数学建模课后习题作业

合集下载

高中数学人教B版 4.7 数学建模活动:生长规律的描述 课后练习、课时练习

高中数学人教B版  4.7 数学建模活动:生长规律的描述 课后练习、课时练习

一、单选题1. 某中学坚持“五育”并举,全面推进素质教育.为了更好地增强学生们的身体素质,校长带领同学们一起做俯卧撑锻炼.锻炼是否达到中等强度运动,简单测量方法为,其中为运动后心率(单位:次/分)与正常时心率的比值,为每个个体的体质健康系数.若介于之间,则达到了中等强度运动;若低于28,则运动不足;若高于34,则运动过量.已知某同学正常时心率为80,体质健康系数,经过俯卧撑后心率(单位:次/分)满足,为俯卧撑个数.已知俯卧撑每组12个,若该同学要达到中等强度运动,则较合适的俯卧撑组数为()(为自然对数的底数,)A.2 B.3 C.4 D.52. 某公司为了适应市场需求对产品结构做了重大调整,调整后初期利润增长迅速,之后增长越来越慢,若要建立恰当的函数模型来反映该公司调整后利润与时间的关系,可选用A.一次函数B.二次函数C.指数型函数D.对数型函数3. 如果某种放射性元素每年的衰减率是,那么的这种物质的半衰期(剩余量为原来的一半所需的时间)等于()A.B.C.D.4. 某山区为加强环境保护,绿色植被的面积每年都比上一年增长,那么,经过x年,绿色植被的面积可增长为原来的y倍,则函数的图像大致为()A.B.C.D.5. 在某种新型材料的研制中,实验人员获得了下列一组实验数据,现准备用下列四个函数近似地表示这些数据的规律,其中最接近的一个是()x 1.992 3 4 5.15 6.126y 1.517 4.0418 7.5 12 18.01A.B.C.D.6. 已知光线每通过一块玻璃板强度就减弱,要使通过玻璃板的光线的强度不大于原来强度的,则至少需要重叠玻璃板的块数为()A.8 B.9 C.10 D.11二、填空题7. 工厂生产某种产品的月产量y与月份x满足关系y=a·0.5x+b,现已知该厂今年1月份、2月份生产该产品分别为1万件、1.5万件.则此工厂3月份生产该产品的产量为________万件.8. 把物体放在冷空气中冷却,如果物体原来的温度是,空气的温度是,后物体的温度可由公式求得.把温度是的物体,放在的空气中冷却后,物体的温度是,那么的值约等于_________.(保留三位有效数字,参考数据:取,取)三、解答题9. 习近平总书记在十九大报告中指出,“要着力解决突出环境问题,持续实施大气污染防治行动”.为落实好这一精神,市环保局规定某工厂产生的废气必须过滤后才能排放.已知在过滤过程中,废气中的污染物含量(单位:毫克/升)与过滤时间(单位:小时)之间的函数关系式为:(为自然对数的底数,为污染物的初始含量).过滤小时后检测,发现污染物的含量为原来的.(1)求函数的关系式;(2)要使污染物的含量不超过初始值的,至少还需过滤几小时?(参考数据:)10. 某公司拟投资100万元,有两种获利的方案可供选择.第一种方案是年利率为,按单利的方式计算利息,5年后收回本金和利息;第二种方案是年利率为,按复利的方式计算利息,5年后收回本金和利息,哪一种投资更有利?5年后,这种投资比另一种投资可多得利息多少万元?(不计利息税,参考数据:,,)11. 2022年11月20日,备受全球球迷关注的第22届世界杯足球赛如期开幕,全球32支参赛队伍,将在64场比赛中争夺世界足球的最高荣誉大力神杯!某体育用品商店借此良机展开促销活动,据统计,该店每天的销售收入不低于2万元时,其纯利润y(单位:万元)随销售收入x(单位:万元)的变化情况如下表所示:x(万元) 2 3 5y(万元)(1)根据表中数据,分别用模型(且)与建立y关于x的函数解析式;(2)已知当时,,你认为(1)中哪个函数模型更合理?请说明理由.(参考数据:)12. 某化工企业,响应国家环保政策,逐渐减少所排放废气中的污染物含量,不断改良工艺.已知改良工艺前所排放废气中的污染物数量为,首次改良后所排放废气中的污染物数量为.设改良工艺前所排放废气中的污染物数量为,首次改良工艺后所排放废气中的污染物数量为,则第次改良后所排放废气中的污染物数量,可由函数模型给出,其中是指改良工艺的次数.(1)试求改良后排放的废气中含有的污染物数量的函数模型;(2)依据国家环保要求,企业所排放的废气中含有的污染物数量不能超过,试问至少进行多少次改良工艺后才能使得该企业所排放的废气中含有的污染物数量达标.(参考数据:取)。

数学建模习题及答案

数学建模习题及答案

第一部分课后习题1.学校共10‎00名学生‎,235人住‎在A宿舍,333人住‎在B宿舍,432人住‎在C宿舍。

学生们要组‎织一个10‎人的委员会‎,试用下列办‎法分配各宿‎舍的委员数‎:(1)按比例分配‎取整数的名‎额后,剩下的名额‎按惯例分给‎小数部分较‎大者。

(2)2.1节中的Q‎值方法。

(3)d’Hondt‎方法:将A,B,C各宿舍的‎人数用正整‎数n=1,2,3,…相除,其商数如下‎表:横线‎的数分别为‎2,3,5,这就是3个‎宿舍分配的‎席位。

你能解释这‎种方法的道‎理吗。

如果委员会‎从10人增‎至15人,用以上3种‎方法再分配‎名额。

将3种方法‎两次分配的‎结果列表比‎较。

(4)你能提出其‎他的方法吗‎。

用你的方法‎分配上面的‎名额。

2.在超市购物‎时你注意到‎大包装商品‎比小包装商‎品便宜这种‎现象了吗。

比如洁银牙‎膏50g装‎的每支1.50元,120g装‎的3.00元,二者单位重‎量的价格比‎是1.2:1。

试用比例方‎法构造模型‎解释这个现‎象。

(1)分析商品价‎格C与商品‎重量w的关‎系。

价格由生产‎成本、包装成本和‎其他成本等‎决定,这些成本中‎有的与重量‎w成正比,有的与表面‎积成正比,还有与w无‎关的因素。

(2)给出单位重‎量价格c与‎w的关系,画出它的简‎图,说明w越大‎c越小,但是随着w‎的增加c减‎少的程度变‎小。

解释实际意‎义是什么。

3.一垂钓俱乐‎部鼓励垂钓‎者将调上的‎鱼放生,打算按照放‎生的鱼的重‎量给予奖励‎,俱乐部只准‎备了一把软‎尺用于测量‎,请你设计按‎照测量的长‎度估计鱼的‎重量的方法‎。

