作业:第六章弯曲应力

合集下载

13 第六章 弯曲应力

13 第六章 弯曲应力
第 章 弯曲应力
一讲回顾
梁的弯曲 应力 析 对象 对称弯曲的矩形截面直梁 条件 应力方向假设 应力 布假设
FS ⋅ S z (ω ) τ ( y) = Iz ⋅ b
对称薄壁梁的弯曲 应力 梁的强度校 危险截面 危险点 强度条件
外伸梁 非对称截面 脆性材料 载荷移动 支持移动
1
第 章 弯曲应力
第六章
第 章 弯曲应力
•截面
对称的脆性材料梁
σ C ,max
σ c > σ t
•截面等强设计
yC
C
yt
z
σc yc = yt σ t
y
σ t ,max
脆性材料梁
25
第 章 弯曲应力
•Iz
Wz的区别
ar
a
a4 I z = (1 − r )3 (1 + 3r ) 12 2 3 Wz = a (1 − r ) 2 (1 + 3r ) 12 在区间(0,1), I z 无极值 1 当r = , Wz 有极大值 9
高度/宽度= 宽度=1/1~1/10
9
第 章 弯曲应力
top ratiomax = 1.0120 mid ratiomax = 1.0015
top ratiomax = 1.2589 mid ratiomax = 1.1524
10
第 章 弯曲应力
弯曲切应力的方向 弯曲切应力的方向
假设: 假设:横截面上各点处的切应力 均平行于剪力或截面侧边 平行于剪力或截面侧边 并沿截面宽度均匀分布 并沿截面宽度均匀分布
1. 提高材料利用率
对同一截面 使大部 材料
2. 设计截面形状
相同材料 提高W

材料力学06(第六章 弯曲应力)分析

材料力学06(第六章 弯曲应力)分析

F / 4 2 103 mm 134 mm
30 MPa 5493104 mm4
F 24.6 kN
因此梁的强度由截面B上的最大拉应力控制
[F] 19.2 kN
§6-3 梁横截面上的切应力•梁的切应力强度条件
Ⅰ、梁横截面上的切应力
分离体的平衡
横截面上切应力 分布规律的假设
横截面上弯曲切 应力的计算公式
二.工字形截面梁 1、腹板上的切应力
h
d
y
d
O
y b
O
' A*
y dA
FS
S
* z
Izd
S
* z
bd
2
h
d
d 2
h 2
d
2
y2
腹板与翼缘交界处
max
min
FS Izd
bd

h d
max O
中性轴处
max
FS
S
* z,m
ax
Izd
y
min
FS
bd
h
d
d
h
d
2
I z d 2
160 MPa 148 MPa
2
Ⅲ 梁的正应力强度条件
max 材料的许用弯曲正应力
中性轴为横截面对称轴的等直梁
M max
Wz
拉、压强度不相等的铸铁等脆性材料制成的梁
为充分发挥材料的强度,最合理的设计为
t,max
M max yt,max Iz
[
t]
c,max
M max yc,max Iz
Myc,max Iz
典型截面的惯性矩与抗弯截面系数 ( d D)
b

第六章__弯曲应力及剪力流的知识点

第六章__弯曲应力及剪力流的知识点
Page 4
第六章 弯曲应力
上一讲回顾(12)
•梁变形与受力假设:平面假设,单向受力假设。 y My s •正应力公式: s E E Iz M Iz s max •最大正应力: Wz Wz y S z ydA, S y zdA •静矩:
A A
•惯性矩与惯性积 :

50
a
F l
a
a = ? [ F ] 最大.
Page
27
第六章 弯曲应力
配重降低最大弯矩作用分析
M
Pa Pa F P
F a
P
l
a
a
l
a
M
Fl/4 +
M
Fl/4-Pa Pa
+
Pa
Page 28
第六章 弯曲应力
弯拉(压)组合分析
A F
l 2
q
B
C
l 2
F
C
FN M max
sN

sM
y
sN sM

20 kN 20 kN
C
D
解:计算截面形心 与惯性矩
A
B
1m
3m
1m
yC 139mm I z 40.3 106 mm 4
M 图:

10kN m

20kN m
200
为校核梁的强度,需计算 B截面a点的拉应力与b点 压应力,C截面b点拉应力
a
30
y1
z
170
yC
b 30
Page 19
3. 弯矩计算 或
EI z
bd 2s max M s max W 1.14kNM 6

