠AOB的平分线可利用AAS判定△DOF≌△EOF;②加上条件DF=EF可利用HL判定△DOF≌△EOF;③加上条件DO=EO可利用HL判定△DOF≌△EOF;④加上条件∠OFD=∠OFE可利用AAS判定△DOF≌△EOF;因此其中能够证明△DOF≌△EOF的条件的个数有4个,故答案为:4.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.三、简答题20.如图,AB=AC,AD=AE,∠EAB=∠DAC,问:△ABD与△ACE是否全等?∠D 与∠E有什么关系?为什么?【考点】全等三角形的判定与性质.【分析】首先证明∠EAC=∠DAB,然后根据SAS证明△ABD≌△ACE,再根据全等三角形的性质可得∠D=∠E.【解答】解:△ABD≌△ACE,∠D=∠E;理由:∵∠EAB=∠DAC,∴∠EAB+∠BAC=∠DAC+∠BAC,即∠EAC=∠DAB,在△AEC和△ADB中,,∴△ABD≌△ACE(SAS),∴∠D=∠E.【点评】此题主要考查了全等三角形的判定与性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.21.如图,BE=CD,∠1=∠2,则AB=AC吗?为什么?【考点】全等三角形的判定与性质.【分析】根据AAS即可证明△ABE≌△ACD,再根据全等三角形的性质即可求解.【解答】解:∵∠1=∠2,∴∠ADC=∠AEB,在△ABE和△ACD中,,∴△ABE≌△ACD(AAS)∴AB=AC(全等三角形的对应边相等).【点评】本题考查了全等三角形的判定与性质,在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.22.如图,点E、F在AC上,AB∥CD,AB=CD,AE=CF.求证:(1)△ABF≌△DCE.(2)BF∥DE.【考点】全等三角形的判定与性质.【分析】(1)根据SAS即可证明△ABF≌△DCE.(2)利用全等三角形的性质即可证明.【解答】证明:(1)∵AB∥CD,∴∠A=∠C,∵AE=CF,∴AF=CE,在△AFB和△CED中,,∴△AFB≌△CED,(2)∵△AFB≌△CED,∴∠AFB=∠CED,∴DE∥BF.【点评】本题考查平行线的性质和判定、全等三角形的判定和性质等知识,解题的关键是熟练掌握全等三角形的判定和性质,属于基础题,中考常考题型.23.已知:如图,在△ABC中,D是BC的中点,点E、F分别在AB、AC上,且DE∥AC,DF∥AB,求证:BE=DF,DE=CF.【考点】全等三角形的判定与性质;平行线的性质.【分析】根据线段中点的定义可得BD=CD,再根据两直线平行,同位角相等可得∠B=∠CDF,∠C=∠BDE,然后利用“角边角”证明△BDE和△DCF全等,根据全等三角形对应边相等证明即可.【解答】证明:∵D是BC的中点,∴BD=CD,∵DF∥AB,∴∠B=∠CDF,∵DE∥AC,∴∠C=∠BDE,在△BDE和△DCF中,,∴△BDE≌△DCF(ASA),∴BE=DF,DE=CF.【点评】本题考查了全等三角形的判定与性质,平行线的性质,熟练掌握三角形全等的判定方法并准确确定出对应的角是解题的关键.24.已知:如图,△ABC≌△A′B′C′,AD和A′D′分别是△ABC和△A′B′C′的BC和B′C′边上的中线.求证:AD=A′D′.【考点】全等三角形的性质.【分析】根据全等三角形的性质得出对应边和对应角相等,再利用全等三角形的判定证明即可.【解答】证明:∵△ABC≌△A′B′C′,∴AB=A'B',BC=B'C',∠B=∠B',∵AD和A′D′分别是△ABC和△A′B′C′的BC和B′C′边上的中线,∴BD=B'D',在△ABD与△A′B′D′,,∴△ABD≌△A′B′D′,∴AD=A'D'.【点评】本题考查了全等三角形的判定和性质的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的对应边相等,对应角相等.25.如图,AC⊥AB,BD⊥AB,CE⊥DE,CE=DE.求证:AC+BD=AB.【考点】全等三角形的判定与性质.【分析】根据垂直的定义得到∠A=∠B=90°,再证明∠C=∠DEB,即可证明△CAE ≌△EBD,根据全等三角形的性质即可证得结论.