假定鱼池中‎只有一种鲈‎鱼,并且得到8‎条鱼的如下‎数据(胸围指鱼身‎的最大周长‎):4.用宽w的布‎条缠绕直径‎d的圆形管‎道,要求布条不‎重叠,问布条与管‎道轴线的夹‎角 应多大(如图)。

若知道管道‎长度,需用多长布‎条(可考虑两端‎的影响)。

如果管道是‎其他形状呢‎。

数学建模课后习题作业

数学建模课后习题作业

【陈文滨】1、在稳定的椅子问题中,如设椅子的四脚连线呈长方形,结论如何?【模型假设】(1)椅子四条腿一样长,椅脚与地面接触处视为一点,四脚的连线呈长方形.(2)地面高度是连续变化的,沿任何方向都不会出现间断 (没有像台阶那样的情况),即从数学的角度看,地面是连续曲面.这个假设相当于给出了椅子能放稳的必要条件.(3)椅子在任何位置至少有三只脚同时着地.为保证这一点,要求对于椅脚的间距和椅腿的长度而言,地面是相对平坦的.因为在地面上与椅脚间距和椅腿长度的尺寸大小相当的范围内,如果出现深沟或凸峰(即使是连续变化的),此时三只脚是无法同时着地的。

【模型建立】在上述假设下,解决问题的关键在于选择合适的变量,把椅子四只脚同时着地表示出来.首先,引入合适的变量来表示椅子位置的挪动.生活经验告诉我们,要把椅子通过挪动放稳,通常有拖动或转动椅子两种办法,也就是数学上所说的平移与旋转变换.然而,平移椅子后问题的条件没有发生本质变化,所以用平移的办法是不能解决问题的.于是可尝试将椅子就地旋转,并试图在旋转过程中找到一种椅子能放稳的情形.注意到椅脚连线呈长方形,长方形是中心对称图形,绕它的对称中心旋转180度后,椅子仍在原地.把长方形绕它的对称中心O旋转,这可以表示椅子位置的改变。

于是,旋转角度θ这一变量就表示了椅子的位置.为此,在平面上建立直角坐标系来解决问题.如下图所示,设椅脚连线为长方形ABCD,以对角线AC所在的直线为x轴,对称中心O为原点,建立平面直角坐标系.椅子绕O点沿逆时针方向旋转角度θ后,长方形ABCD转至A1B1C1D1 的位置,这样就可以用旋转角θ(0≤θ≤π)表示出椅子绕点O旋转θ后的位置.其次,把椅脚是否着地用数学形式表示出来.我们知道,当椅脚与地面的竖直距离为零时,椅脚就着地了,而当这个距离大于零时,椅脚不着地.由于椅子在不同的位置是θ的函数,因此,椅脚与地面的竖直距离也是θ的函数.由于椅子有四只脚,因而椅脚与地面的竖直距离有四个,它们都是θ的函数.而由假设(3)可知,椅子在任何位置至少有三只脚同时着地,即这四个函数对于任意的θ,其函数值至少有三个同时为0.因此,只需引入两个距离函数即可.考虑到长方形ABCD是中心对称图形,绕其对称中心 O沿逆时针方向旋转180°后,长方形位置不变,但A,C和B,D对换了.因此,记A、B两脚与地面竖直距离之和为f(θ),C、D两脚与地面竖直距离之和为g(θ),其中θ∈[0,π],从而将原问题数学化。

数学建模课后习题

数学建模课后习题

数学建模课后习题第⼀章课后习题6.利⽤节药物中毒施救模型确定对于孩⼦及成⼈服⽤氨茶碱能引起严重中毒和致命的最⼩剂量。

解:假设病⼈服⽤氨茶碱的总剂量为a ,由书中已建⽴的模型和假设得出肠胃中的药量为:)()0(mg M x =由于肠胃中药物向⾎液系统的转移率与药量)(t x 成正⽐,⽐例系数0>λ,得到微分⽅程M x x dtdx=-=)0(,λ(1)原模型已假设0=t 时⾎液中药量⽆药物,则0)0(=y ,)(t y 的增长速度为x λ。

由于治疗⽽减少的速度与)(t y 本⾝成正⽐,⽐例系数0>µ,所以得到⽅程:0)0(,=-=y y x dtdyµλ(2)⽅程(1)可转换为:tMe t x λ-=)(带⼊⽅程(2)可得:)()(t t e e M t y λµµλλ----=将01386=λ和1155.0=µ带⼊以上两⽅程,得:针对孩⼦求解,得:严重中毒时间及服⽤最⼩剂量:h t 876.7=,mg M 87.494=;致命中毒时间及服⽤最⼩剂量:h t 876.7=,mg M 8.4694= 针对成⼈求解:严重中毒时间及服⽤最⼩剂量:h t 876.7=,mg M 83.945= 致命时间及服⽤最⼩剂量:h t 876.7=,mg M 74.1987=课后习题7.对于节的模型,如果采⽤的是体外⾎液透析的办法,求解药物中毒施救模型的⾎液⽤药量的变化并作图。

解:已知⾎液透析法是⾃⾝排除率的6倍,所以639.06==µut e t x λ-=1100)(,x 为胃肠道中的药量,1386.0=λ解得:()2,274.112275693.01386.0≥+=--t e et z t t⽤matlab 画图:图中绿⾊线条代表采⽤体外⾎液透析⾎液中药物浓度的变化情况。