第6章 弯曲应力

第6章  弯曲应力

称为抗弯截面系数
只有一根对称轴的横截面形状: yt,max yc,max O y
O y
z
t,max
My t ,max Iz
c,max
Myc,max Iz
z
简单截面的弯曲截面系数 b h ⑴ 矩形截面
z
bh3 Iz 12 b3h Iy 12
⑵ 圆形截面
y d
Iz bh2 Wz h/2 6 Iy b2h Wy 源自/2 63()
Ⅱ .纯弯曲理论的推广 对于细长梁( l/h > 5 ),纯弯曲时的正应力计算 公式用于横力弯曲情况,其结果仍足够精确。 F
l
M ( x) y Iz
Fl
4
max
M ( x) Wz
解:
由弯曲曲率公式 可得:
M EIz
M EI z
1
代入弯曲正应力公式:
M EIZ Ed 533.3MPa WZ WZ 2
3.正应力的正负号与弯矩 及点的坐标 y的正负号有关。实际计算中,可根 据截面上弯矩的方向,直接判断中性 轴的哪一侧产生拉应力,哪一侧产生 压应力,而不必计及M和y的正负。
三、最大弯曲正应力 有两根对称轴的横截面形状: b h
z
y y
z
max
M M Mymax I z Wz Iz y max

基本假设2:
梁内各纵向纤维无挤压 假设,纵向纤维间无正应 力。

中性层与中性轴
纵向对称面 中性层 Z 中性轴
中性层 根据变形的连续性 可知,梁弯曲时从其凹 入一侧的纵向线缩短区 到其凸出一侧的纵向线 伸长区,中间必有一层 纵向无长度改变的过渡 层,称为中性层 。 中性轴: 中性层与横截面的交 线就是中性轴。

材料力学第6章-弯曲应力

材料力学第6章-弯曲应力
Chapter Six
Stresses in Bending
第六章 弯曲应力
1
背景材料
本章基本要求 6.1 弯曲正应力 6.2 弯曲切应力 6.3 梁的强度及破坏
6.4 组合变形的应力 本章内容小结
2
背 景


F
横梁横截面上的应力如 何计算?行车移动时,这种 应力如何变化?
3
汽车在轮轴上的支 承为什么设计为叠板弹 簧的形式?这种结构有 什么优点?
3M max b 44.7 mm 2[ ] 故取 b = 45 mm
27
例6.2 欲把直径为 d 的圆木锯成承受竖直方向荷载的矩 形截面梁,若要使梁具有最大的强度,矩形的高 h 和宽 b
应成什么比例?
d b h
分析
强度最大
荷载相同时应力水平最低
max
M max W
W 为最大
建立 W 函数关系并求其极值
A
A
dA

z dx
A
1) 第一式:
FN dA
A

A
E

y dA
E

A
y dA
E

Sz 0
x
S z 0 重要结论:中性轴必定过形心
2) 第二式:
E
E

y
E M y z dA y zdA I yz A A
mn ( y ) d
z
dx dx x
mn mn ( y )d d mn d


y

m
d
y
n'
n
m'

材料力学第6章弯曲应力

材料力学第6章弯曲应力

图6.5
页 退出
材料力学
出版社 理工分社
例6.1如图6.6所示,矩形截面悬臂梁受集中力和集中力偶作用。试求Ⅰ—Ⅰ 截面和固定端Ⅱ—Ⅱ截面上A,B,C,D 4点处的正应力。
图6.6
页 退出
材料力学
出版社 理工分社
解矩形截面对中性轴的惯性矩为 对于Ⅰ—Ⅰ截面,弯矩MⅠ=20 kN·m,根据式(6.2),各点正应力分别为
页 退出
材料力学
出版社 理工分社
(1)变形几何关系 弯曲变形前和变形后的梁段分别表示于图6.4(a)和(b)。以梁横截面的对称 轴为y轴且向下为正(见图6.4(c))。以中性轴为z轴,但中性轴的位置尚待确 定。在中性轴尚未确定之前,x轴只能暂时认为是通过原点的横截面的法 线。根据弯曲平面假设,变形前相距为dx的两个横截面,变形后各自绕中性 轴相对旋转了一个角度dθ ,且仍然保持为平面。这就使得距中性层为y的纵 向纤维bb的长度变为
式中积分
是横截面对y轴和z轴的惯性积。由于y轴是横截面的对
称轴,必然有Iyz=0(见附录)。所以式(g)是自然满足的。 将式(b)代入式(e),得
式中积分∫Ay2dA=Iz是横截面对z轴(中性轴)的惯性矩。于是式(h)改写为 式中 ——梁轴线变形后的曲率。
页 退出
材料力学
出版社 理工分社
式(6.1)表明,EIz越大,则曲率 越小,故EIz称为梁的抗弯刚度。从式 (6.1)和式(b)中消去 ,得
而对于变截面梁,虽然是等截面梁但中性轴不是横截面对称轴的梁,在计算 最大弯曲正应力时不能只注意弯矩数值最大的截面,应综合考虑My/Iz的值 (参看例6.5和例6.8)。
页 退出
材料力学
出版社 理工分社
引用记号