【解答】证明:∵AC⊥AB,BD⊥AB,∴∠A=∠B=90°,∴∠C+∠CEA=90°,∠D+∠DEB=90°,∵CE⊥DE,∴∠CED=90°,∴∠CEA+∠DEB=90°,∴∠C=∠DEB,在△CAE和△EBD中,∴△CAE≌△EBD(AAS),∴AC=BE,BD=AE,∵AE+BE=AB,∴AC+BD=AB【点评】本题主要考查了互为余角的关系,全等三角形的判定与性质,能根据同角的余角相等证得∠C=∠DEB是解决问题的关键.26.如图,AB=CD,AD=CB.求证:∠B=∠D.【考点】全等三角形的判定与性质.【分析】根据SSS推出△DAC≌△BCA即可【解答】证明:∵在△DAC和△BCA中,∴△DAC≌△BCA,∴∠B=∠D.【点评】本题考查了全等三角形的判定和性质,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.27.如图,已知△ABC中,AB=AC=6cm,∠B=∠C,BC=4cm,点D为AB的中点.(1)如果点P在线段BC上以1cm/s的速度由点B向点C运动,同时,点Q在线段CA上由点C向点A运动.当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以1.5cm/s的运动速度从点C出发,点P以原来的运动速度从点B 同时出发,都逆时针沿△ABC三边运动,则经过24秒后,点P与点Q第一次在△ABC的AC边上相遇?(在横线上直接写出答案,不必书写解题过程)【考点】勾股定理;全等三角形的判定;等腰三角形的性质.【分析】(1)由于∠B=∠C,若要△BPD与△CQP全等,只需要BP=CQ或BP=CP,进而求出点Q的速度.(2))因为点Q的速度大于点P速度,只能是点Q追上点P,即点Q比点P多走AB+AC的路程,据此列出方程,解这个方程即可求得.【解答】解:(1)设运动时间为t,点Q的速度为v,∵点D为AB的中点,∴BD=3,∴BP=t,CP=4﹣t,CQ=vt,由于△BPD≌△CQP,且∠B=∠C当BP=CQ时,∴t=vt,∴v=1,当BP=CP时,t=4﹣t,∴t=2,∴BD=CQ∴3=2v,∴v=,综上所述,点Q的速度为1cm/s或cm/s(2)设经过x秒后P与Q第一次相遇,依题意得:1.5x=x+2×6,解得:x=24(秒)此时P运动了24×1=24(cm)又∵△ABC的周长为16cm,24=16+8,∴点P、Q在AC边上相遇,即经过了24秒,点P与点Q第一次在AC边上相遇.故答案为24【点评】本题考查了全等三角形的判定的应用,关键是能根据题意得出方程,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.参与本试卷答题和审题的老师有:sd2011;星期八;wd1899;wenming。
天津市河西区2016年12月16日八年级数学上周测练习题及答案

2016-2017年八年级数学上册周练习题 12.16一、选择题(本大题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.△ABC的两条中线AD、BE交于点F,连接CF,若△ABC的面积为24,则△ABF面积为( )A.10 B.8 C.6 D. 4 2.在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是100°,那么△ABC中与这个角对应的角是()A.∠A B.∠B C.∠C D.∠D3.已知:如图,AC=CD,∠B=∠E=90°,AC⊥CD,则不正确的结论是()A.∠A与∠D互为余角 B.∠A=∠2 C.△ABC≌△CED D.∠1=∠24.计算2x3÷x2的结果是()A.x B.2x C.2x5 D.2x65.下列运算正确的是()A.2a3÷a=6B.(ab2)2=ab4C.(a+b)(a﹣b)=a2﹣b2D.(a+b)2=a2+b26.如果分式的值为零,那么x等于()A.1 B.﹣1 C.0 D.±17.市某生态示范园,计划种植一批核桃,原计划总产量达36万千克,为了满足市场需求,现决定改良核桃品种,改良后平均每亩产量是原计划的1.5倍,总产量比原计划增加了9万千克,种植亩数减少了20亩,则原计划和改良后平均每亩产量各多少万千克?设原计划每亩平均产量x万千克,则改良后平均每亩产量为1.5x万千克,根据题意列方程为()A .﹣=20B .﹣=20C .﹣=20D . +=208. 化简|-2|+的结果是( )A .4-2B .0C .2D .49. 计算的结果是( )A .1B .-1C .D .10. 