从图中可以看出,采取⾎液透析时⾎液中药物浓度就开始下降。

T=2时,⾎液中药物浓度最⾼,为;当z=200时,t=,⾎液透析⼩时后就开始解毒。

数学建模课后答案

数学建模课后答案

数学建模课后答案数学建模课后答案【篇一:《数学模型》习题解答】t>1.学校共1000名学生,235人住在a宿舍,333人住在b宿舍,432人住在c宿舍.学生们要组织一个10人的委员会,试用下列办法分配各宿舍的委员数:(1). 按比例分配取整数的名额后,剩下的名额按惯例分给小数部分较大者; (2). 1中的q值方法;(3).d’hondt方法:将a、b、c各宿舍的人数用正整数n=1,2,3,??相除,其商数如下表:将所得商数从大到小取前10个(10为席位数),在数字下标以横线,表中a、b、c行有横线的数分别为2,3,5,这就是3个宿舍分配的席位.你能解释这种方法的道理吗?如果委员会从10个人增至15人,用以上3种方法再分配名额,将3种方法两次分配的结果列表比较.解:先考虑n=10的分配方案,p1?235,p2?333,p3?432,方法一(按比例分配)第二章(1)(2008年9月16日)pi?13i1000.q1?p1npi?132.35,q2?p2nipi?133.33, q3?p3nipi?134.32i分配结果为: n1?3, n2?3, n3?4 方法二(q值方法)9个席位的分配结果(可用按比例分配)为:n1?2,n2?3, n3?4第10个席位:计算q值为235233324322q1??9204.17, q2??9240.75, q3??9331.22?33?44?5q3最大,第10个席位应给c.分配结果为 n1?2,n2?3,n3?5方法三(d’hondt方法)此方法的分配结果为:n1?2,n2?3,n3?5此方法的道理是:记pi和ni为各宿舍的人数和席位(i=1,2,3代表a、b、c宿舍).pi是ni每席位代表的人数,取ni?1,2,?,从而得到的pip中选较大者,可使对所有的i,i尽量接近. nini再考虑n?15的分配方案,类似地可得名额分配结果.现将3种方法两次分配的结果列表如下:2.试用微积分方法,建立录像带记数器读数n与转过时间的数学模型. 解:设录像带记数器读数为n时,录像带转过时间为t.其模型的假设见课本.考虑t到t??t时间内录像带缠绕在右轮盘上的长度,可得vdt?(r?wkn)2?kdn,两边积分,得tvdt?2?k?(r?wkn)dnn2?rk?wk22n22vv《数学模型》作业解答第二章(2)(2008年10月9日)15.速度为v的风吹在迎风面积为s的风车上,空气密度是? ,用量纲分析方法确定风车获得的功率p与v、s、?的关系.解: 设p、v、s、?的关系为f(p,v,s,?)?0,其量纲表达式为: [p]=mlt 23, [v]=lt1,[s]=l,[?]=ml,这里l,m,t是基本量纲.2?3量纲矩阵为:1?2?10a=?3?1(p)(v)齐次线性方程组为:2?3?(l)01??(m) 00??(t)(s)(??2y1?y2?2y3?3y4?0y1?y4?03y?y?012?它的基本解为y?(?1,3,1,1) 由量纲pi定理得p?1v3s1?1,?p??v3s1?1 ,其中?是无量纲常数.16.雨滴的速度v与空气密度?、粘滞系数?和重力加速度g有关,其中粘滞系数的定义是:运动物体在流体中受的摩擦力与速度梯度和接触面积的乘积成正比,比例系数为粘滞系数,用量纲分析方法给出速度v的表达式.解:设v,?,?,g 的关系为f(v,?,?,g)=0.其量纲表达式为[v]=lmt,[?]=lmt,0-1-3[?]=mlt(ltl)l=mlltt=lmt,[g]=lmt,其中l,m,t是基本量纲.-2-1-1-1-2-2-2-1-10-2量纲矩阵为1?3?11?(l)?0?(m)110?a=? ???10?1?2(t)??(v)(?)(?)(g)齐次线性方程组ay=0 ,即y1-3y2-y3?y4?0?0 ?y2?y3-y-y-2y?034?1的基本解为y=(-3 ,-1 ,1 ,1) 由量纲pi定理得*v?3??1?g. ?v??3g,其中?是无量纲常数. ?16.雨滴的速度v与空气密度?、粘滞系数?、特征尺寸?和重力加速度g有关,其中粘滞系数的定义是:运动物体在流体中受的摩擦力与速度梯度和接触面积的乘积成正比,比例系数为粘滞系数,用量纲分析方法给出速度v的表达式.解:设v,?,?,?,g 的关系为f(v,?,?,?,g)?0.其量纲表达式为[v]=lmt,[?]=lmt,[?]=mlt(ltl)l=mlltt=lmt,[?]=lm0t0 ,[g]=lmt0-1-3-2-1-1-1-2-2-2-1-10-2其中l,m,t是基本量纲. 量纲矩阵为1?0a=1(v)齐次线性方程组ay=0 即(l)?(m)?00?1?2?(t)?(?)(?)(?)(g)1?3?10111y1?y2?3y3?y4?y5?0?y3?y4?0 ?y1?y4?2y5?0?的基本解为11?y?(1,?,0,0,?)?12231?y2?(0,?,?1,1,?)22?得到两个相互独立的无量纲量1?v??1/2g?1/23/2?1?1/2g??2??即 v?1) g?1,?3/2?g1/2??1??2?1. 由?(?1,?2)?0 , 得 ?1??(?2g?(?3/2?g1/2??1) , 其中?是未定函数.20.考察阻尼摆的周期,即在单摆运动中考虑阻力,并设阻力与摆的速度成正比.给出周期的表达式,然后讨论物理模拟的比例模型,即怎样由模型摆的周期计算原型摆的周期. 解:设阻尼摆周期t,摆长l, 质量m,重力加速度g,阻力系数k的关系为f(t,l,m,g,k)?0其量纲表达式为:[t]?l0m0t,[l]?lm0t0,[m]?l0mt0,[g]?lm0t?2,[k]?[f][v]?1?mlt?2(lt 1 )1l0mt?1,其中l,m,t是基本量纲.量纲矩阵为0?0a=1(t)?(l)?(m)?00?2?1??(t)(l)(m)(g)(k)10011001齐次线性方程组y2?y4?0??y3?y5?0 ?y?2y?y?045?1的基本解为11?y?(1,?,0,,0)?122 ?11y2?(0,,?1,?,1)22?得到两个相互独立的无量纲量tl?1/2g1/2??11/2?1?1/2lmgk??2∴t?kl1/2l1, ?1??(?2), ?2?gmg1/2∴t?lkl1/2(1/2) ,其中?是未定函数 . gmg考虑物理模拟的比例模型,设g和k不变,记模型和原型摆的周期、摆长、质量分别为t,t;l?kl?1/2l,l;m,m. 又t() 1/2gm?g当无量纲量m?l?t?l?gl?时,就有 ?.mltgll《数学模型》作业解答第三章1(2008年10月14日)1. 在3.1节存贮模型的总费用中增加购买货物本身的费用,重新确定最优订货周期和订货批量.证明在不允许缺货模型中结果与原来的一样,而在允许缺货模型中最优订货周期和订货批量都比原来结果减少.解:设购买单位重量货物的费用为k,其它假设及符号约定同课本.10 对于不允许缺货模型,每天平均费用为:【篇二:数学建模习题答案】t>中国地质大学能源学院华文静1.在稳定的椅子问题中,如设椅子的四脚连线呈长方形,结论如何?解:模型假设(1)椅子四条腿一样长,椅脚与地面接触处视为一点,四脚的连线呈长方形(2)地面高度是连续变化的,沿任何方向都不会出现间断(没有像台阶那样的情况),即从数学角度来看,地面是连续曲面。