课件:第六章 弯曲应力


A y0dA 0
同理:
Iz Iz0 a2 A I y I y0 b2 A
Page
Cy0z0-形心直角坐标系 Oyz-任意直角坐标系
二者平行
16
思考:下列计算是否正确? 其中C是截面形心。
IZ2 IZ1 Aa2
•C
解:不正确。
z1
a
因为 Z1 不是形心轴
z2
Page
17
典型截面的惯性矩与抗弯截面系数 ( d D)
( y) 1 dF
b dx
l F dA
My
Iz
M Iz
y * dA
ydA Sz ( )
MSz ( )
Iz
Sz()-面积 对中性轴 z 的静矩
l
( y) Sz ( ) dM
bIz dx
( y) FSSz ( )
I zb Page
1
2
M
M dM
y
FS
FS
y* mn
1
2
x
dx
d
l 2 0
0.002
3
x l
4(
x l
)2
dx
l l 2
0.002 1
x l
dx
0.002
3l 2
( x )2 l
l
4l 3
(
x l
)3
2 0
0.002 x
x2 l
2l
l
2 103 m 3
2
Page
29
作业
6-1 6-3 6-8 A-8
Page
30
§6-3 对称弯曲切应力
解:1. 问题分析
已知=(D+d)/2, E, 截面尺寸,可应

材料力学第六章弯曲应力


但相应的最大弯矩值变为
Fl ql2
M max
4
8
375 kN m 13 kN m 388 kN m
而危险截面上的最大正应力变为
max
388103 N m 2342106 m3
165.7106
Pa
165.7
MPa
显然,梁的自重引起的最大正应力仅为
165.7 160 MPa 5.7 MPa
<2>. 相邻横向线mm和nn,在梁弯曲后仍为直线,只是
相对旋转了一个角度,且与弧线aa和bb保持正交。
根据表面变形情况,并设想梁的侧面上的横向线mm和 nn是梁的横截面与侧表面的交线,可作出如下推论(假设):
平面假设 梁在纯弯曲时,其原来的横截面仍保持为平面, 只是绕垂直于弯曲平面(纵向平面)的某一轴转动,转动后 的横截面与梁弯曲后的轴线保持正交。
力的值max为
max
M ym a x Iz
M
Iz ymax
M Wz
式中,Wz为截面的几何性质,称为弯曲截面系数(对Z轴)
(section modulus in bending),其单位为m3。
b
h d
o
z
o
z
y
y
中性轴 z 不是横截面的对称轴时(参见图c),其横截面 上最大拉应力值和最大压应力值为
A
r
(b)
M z
y d A E
A
r
y2 d A EI z M
A
r
(c)
由于式(a),(b)中的
E
r
不可能等于零,因而该两式要求:
1. 横截面对于中性轴 z 的静矩等于零,A y d A 0 ;显

第六章 弯曲应力

100
z
A2 100 10 A1 A4 10 20 20
A 2、求对个部分自身形心 轴的惯性矩 I z i yi2dA, i 1, 2, 3,4
A
yc
yci Ai
i 1
4
z0
A3
y
3、求对全截面形心轴惯性矩
I z I z i ( I z0 i ai2 Ai )
Page
3
第六章 弯曲应力 §6-1 引言 一、 历史回顾
伽利略:关于力学和局部运 动的两门新科学的对话和数 学证明,1638.
A C
B
Page 4
F
第六章 弯曲应力 •伽利略开创性研究的评述
1. 开创性
建立了“实验观测——假设 ——分析与推导”的现代科 学研究方法 2. 局限性 静力不平衡——19世纪初才 由L.Poinsot以静力学公理明确 阐明刚体上力系的简化与平衡 无中性轴概念——受当时实 验观测的局限
第六章 弯曲应力
上一讲回顾(11)
刚性接头:受力时不变形的接头。既传力,又传力偶。 刚架:用刚性接头连接的弹性杆系结构 刚架的内力及其符号: •轴力、扭矩和剪力的符号具有坐标不变性。 •弯矩图的符号坐标相关。弯矩图位置具有坐标不变性。 刚架内力图的画法:
将刚架拆为分段的梁(杆),分别绘图后再组合。
曲杆内力图的画法: 一般由内力方程绘图。
Page 9
第六章 弯曲应力 §6-2 弯曲正应力 一、实验观测与假设(动画) 1. 外部变形观测 •纵向线:成圆弧线,上方纵向线 缩短,下方伸长 •横向线:保持直线,与横线正交 •顶与底部纵、横线变形比:符合 单向受力泊松效应 2. 内部变形假设 •平面假设:变形后横截面保持平面,仍与纵线正交 •单向受力假设