已知△ABC 的三条边长分别为3,4,6,在△ABC 所在平面内画一条直线,将△ABC 分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画( ) A . 6条 B . 7条 C . 8条 D . 9条 二、填空题(本大题共6小题,每小题3分,共18分) 11. 若分式的值为零,则x= .当x= 时,分式的值为0.12. 计算:(﹣3x 2y )•(xy 2)= .13. 如图,AB ∥CD ,AD ∥BC ,OE=OF ,图中全等三角形共有 对.14. 已知AD 是△ABC 的角平分线,DE ⊥AB 于E,且DE=3cm,则点D 到AC 距离为 . 15. 方程2x 7x 5-=的解是________________. 16.等腰三角形的两个内角的比是1:2,则这个等腰三角形的顶角的度数是 . 三、计算题(本大题共10小题,共40分) 17. (ab 2)2•(﹣a 3b )3÷(﹣5ab );18.19. (4分)(x+1)2﹣(x+2)(x﹣2).20.因式分解:(x+y)2+2(x+y)+121.利用因式分解计算:22.因式分解:23.计算:(1)(2)(3)24.计算:25.计算:3-9+326.计算:四、解答题(本大题共4小题,共24分)27.如图,OM平分∠POQ,MA⊥OP,MB⊥OQ,A、B为垂足,AB交OM于点N.求证:∠OAB=∠OBA28.如图所示,已知在△ABC中,AB=AD=DC,∠BAD=26°,求∠B和∠C的度数.29.若,求的值30.李老师家距学校1900米,某天他步行去上班,走到路程的一半时发现忘带手机,此时离上班时间还有23分钟,于是他立刻步行回家取手机,随后骑电瓶车返回学校.已知李老师骑电瓶车到学校比他步行到学校少用20分钟,且骑电瓶车的平均速度是步行速度的5倍,李老师到家开门、取手机、启动电瓶车等共用4分钟.(1)求李老师步行的平均速度;(2)请你判断李老师能否按时上班,并说明理由.31.如图,在平面直角坐标系中,O为坐标原点,A、B两点的坐标分别为A(0,m)、B(n,0),且|m﹣n﹣3|+=0,点P从A出发,以每秒1个单位的速度沿射线AO匀速运动,设点P的运动时间为t秒.(1)求OA、OB的长;(2)连接PB,设△POB的面积为S,用t的式子表示S;(3)过点P作直线AB的垂线,垂足为D,直线PD与x轴交于点E,在点P运动的过程中,是否存在这样的点P,使△EOP≌△AOB?若存在,请求出t的值;若不存在,请说明理由.答案1.B2.A3.D.4.B.5.C.6.B7.A.8.A9.C10.B.11.答案为:﹣3;﹣3.12.【解答】解:(﹣3x2y)•(xy2)=(﹣3)××x2•x•y•y2=﹣x2+1•y1+2=﹣x3y3.13.【解答】解:∵AD∥BC,OE=OF,∴∠FAC=∠BCA,又∠AOF=∠COE,∴△AFO≌△CEO,∴AO=CO,进一步可得△AOD≌△COB,△FOD≌△EOB,△ACB≌△ACD,△ABD≌△DCB,△AOB≌△COD 共有6对.故填614.【解答】解:如图,∵AD是△ABC的角平分线,DE⊥AB于E,DF⊥AC,∴DE=DF,∵DE=3cm,∴DF=3cm,即点D到AC的距离为3cm.故答案为:3cm.15.x=-516.【解答】解:在△ABC中,设∠A=x,∠B=2x,分情况讨论:当∠A=∠C为底角时,x+x+2x=180°解得,x=45°,顶角∠B=2x=90°;当∠B=∠C为底角时,2x+x+2x=180°解得,x=36°,顶角∠A=x=36°.故这个等腰三角形的顶角度数为90°或36°.故答案为:36°或90°.17.原式=a2b4•(﹣a9b3)÷(﹣5ab)=a10b6;18.19.原式=x2+2x+1﹣x2+4=2x+5.20.(x+y)2+2(x+y)+1=(x+y+1)2.21.900022.=23.解:(1)=.(2)=.(3)=.24.略 25.略 26.解:.27.证明:因为AOM与MOB都为直角三角形、共用OM,且∠MOA=∠MOB所以MA=MB所以∠MAB=∠MBA因为∠OAM=∠OBM=90度所以∠OAB=90-∠MAB ∠OBA=90-∠MBA所以∠OAB=∠OBA28.【解答】解:在△ABC中,AB=AD=DC,∵AB=AD,在三角形ABD中,∠B=∠ADB=(180°﹣26°)×=77°,又∵AD=DC,在三角形ADC中,∴∠C==77°×=38.5°.29.解:由可得由因为把代入,得30.