数学建模课后作业

数学建模课后作业

数学建模实验P.172 实验二最短电缆长度问题设有九个节点,它们的坐标分别为a(0,15), b(5,20), c(16,24), d(20,20), e(33,25), f(23,11), g(35,7), h(25,0), i(10,3)任意两个节点之间的距离为:问:怎样连接电缆,使每个节点都连通,且所用的总电缆的长度为最短.问题分析:本题研究的是一个最优化问题。

问题中给出了9个节点坐标,需要从复杂的连接方案中选出最短的电缆连接路线。

要设计方案求最短电缆长度,可先求出任意两点间的距离,然后在构造边权矩阵,用prim算法求电缆线的最优连通方案。

符号说明:W:任意两点之间的距离矩阵X:节点的横坐标Y:节点的纵坐标解:先计算出任意两点间的距离;W=[];X = [0 5 16 20 33 23 35 25 10]; Y = [15 20 24 20 25 11 7 0 3]; N=length(X);for i=1:Nfor j=1:N W=[W;(abs(X(i)-X(j))+abs(Y(i)-Y( j)))]endendW'输出结果截图为:将结果整理列表如下:用prim算法求电缆线的最优连通方案;运行结果截图为:分析结果可知:最小生成树的边集合为{(1,2),(2,3),(3,4),(4,6),(6,8),(6,7),(3,5),(8,9)}即用prime算法求出的最优电缆连接方案为:{(a,b),(b,c),(c,d),(d,f),(f,h),(f,g),(c,e),(h,i)}。

P186实验一求最短路问题求图14.9所示有向网络中自点1到点6的最短有向路问题分析:用floyde 算法算出任意两点之间的最短的距离。

符号说明:D:任意两个点之间的最短距离n:迭代次数解:function [D,path]=floyd(a)n=size(a,1);%设置D和Path的初值D=a;path=zeros(n,n);for i=1:nfor j=1:nif D(i,j)~=infpath(i,j)=j; %j是i的后继点endendend%做n次迭代,每次迭代均更新D(i,j)和path(i,j) for k=1:nfor i=1:nfor j=1:nif D(i,k)+D(k,j)<D(i,j)D(i,j)=D(i,k)+D(k,j);path(i,j)=path(i,k);endendendend在MATLAB命令窗口键入:a=[0 5 inf 3 inf inf;inf 0 4 2 inf inf;inf inf 0 2 4 3;inf inf inf 0 5 inf;inf inf inf inf 0 2;inf inf inf inf inf 0];[D,path]=floyd(a)运行结果截图为:D =0 5 9 3 8 10 Inf 0 4 2 7 7 Inf Inf 0 2 4 3 Inf Inf Inf 0 5 7 Inf Inf Inf Inf 0 2 Inf Inf Inf Inf Inf 0 path =1 2 2 4 4 4 0 2 3 4 4 3 0 0 3 4 5 6 0 0 0 4 5 5 0 0 0 0 5 6 0 0 0 0 0 6由运行结果得:因为path(1,6)=4,意味着顶点1的后继点为4, path(4,6)=5,从而顶点4的后继点为5,同理,因path(5,6)=6,从而顶点5的后继点为6,故1→4→5→6便是顶点1到顶点6的最短路径。

数学建模课后作业第三章

线性规划和整数规划实验3.2.基本实验1.生产计划安排解:(1)设A、B、C三种产品的生产量为x、y、z,则可以得出生产利润:f=3*x+y+4*z;约束条件为:6*x+3*y+5*z≤45;3*x+4*y+5*z≤30;x、y、z均大于0;只要f取得最大值即为最大利润则可以得出以下lingo程序;model:max=3*x+y+4*z;6*x+3*y+5*z<=45;3*x+4*y+5*z<=30;end运行程序后可得;Global optimal solution found.Objective value: 27.00000Infeasibilities: 0.000000Total solver iterations: 2Model Class: LPTotal variables: 3Nonlinear variables: 0Integer variables: 0Total constraints: 3Nonlinear constraints: 0Total nonzeros: 9Nonlinear nonzeros: 0Variable Value Reduced Cost X 5.000000 0.000000Y 0.000000 2.000000Z 3.000000 0.000000Row Slack or Surplus Dual Price1 27.00000 1.0000002 0.000000 0.20000003 0.000000 0.6000000则可得当x=5、y=0、z=3时fmax=27为获利最大的生产方案;(2)由(1)中的程序Objective Coefficient Ranges:Current Allowable AllowableVariable Coefficient Increase DecreaseX 3.000000 1.800000 0.6000000Y 1.000000 2.000000 INFINITYZ 4.000000 1.000000 1.500000Righthand Side Ranges:Current Allowable AllowableRow RHS Increase Decrease2 45.00000 15.00000 15.000003 30.00000 15.00000 7.500000可以得出A的利润范围[4,4.8],B的利润范围[1,3],C的利润范围为[2.5,5](3)假设购买材料的数量为d,生产利润:f=3*x+y+4*z-0.4d;约束条件为:6*x+3*y+5*z≤45;3*x+4*y+5*z-d≤30;x、y、z、d均大于0;则可以得到下面新的lingo程序;model:max=3*x+y+4*z-0.4*d;6*x+3*y+5*z<=45;3*x+4*y+5*z-d<=30;end运行程序后可以得出:Global optimal solution found.Objective value: 30.00000Infeasibilities: 0.000000Total solver iterations: 2Model Class: LPTotal variables: 4Nonlinear variables: 0Integer variables: 0Total constraints: 3Nonlinear constraints: 0Total nonzeros: 11Variable Value Reduced Cost X 0.000000 0.6000000 Y 0.000000 1.800000Z 9.000000 0.000000D 15.00000 0.000000Row Slack or Surplus Dual Price1 30.00000 1.0000002 0.000000 0.40000003 0.000000 0.4000000由以上程序可以得出当z=9,d=15时,利润可以达到30,(4)假设新产品的数量为D,可以得出如下的生产利润:f=3*x+y+4*z+3D;约束条件为:6*x+3*y+5*z+8*D≤45;3*x+4*y+5*z+2*D≤30;x、y、z、D均大于0;则可以得到下面新的lingo程序;model:max=3*x+y+4*z+3*D;6*x+3*y+5*z+8*D<=45;3*x+4*y+5*z+2*D<=30;End运行程序可以得出:Global optimal solution found.Objective value: 27.50000Infeasibilities: 0.000000Total solver iterations: 2Model Class: LPTotal variables: 4Nonlinear variables: 0Total constraints: 3Nonlinear constraints: 0Total nonzeros: 12Nonlinear nonzeros: 0Variable Value Reduced Cost X 0.000000 0.1000000 Y 0.000000 1.966667Z 5.000000 0.000000D 2.500000 0.000000Row Slack or Surplus Dual Price1 27.50000 1.0000002 0.000000 0.23333333 0.000000 0.5666667利润为27.5>27但是z=5,D=2.5,由于D只能取整数,故当D=3时则不满足约束条件,当D=2是,利润为26<27,所以如果其他条件不变化的话,这种产品不值得生产。