梁的弯曲应力和强度计算


88
7.5 106 7.6 106
88 86.8MPa
弯曲正应力计算
三、计算题
27.一矩形截面简支梁,梁上荷载如图所示.已知P=6kN、 l=4m、b=0.1m、h=0.2m,试画出梁的剪力图和弯矩图并求 梁中的最大正应力. 解:(1) 作剪力图、弯矩图
(2)求最大正应力
Mmax 6kN m
横向线:仍为直线,仍与纵向线正交,相对转动了一个角度 纵向线:曲线,下部伸长,上部缩短
(2)假设 平面假设:横截面在变形前为平面,变形后仍为平面,且仍
垂直于变形后梁的轴线,只是绕横截面上某个轴 旋转了一个角度。 单向受力假设:梁由无数根纵向纤维组成,之间无横向挤压,
只受轴向拉伸与压缩。
中性层
3、正应力计算公式 〖1〗几何变形关系
内容回顾
弯曲正应力 1. 基本假设:
(1)平面假设:变形前为平面的横截面,变形后仍为平面,但转动了一角度。 (2)单向受力假设:杆件的纵截面(与杆轴平行的截面)上无正应力。
2.中性轴Z:
中性层与横截面的交线,平面弯曲时中性轴过形心且与对称轴垂直。
3.正应力计算公式:
中性层
4.正应力分布规律:沿截面高度呈线性分布。
4、正负号确定 1)M、y 符号代入公式
2)直接观察变形
5、适用范围及推广
〖1〗适用范围: 平面弯曲(平面假设、单向受力假设基础上)、 线弹性材料
〖2〗推广: ① 至少有一个对称轴的截面; ② 细长梁 (l/h>5);
6、最大正应力
工程上关心的是极值应力:
只与截面形状、尺寸有关
抗弯截面模量
对剪切(横力)弯曲: 矩形:
解:(1)作弯矩图,
求最大弯矩
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
弯曲应力-作业
6-1 6-9
6-15
材料力学/弯曲应力-作业
1

6-1
1)求中性层的曲率半径。
= D/2h/2
=3000/21.5/2
=1499.25mm
2) 求横截面上最大正应力。最大正应力位于钢带最外层,应用正应力公式:
max E
ymax

210 103 105MPa
c max
MC 10 106 y1 72.5 12.1MPa c=100MPa 7 Iz 6.0110 MC 10 106 yc 157.5 26.2MPa t=40MPa 7 Iz 6.0110
材料力学/弯曲应力-作业
-20
t max
M qa2/2
l
C RB
B E a
-qa2/2
-qa2/2
q A a C
MC l/2 FQC
M max q 21212 / 2 max 140MPa 3 Wz 402 10 q 140 402 103 2 / 21212
25 N / mm 25kN / m
M(kNm)
3m
C 1mB RB
t max
20 106 y1 72.5 24.1MPa t=40MPa 7 Iz 6.0110 MA MA
10
20 106 c max yc 157.5 52.4MPa c=100MPa 7 Iz 6.0110 C截面的上边缘有最大压应力,下边缘有最大拉应力:
材料力学/弯曲应力-作业
RA
4
0.75 1499.25
材料力学/弯曲应力-作业
2
6-9
1)作出此梁的弯矩图。C截面有最大正弯矩 M+max=10kNm,A截面有最大负弯矩M-max=20kNm。 2) T形横截面中性轴距下边缘yc=157.5mm,距上边缘 y1=200+30157.5=72.5mm。 A截面的上边缘有最大拉应力,下边缘有最大压应力: 20k 10kN/m N A 2m RA
因此该梁的强度足够。
3
6-15
1)求支座反力,因对称 RA = RB = q(l+2a)/2 2) 画弯矩图。由于是等截面梁,当|A|= |B|= |C| 时,必有|MA|= |MB|= |MC|,而 MA= MB =qa2/2, 则MC =qa2/2 ,画出弯矩图如右图所示。 3) 梁跨中C处的弯矩为: MC = RAl/2q(a+l/2)2/2 = q l(l+2a)/4q(l+2a)2/8 = q(l24a2)/8 =qa2/2 即 l2 4a2=4a2 a=0.3535l=2.121m 4) 查型钢表,25a工字钢 Wz=402cm3 。 q D A a RA
相关文档
最新文档