【解答】解:(1)设李老师步行的平均速度为xm/分钟,骑电瓶车的平均速度为5xm/分钟,由题意得,﹣=20,解得:x=76,经检验,x=76是原分式方程的解,且符合题意,则5x=76×5=380,答:李老师步行的平均速度为76m/分钟,骑电瓶车的平均速度为380m/分;31.解答】解:(1)∵|m﹣n﹣3|+=0,且|m﹣n﹣3|≥0,≥0∴|m﹣n﹣3|==0,∴n=3,m=6,∴点A(0,6),点B(3,0);(2)连AP=t,OP=|6﹣t|,∴S=OPOB=|6﹣t|;(t≥0)(3)作出图形,∵∠OAB+∠OBA=90°,∠OAB+∠OPE=90°,∴∠OBA=∠OPE,∴只要OP=OB,即可求证△EOP≌△AOB,∴AP=AO+OP=9,∴t=9.。
苏科版八年级数学上册—第一学期周周练(10).docx

初中数学试卷 桑水出品怀文中学2016—2017学年度第一学期周周练(10)初 二 数 学命题:王大勇 审核:顾汉根 日期:2016-11-15 班级 学号 姓名 一、选择题(每小题3分,共15分) 1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是( )A .B .C .D .(第5题)2.下列说法正确的是 ( )A .两个等边三角形一定全等B .面积相等的两个三角形全等C .形状相同的两个三角形全等D .全等三角形的面积一定相等3.下列说法中正确的是 ( )A. 9的平方根是3 B .算术平方根等于它本身的数一定是1C .-2是4的一个平方根D .16的算术平方根是44.下列式子中无意义的是 ( )A.3--B. 3--C. 2(3)--D. 2(3)---5.如图,在△ABC 中,AB=AC ,BD 平分∠ABC 交AC 于点D ,AE ∥BD 交CB 的延长线于点E .若∠E=35°,则∠BAC 的度数为 ( )A .40°B .45°C .60°D .70°二、填空题(每小题4分,共4分×7题=28分)6.数9的算术平方根为________ ;16的平方根是____________。
7.若一正数的两个平方根分别是2a -1与2a +5,则这个正数等于 。
8.若13a b <<,且a 、b 为连续正整数,则b 2-a 2= .9.如图,AB=AC ,BD=DC ,∠BAC=36°,则∠BAD 的度数是 °.(第9题)(第10题)10.如图所示,AB=AC ,AD=AE ,∠BAC=∠DAE ,∠1=25°,∠2=30°,则∠3=__________.11.如图,在△ABC 中,AB=AC ,BC=6,AF ⊥BC 于点F ,BE ⊥AC 于点E ,且点D 是AB 的中点,△DEF 的周长是11,则AB= .(第11题)(第12题)12.如图,在△ABC 中,∠ACB=90°,∠BAC=40°,在直线AC 上找点P ,使△ABP 是等腰三角形,则∠APB 的度数为__________. 三、解答题(12分+14分+15分+16分=57分)13.解方程:① 52=x ② 16)1(92=-x14.(本题6分)(1)所对应的点在数轴上的位置如图所示.化简:2a 1(a 2)-+-(2)已知31x y --和24x y +-互为相反数,求x+4y 的平方根。
天津市和平区2016年12月16日八年级数学上周测练习题及答案

2016-2017年八年级数学上册周练习题 12.16题号一二三四五总分得分一、选择题(本大题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.在△ABC中,画出边AC上的高,下面4幅图中画法正确的是()A. B. C. D.2.如图,△ACB≌△A′CB′,∠BCB′=30°,则∠ACA′的度数为()A.20° B.30° C.35° D.40°3.已知△AB1C1,△A2B2C2的周长相等,现有两个判断:1①若A1B1=A2B2,A1C1=A2C2,则△A1B1C1≌△A2B2C2;②若∠A1=∠A2,∠B1=∠B2,则△A1B1C1≌△A2B2C2,对于上述的两个判断,下列说法正确的是()A.①正确,②错误 B.①错误,②正确 C.①,②都错误 D.①,②都正确4.下列运算正确的是()A.a2•a3=a6 B.(a2)4=a6 C.a4÷a=a3 D.(x+y)2=x2+y25.下列运算正确的是()A.2a3÷a=6B.(ab2)2=ab4C.(a+b)(a﹣b)=a2﹣b2D.(a+b)2=a2+b26.要使分式有意义,则x的取值范围是()A.x= B.x> C.x< D.x≠7.