数学建模第四版第九章课后作业

1.程序x=[20 25 30 35 40 45 50 55 60 65]';x=[ones(10,1) x];Y=[13.2 15.1 16.4 17.1 17.9 18.7 19.6 21.222.5 24.3]';[b,bint,r,rint,stats]=regress(Y,X);b,bint,stats结果:b=9.1212 0.2230bint=8.0211 10.2214 0.1985 0.2476stats=0.9821 439.8311 0.0000回归方程:y=9.1212+0.2230xpolytool(x',y',1)当x=42%时的预测值和区间:18.4885±1.16812.程序x=[0 2 4 6 8 10 12 14 16 18 20];y=[0.6 2.0 4.4 7.5 11.8 17.1 23.3 31.2 39.6 49.7 61.7];[p,S]=polyfit(x,y,2)结果:p=0.1403 0 1971 1.0105S=R:[3 x3 double]df:8normr:1.1097y关于横坐标x的二次多项式回归方程:y=0.1403x2+0.1971x+1.01053.先建立非线性函数volum.m文件:function yhat=volum(beta,x)yhat=beta(1)+beta(2)*log(x);主程序如下:x=[2 3 4 5 7 9 12 14 17 21 28 56];y=[35 42 47 53 59 65 68 73 76 82 86 99];beta0=[1 1]';[beta,r,J]=nlinfit(x',y','volum',beta0);beta结果为:beta=21.0050 19.5288.养护日期x(日)及抗压强度y(kg/cm2)的回归方程:y=21.0050+19.5288ln(x)4.下面通过各变量的散点图来看它们的关系:(1)分析N与产量的关系:N1=[0 34 67 101 135 202 259 336 404 471];Y1=[15.1800 21.3600 25.7200 32.2900 34.0300 39.4 500 43.1500 43.4600 40.8300 30.7500];plot(N2,Y1,'+')N2=[0 28 56 84 112 168 224 280 336 3 92];Y12=[11.0200 12.7000 14.5600 16.2700 17.7500 22. 5900 21.6300 19.3400 16.1200 14.1100];plot(N2,Y12,'+')结果:两种植物生产中,N与产量都有先增加后减少的趋势,不能有太多的N.(2)分析P与产量的关系:P1=[0 24 49 73 98 147 196 245 294 34 2];Y2=[0 47 93 140 186 279 372 465 558 651];plot(P1,Y2,'*')P2=[0 49 98 147 196 294 391 489 587 685];Y22=[6.3900 9.4800 12.4600 14.3300 17.1000 21.94 00 22.6400 21.3400 22.0700 24.5300];Plot(P2,Y22,'*')结果:土豆生产中,P与产量有线性关系.而生菜生产中,P与产量有非线性关系.但是它们的产量总的趋势是随P增加而增加.(3)分析K与产量的关系:K2=[0 47 93 140 186 279 372 465 558 651];Y3=[18.9800 27.3500 34.8600 38.5200 38.4400 37.7 300 38.4300 43.8700 42.7700 46.2200];plot(K1,Y3,'*')K2=[0 47 93 140 186 279 372 465 558 651];Y32=[15.7500 16.7600 16.8900 16.2400 17.5600 19. 2000 17.9700 15.8400 20.1100 19.4000];plot(K2,Y32,'*')结果:土豆生产中,K与产量有非线性关系,产量总的趋势是随K增加而增加.而生菜生产中,K与产量几乎没有确定的函数关系.5.现运用SAS软件对上述数据进行聚类分析。

数学建模上机练习习题及答案

练习1 基础练习一、矩阵及数组操作:1.利用基本矩阵产生3×3和15×8的单位矩阵、全1矩阵、全0矩阵、均匀分布随机矩阵([-1,1]之间)、正态分布矩阵(均值为1,方差为4)。

A=eye(3) B=eye(15,8) C=ones(3) D=ones(15,8) E=zeros(3) F=zeros(15,8) G=(-1+(1-(-1))*rand(3)) H=1+sqrt(4)*randn(5)2.利用fix及rand函数生成[0,10]上的均匀分布的10×10的整数随机矩阵a,然后统计a中大于等于5的元素个数a=fix(0+(10-0)*rand(10));K=find(a>=5);Num=length(K)或者num=sum(sum(a>=5))num =533.在给定的矩阵中删除含有整行内容全为0的行,删除整列内容全为0的列。

如已给定矩阵A在给定的矩阵中删除含有整行内容全为0的行在命令窗口中输入A(find(sum(abs(A'))==0),:)=[];删除整列内容全为0的列。

A(:,find(sum(abs(A'))==0))=[];二、绘图:4.在同一图形窗口画出下列两条曲线图像: y1=2x+5; y2=x^2-3x+1, 并且用legend 标注 x=0:0.01:10; y1=2*x+5; y2=x.^2-3*x+1; plot(x,y1,x,y2,'r') legend('y1', 'y2')12345678910-10010203040506070805.画出下列函数的曲面及等高线: z=x^2+y^2+sin(xy). 在命令窗口输入: [x,y]=meshgrid(0:0.25:4*pi);z=x.^2+y.^2+sin(x.*y); contour3(x,y,z); meshc(x,y,z)51015510150100200300400三、程序设计:6.编写程序计算(x 在[-3,3],间隔0.01)建立M 文件d.mx=input('请输入x 的值:'); if x>=-3&x<-1 y=(-x.^2-4*x-3)/2; elseif x>=-1&x<1 y=-x.^2+1; elseif x>=1&x<=3y=(-x.^2+4*x-3)/2;elsey='error'endy在命令窗口输入x 的值:7.有一列分数序列:求前15项的和。

数学建模作业及答案

数学建模作业姓名:叶勃学号:班级:024121一:层次分析法1、 分别用和法、根法、特征根法编程求判断矩阵1261/2141/61/41A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦11/2433217551/41/711/21/31/31/52111/31/5311A ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦的特征根和特征向量(1)冪法求该矩阵的特征根和特征向量 程序为:#include<iostream> #include<math.h> using namespace std;#define n 3 //三阶矩阵#define N 20 #define err 0.0001 //幂法求特征值特征向量 void main(){cout<<"**********幂法求矩阵最大特征值及特征向量***********"<<endl; int i,j,k;double A[n][n],X[n],u,y[n],max;cout<<"请输入矩阵:\n"; for(i=0;i<n;i++) for(j=0;j<n;j++)cin>>A[i][j]; //输入矩阵 cout<<"请输入初始向量:\n"; for(i=0;i<n;i++)cin>>X[i]; //输入初始向量 k=1; u=0;while(1){ max=X[0]; for(i=0;i<n;i++) {if(max<X[i]) max=X[i]; //选择最大值 }for(i=0;i<n;i++)y[i]=X[i]/max; for(i=0;i<n;i++)X[i]=0;for(j=0;j<n;j++)X[i]+=A[i][j]*y[j]; //矩阵相乘}if(fabs(max-u)<err){cout<<"A的特征值是 :"<<endl; cout<<max<<endl; cout<<"A的特征向量为:"<<endl; for(i=0;i<n;i++) cout<<X[i]/(X[0]+X[1]+X[2])<<" ";cout<<endl;break;}else{if(k<N) {k=k+1;u=max;} else {cout<<"运行错误\n";break;}}} }程序结果为:(2)和法求矩阵最大特征值及特征向量程序为:#include<stdio.h>#include<iostream>#include<math.h> using namespace std;#define n 3 //三阶矩阵#define N 20void main(){int i,j,k;double A[n][n],w[n],M[n],u[n],W[n][n],max;cout<<"********和法求矩阵的特征根及特征向量*******"<<endl;cout<<"请输入矩阵:\n";for(i=0;i<n;i++)for(j=0;j<n;j++)cin>>A[i][j]; //输入矩阵 //计算每一列的元素和M[0]=0;M[1]=0;M[2]=0;for(i=0;i<n;i++)for(j=0;j<n;j++){M[i]+=A[j][i];}//将每一列向量归一化for(i=0;i<n;i++)for(j=0;j<n;j++){W[j][i]=A[j][i]/M[i];}//输出按列归一化之后的矩阵Wcout<<"按列归一化后的矩阵为:"<<endl;for(i=0;i<n;i++)for(j=0;j<n;j++){cout<<W[i][j]<<" ";if(j==2)cout<<endl;} //求特征向量w[0]=0;w[1]=0;w[2]=0;for(i=0;i<n;i++)for(j=0;j<n;j++){w[i]+=W[i][j];}cout<<"特征向量为:"<<endl; for(i=0;i<n;i++){u[i]=w[i]/(w[0]+w[1]+w[2]);cout<<u[i]<<" "<<endl;}//求最大特征值max=0;for(i=0;i<n;i++){w[i] = 0;for(j=0;j<n;j++){w[i] += A[i][j]*u[j];}}for(i = 0;i < n;i++){max += w[i]/u[i];}cout<<"最大特征根为:"<<endl;cout<<max/n<<endl; }运行结果为:(3)根法求矩阵最大特征值及特征向量:程序为:#include<stdio.h>#include<iostream>#include<math.h>using namespace std;#define n 3 //三阶矩阵#define N 20void main(){int i,j;double A[n][n],w[n],M[n],u[n],W[n][n],max;cout<<"********根法求矩阵的特征根及特征向量*******"<<endl; cout<<"请输入矩阵:\n";for(i=0;i<n;i++)for(j=0;j<n;j++)cin>>A[i][j]; //输入矩阵//计算每一列的元素和M[0]=0;M[1]=0;M[2]=0;for(i=0;i<n;i++)for(j=0;j<n;j++){M[i]+=A[j][i];}//将每一列向量归一化for(i=0;i<n;i++)for(j=0;j<n;j++){W[j][i]=A[j][i]/M[i];}//输出按列归一化之后的矩阵Wcout<<"按列归一化后的矩阵为:"<<endl;for(i=0;i<n;i++)for(j=0;j<n;j++){cout<<W[i][j]<<" ";if(j==2)cout<<endl;}//求特征向量//w[0]=A[0][0];w[1]=A[0][1];w[2]=A[0][2];w[0]=1;w[1]=1;w[2]=1;for(i=0;i<n;i++){for(j=0;j<n;j++){w[i]=w[i]*W[i][j];}w[i]=pow(w[i], 1.0/3);}cout<<"特征向量为:"<<endl;for(i=0;i<n;i++){u[i]=w[i]/(w[0]+w[1]+w[2]);cout<<u[i]<<" "<<endl;}//求最大特征值max=0;for(i=0;i<n;i++){w[i] = 0;for(j=0;j<n;j++){w[i] += A[i][j]*u[j];}}for(i = 0;i < n;i++){max += w[i]/u[i];}cout<<"最大特征值为:"<<endl; cout<<max/n;}运行结果为:2、编程验证n阶随机性一致性指标RI:运行结果:3、考虑景色、费用、居住、饮食、旅途五项准则,从桂林、黄山、北戴河三个旅游景点选择最佳的旅游地。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