工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是()A. = B. = C. = D. =8.若,则()A.b>3 B.b<3 C.b≥3 D.b≤39.化简a的结果是()A. B. C.- D.-10.如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB上的动点,△PMN周长的最小值是5cm,则∠AOB的度数是()A.25° B.30° C.35° D.40°二、填空题(本大题共6小题,每小题3分,共18分)11.若分式的值为零,则x= .当x= 时,分式的值为0.12. 若m+n=2,mn=1,则m2+n2= .13.如图所示,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带去玻璃店.14. 已知AD是△ABC的角平分线,DE⊥AB于E,且DE=3cm,则点D到AC距离为.15.关于x的方程的解为2,则k的值为.16. 如图所示,在△ABC中,DM、EN分别垂直平分AB和AC,交BC于D、E,若∠DAE=50°,则∠BAC= 度,若△ADE的周长为19cm,则BC= cm.三、计算题(本大题共10小题,共40分)17. (ab2)2•(﹣a3b)3÷(﹣5ab);18. (x+1)2﹣(x+2)(x﹣2).19.先化简,再求值:(a+b)(a﹣b)+(a+b)2,其中a=﹣1,b=.20.因式分解:4a(1-b)+2(b-1)221. (4分)9a2(x﹣y)+4b2(y﹣x).22. 利用因式分解计算:23.计算:24.计算:25.化简:(1)(2)26. 在实数范围内分解下列因式:(1)(2)(3)四、解答题(本大题共4小题,共24分)27.如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,求证:AC=DF.28.在△ABC中,AD平分∠BAC,BD⊥AD,垂足为D,过D作DE∥AC,交AB于E,若AB=5,求线段DE的长.29. 在三个整式x2+2xy,y2+2xy,x2中,请你任意选出两个进行加(或减)运算,使所得整式可以因式分解,并进行因式分解30.某一公路的道路维修工程,准备从甲、乙两个工程队选一个队单独完成.根据两队每天的工程费用和每天完成的工程量可知,若由两队合做此项维修工程,6天可以完成,共需工程费用385200元,若单独完成此项维修工程,甲队比乙队少用5天,每天的工程费用甲队比乙队多4000元,从节省资金的角度考虑,应该选择哪个工程队?31.如图,△ABC是等边三角形,D、E分别是BC、AC上的点,BD=CE,求∠AFE的度数.答案1.C.2.B3.D4.C.5.C.6.D.77.A.8.D9.A 10.B.11.答案为:﹣3;﹣3.12.答案为:2 13.答案为:③. 14.答案为:3cm. 15.答案为:3.16.答案为:115,19. 17.原式=a2b4•(﹣a9b3)÷(﹣5ab)=a10b6;18.原式=x2+2x+1﹣x2+4=2x+5.19.【解答】解:原式=a2﹣b2+a2+2ab+b2=2a2+2ab,当a=﹣1,b=时,原式=2×(﹣1)2+2×(﹣1)×=2﹣1=1.20.=21.9a2(x﹣y)+4b2(y﹣x)=9a2(x﹣y)﹣4b2(x﹣y)=(x﹣y)(9a2﹣4b2)=(x﹣y)(3a+2b)•(3a﹣2b).22.90000 23.略 24.略 25.略26.解:(1)(2)(3)27.【解答】证明:∵FB=CE,∴FB+FC=CE+FC,∴BC=EF,∵AB∥ED,AC∥FD,∴∠B=∠E,∠ACB=∠DFE,∵在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),∴AC=DF.28.解:∵AD平分∠BAC,∴∠BAD=∠CAD,∵DE∥AC,∴∠CAD=∠ADE,∴∠BAD=∠ADE,∴AE=DE,∵AD⊥DB,∴∠ADB=90°,∴∠EAD+∠ABD=90°,∠ADE+∠BDE=∠ADB=90°,∴∠ABD=∠BDE,∴DE=BE,∵AB=5,∴DE=BE=AE==2.5.29.解:或或或30.【解答】解:设甲队单独完成此项工程需要x天,乙队单独完成需要(x+5)天.设甲队每天的工程费为y元.依据题意可列方程:6y+6(y﹣4000)=385200,解得:y=34100.甲队完成此项工程费用为34100×10=341000元.乙队完成此项工程费用为30100×15=451500元.答:从节省资金的角度考虑,应该选择甲工程队.31.【解答】解;△ABC是等边三角形,∴AB=BC,∠ABC=∠C=60°.在△ABD和△BCE中,,∴△ABD≌△BCE(SAS),∴∠BAD=∠CBE.由三角形弯角的性质得∠AFE=∠BAF+∠ABF,∠AFE=∠CBE+∠ABF=60°.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