选修课——数学建模部分习题详细解答【陈文滨】1、在稳定的椅子问题中,如设椅子的四脚连线呈长方形,结论如何?【模型假设】(1)椅子四条腿一样长,椅脚与地面接触处视为一点,四脚的连线呈长方形.(2)地面高度是连续变化的,沿任何方向都不会出现间断 (没有像台阶那样的情况),即从数学的角度看,地面是连续曲面.这个假设相当于给出了椅子能放稳的必要条件.(3)椅子在任何位置至少有三只脚同时着地.为保证这一点,要求对于椅脚的间距和椅腿的长度而言,地面是相对平坦的.因为在地面上与椅脚间距和椅腿长度的尺寸大小相当的范围内,如果出现深沟或凸峰(即使是连续变化的),此时三只脚是无法同时着地的。

【模型建立】在上述假设下,解决问题的关键在于选择合适的变量,把椅子四只脚同时着地表示出来.首先,引入合适的变量来表示椅子位置的挪动.生活经验告诉我们,要把椅子通过挪动放稳,通常有拖动或转动椅子两种办法,也就是数学上所说的平移与旋转变换.然而,平移椅子后问题的条件没有发生本质变化,所以用平移的办法是不能解决问题的.于是可尝试将椅子就地旋转,并试图在旋转过程中找到一种椅子能放稳的情形.注意到椅脚连线呈长方形,长方形是中心对称图形,绕它的对称中心旋转180度后,椅子仍在原地.把长方形绕它的对称中心O旋转,这可以表示椅子位置的改变。

于是,旋转角度θ这一变量就表示了椅子的位置.为此,在平面上建立直角坐标系来解决问题.如下图所示,设椅脚连线为长方形ABCD,以对角线AC所在的直线为x轴,对称中心O 为原点,建立平面直角坐标系.椅子绕O点沿逆时针方向旋转角度θ后,长方形ABCD转至A1B1C1D1 的位置,这样就可以用旋转角θ(0≤θ≤π)表示出椅子绕点O旋转θ后的位置.其次,把椅脚是否着地用数学形式表示出来.我们知道,当椅脚与地面的竖直距离为零时,椅脚就着地了,而当这个距离大于零时,椅脚不着地.由于椅子在不同的位置是θ的函数,因此,椅脚与地面的竖直距离也是θ的函数.由于椅子有四只脚,因而椅脚与地面的竖直距离有四个,它们都是θ的函数.而由假设(3)可知,椅子在任何位置至少有三只脚同时着地,即这四个函数对于任意的θ,其函数值至少有三个同时为0.因此,只需引入两个距离函数即可.考虑到长方形ABCD是中心对称图形,绕其对称中心 O沿逆时针方向旋转180°后,长方形位置不变,但A,C和B,D对换了.因此,记A、B两脚与地面竖直距离之和为f(θ),C、D两脚与地面竖直距离之和为g(θ),其中θ∈[0,π],从而将原问题数学化。

数学模型:已知f(θ)和g(θ)是θ的非负连续函数,对任意θ,f(θ)•g(θ)=0,证明:存在θ0∈[0,π],使得f(θ0)=g(θ0)=0成立。

【模型求解】如果f(0)=g(0)=0,那么结论成立。

如果f(0)与g(0)不同时为零,不妨设f(0)>0,g(0)=0。

这时,将长方形ABCD 绕点O逆时针旋转角度π后,点A,B分别与C,D互换,但长方形ABCD在地面上所处的位置不变,由此可知,f(π)=g(0),g(π)=f(0).而由f(0)>0,g(0)=0,得g(π)>0, f(π)=0。

令h(θ)=f(θ)-g(θ),由f(θ)和g(θ)的连续性知h(θ)也是连续函数。

又h(0)=f(0)-g(0)>0,h(π)=f(π)-g(π)<0,,根据连续函数介值定理,必存在θ0∈(0,π)使得h(θ0)=0,即f(θ0)=g(θ0);又因为f(θ0)•g(θ0)=0,所以f(θ0)=g(θ0)=0。

于是,椅子的四只脚同时着地,放稳了。

【模型讨论】用函数的观点来解决问题,引入合适的函数是关键.本模型的巧妙之处就在于用变量θ表示椅子的位置,用θ的两个函数表示椅子四只脚与地面的竖直距离.运用这个模型,不但可以确信椅子能在不平的地面上放稳,而且可以指导我们如何通过旋转将地面上放不稳的椅子放稳.2、人、狗、鸡、米均要过河,船需要人划,另外至多还能载一物,而当人不在时,狗要吃鸡,鸡要吃米。

问人、狗、鸡、米怎样过河 【模型假设】人带着猫、鸡、米过河,从左岸到右岸,船除了需要人划之外,只能载猫、鸡、米三者之一,人不在场时猫要吃鸡、鸡要吃米。

试设计一个安全过河方案,使渡河次数尽量地少。

【符号说明】1X :代表人的状态,人在该左岸或船上取值为1,否则为0; 2X :代表猫的状态,猫在该左岸或船上取值为1,否则为0; 3X :代表鸡的状态,鸡在该左岸或船上取值为1,否则为0; 4X :代表米的状态,米在该左岸或船上取值为1,否则为0;1234(,,,)K S X X X X =:状态向量,代表时刻K 左岸的状态; 1234(,,,)K D X X X X =:决策向量,代表时刻K 船上的状态;【模型建立】限制条件:23134202X X X X X +≠⎧=⇒⎨+≠⎩ 初始状态:00(1,1,1,1),(0,0,0,0)S D ==目标:确定有效状态集合,使得在有限步内左岸状态由(1,1,1,1)(0,0,0,0)→ 【模型求解】根据乘法原理,四维向量1234(,,,)X X X X 共有4216=种情况,根据限制条件可以排除(0,1,1,1),(0,1,0,1),(0,0,1,1)三种情况,其余13种情况可以归入两个集合进行匹配,易知可行决策集仅有五个元素:{}(1,1,1,0),(1,0,1,0),(1,0,0,1),(1,0,0,0),(0,0,0,0)D =,状态集有8个元素,将其进行匹配,共有两种运送方案:方案一:人先带鸡过河,然后人再回左岸,把米带过右岸,人再把鸡运回左岸,人再把猫带过右岸,最后人回来把鸡带去右岸(状态见表1);方案二:人先带鸡过河,然后人再回左岸,把猫带过右岸,人再把鸡运回左岸,人再把米带过右岸,最后人回来把鸡带去右岸(状态见表2)。