715
24
25
207
1520
2425
7
2520
24
257
202415
(A)(B)
(C)
(D)
2016级八年级上期数学第一周周练习
出题人石幼凌 审题人韦光彬
班级 姓名 学号
完成时间 家长签字
一、选择题:(每小题3分,共30分)
1.下列各数中,没有平方根的是( )
A.3--
B. 0
C.2
)3(- D. 1 2. 直角三角形一直角边长为12,另两条边长均为自然数,则其周长为( ). (A )30 (B )28 (C )56 (D )不能确定 3.下列各式中,正确的是( )
A .2)2(2-=-
B .9)3(2
=- C .393-=- D . 39±=±
4.2
)5(-的平方根是 ( )
(A) 5± (B) 5 (C) 5- (D) 5±
( )
(A )4 (B )4± (C )2 (D )2± 6.下列式子中,字母x 的取值范围是3x >的是( )
A. y =
B.
y =
y =
7.如果1-x +x -9有意义,那么代数式|x -1|+2)9(-x 的值为( ) A .±8 B .8 C .与x 的值无关 D .无法确定
8. 已知一个Rt △的两边长分别为3和4,则第三边长的平方是( ) (A )25
(B )14
(C )7
(D )7或25
9.五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是( )
10. △ABC 是某市在拆除违章建筑后的一块三角形空地.已知∠C=90°,AC=30米,AB=50米,如果要在这块空地上种植草皮,按每平方米草皮a 元计算,那么共需要资金( ).
(A )50a 元 (B )600a 元 (C )1200a 元 (D )1500a 元
5米
3米
二、填空题: 11. π-3的绝对值是____________.
12. 一直角三角形两直角边上的比为3:4,斜边长为10cm ,这个直角三角形斜边上的高为 cm 。
13.如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要____________米.
(第13题) (第16题) 14. 在直角三角形ABC 中,斜边AB =2,则2
2
2
AB AC BC ++=______. 15. 使x +
1
x-2
有意义的x 的取值范围是 。
16. 如图,△ABC 中,∠C =90°,AB 垂直平分线交BC 于D 若BC =8,AD =5,则AC 等于
______________. 三、解答题:
17.解方程(每小题6分,共12分)
(1)2
36160x -= (2)09)13(2
=--x
18. 若a 、b 为实数,且41
112
2++-+-=
a a a
b ,求b a +的平方根.(10分)
19. 如图,已知一等腰三角形的周长是16,底边上的高是4.求这个三角
形各边的长. (10分)
A
B
C
图1-1-20
图1-1-20
20.在∆ABC 中,AB=15,AC=13,BC 边上的高AD=12,则∆ABC 的周长为多少?(14分)
B 卷(20分)
一.填空题:(每题4分,共12分) 1、
a 的平方根是±3,16的平方根是
b ,则b +a =
2、实数p 在数轴上的位置如图所示,化简(
)
2
2
2)1(p p -+
-= .
3、图1-1-20是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若6AC =,5BC =,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图-2所示的“数学风车”,则这个风车的外围周长是 .
二.解答题:(8分)
如图:ABC ∆中,20AB AC ==,32BC =,D 是BC 上一点,且AD AC ⊥, 求BD 的长。