表1:方案一的状态与决策表2:方案二的状态与决策3、报童每天清晨从报社购进报纸零售,晚上将没有卖完的报纸退回。

设每份报纸的购进价为,零售价为,退回价为,应该自然地假设。

这就是说,报童售出一份报纸赚,退回一份报纸赔。

报童如果每天购进的报纸太少,不够卖的,会少赚钱;如果购进太多,卖不完,将要赔钱。

请你为报童筹划一下,他应该如何确定每天购进报纸的数量,以获得最大的收入。

【符号说明】报纸具有时效性每份报纸进价b元,卖出价a元,卖不完退回份报纸c元。

设每日的订购量为n,如果订购的多了,报纸剩下会造成浪费,甚至陪钱。

订的少了,报纸不够卖,又会少赚钱。

为了获得最大效益,现在要确定最优订购量n。

n的意义。

n是每天购进报纸的数量,确定n一方面可以使报童长期以内拥有一个稳定的收入,另一方面也可以让报社确定每日的印刷量,避免纸张浪费。

所以,笔者认为n的意义是双重的。

本题就是让我们根据a、b、c及r来确定每日进购数n。

【模型假设】1、假设报童现在要与报社签定一个长期的订购合同,所以要确定每日的订购量n。

2、假设报纸每日的需求量是r,但报童是一个初次涉足卖报行业的菜鸟,毫无经验,无法掌握需求量r的分布函数,只知道每份报纸的进价b、售价a及退回价c。

3、假设每日的定购量是n。

4、报童的目的是尽可能的多赚钱。

【模型建立】应该根据需求量r确定需求量n,而需求量r是随机的,所以这是一个风险决策问题。

而报童却因为自身的局限,无法掌握每日需求量的分布规律,已确定优化模型的目标函数。

但是要得到n值,我们可以从卖报纸的结果入手,结合r与n的量化关系,从实际出发最终确定n值。

由常识可以知道卖报纸只有赚钱、不赚钱不赔钱、赔钱会有三种结果。

现在用简单的数学式表示这三种结果。

1、赚钱。

赚钱又可分为两种情况:①r>n,则最终收益为(a-b)n (1)②r<n,则最终收益为(a-b)r-(b-c)(n-r)>0整理得:r/n>(b-c)/(a-c) (2)2、由(2)式容易得出不赚钱不赔钱。

r/n=(b-c)/(a-c) (3)3、赔钱。

r/n<(b-c)/(a-c) (4)【模型求解】首先由(1)式可以看出n与最终的收益呈正相关。

收益越多,n的取值越大。

但同时订购量n 又由需求量r约束,不可能无限的增大。

所以求n问题就转化成研究r与n的之间的约束关系。

然后分析(3)、(4)两式。

因为(3)、(4)分别代表不赚钱不赔钱及赔钱两种情况,而我们确定n值是为了获得最大收益,所以可以预见由(3)、(4)两式确立出的n值不是我们需要的结果,所以在这里可以排除,不予以讨论。

最后重点分析(2)式。

显然式中r表需求量,n表订购量,(b-c)表示退回一份儿报纸赔的钱。

因为(a-c)无法表示一个显而易见的意义,所以现在把它放入不等式中做研究。

由a>b>c,可得a-c>a-b,而(a-b)恰好是卖一份报纸赚得的钱。

然后采用放缩法,把(2)式中的(a-c)换成(a-b),得到r/n<(b-c)/(a-b) (5)不等式依然成立。

由(5)式再结合(1)式可知收益与n正相关,所以要想使订购数n的份数越多,报童每份报纸赔钱(b-c)与赚钱(a-b)的比值就应越小。

当报社与报童签订的合同使报童每份报纸赔钱与赚钱之比越小,订购数就应越多。

5、赛艇是一种靠桨手划桨前进的小船,分单人艇、双人艇、四人艇、八人艇四种。

各种艇虽大小不同,但形状相似。

现在考虑八人艇分重量级组(桨手体重不超过86kg)和轻量级组(桨手体重不超过73kg),建立模型说明重量级组的成绩比轻量级组大约好5%。

【符号说明】【模型假设】1./l b 为常数,赛艇净重W 与浆手数目成正比,即08W ∝;2.赛艇前进时收到阻力与2sv 成正比;3.每个浆手比赛时划桨功率保持不变,且功率与体重成正比。

【模型建立】克服阻力做功功率为Fst ,因此总功率满足P Fv ∝,且2,F sv P W ∝∝,我们用量纲法进行建模:对于重量级八人赛艇:111P FV ∝ (1) 211F sV ∝ (2)11P W ∝ (3)由上述各式有:311W sV ∝,因此1311W V s ⎛⎫∝ ⎪⎝⎭ (4) 且已知 23s A ∝ (5) 又赛艇总重018W W W =+;由于假设2可知:08W w =(w为常数),因此有1()W W w ∝+。

我们如下定义λ:111W wW λ+=(6)从而11W W λ∝ (7)根据阿基米德定律A W ∝,根据(7)式: 11A W λ∝ (8)将(8)式代入(5)式中有:()2311s W λ∝ (9)将(9)式代入(4)式中有: ()()2193111V W λ--∝ (10)因为V 与t 成反比,有:()()2193111t W λ∝ (11)同理,对于轻量级快艇,我们有:()()2193222t W λ∝ (12)结合(11)与(12)式,我们可以知道两种快艇成绩比值的关系:2193111222t W t W λλ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭(13)【模型求解】根据(13)式,我们有重量级八人赛艇比轻量级八人赛艇的成绩领先率为: 我们令W1=86kg ,W2=73kg在12λλ十分接近1时,12110.561 5.61%t t -≈==;在12,w W w W <<<<的情况下,791286110.13613.6%73t t ⎛⎫-≈-== ⎪⎝⎭。

相关文档
最新文档