2015中考数学必考基础题
2015陕西中考数学试题及答案word版

2015陕西中考数学试题及答案word版一、选择题(每题3分,共30分)1. 下列哪个数是正数?A. -5B. 0C. 2D. -3答案:C2. 计算下列哪个表达式的结果为负数?A. 3 - (-2)B. -4 - 2C. 5 + (-3)D. 2 × (-3)答案:D3. 哪个图形是轴对称图形?A. 平行四边形B. 梯形C. 等腰三角形D. 不规则多边形答案:C4. 以下哪个是二次函数的一般形式?A. y = ax^2 + bx + cB. y = ax^3 + bx^2 + cx + dC. y = ax + bD. y = a/x + b5. 计算下列哪个表达式的结果是0?A. 3 × 0B. 0 - 0C. 0 + 0D. 0 ÷ 0答案:A6. 一个圆的半径是5厘米,那么它的面积是多少?A. 25π cm²B. 50π cm²C. 75π cm²D. 100π cm²答案:B7. 计算下列哪个表达式的结果为1?A. (-1)^2B. (-1)^3C. (-1)^4D. (-1)^5答案:C8. 一个等差数列的首项是3,公差是2,那么它的第五项是多少?A. 11B. 13C. 15D. 17答案:A9. 一个直角三角形的两条直角边分别是3和4,那么它的斜边长度是A. 5B. 6C. 7D. 8答案:A10. 计算下列哪个表达式的结果为-1?A. (-1) × (-1)B. (-1) ÷ (-1)C. (-1) + (-1)D. (-1) - (-1)答案:C二、填空题(每题3分,共30分)11. 一个数的相反数是-7,那么这个数是________。
答案:712. 一个数的绝对值是5,那么这个数可以是________或________。
答案:5或-513. 一个数的平方是36,那么这个数可以是________或________。
2015中考数学总复习基础题强化训练测试题(五)及答案

2015中考数学总复习基础题强化训练测试题(五)时间:45分钟 满分:100分一、选择题(本大题共6小题,每小题5分,共30分)1.在-3,0,-2 2,2四个数中,最小的数是( ) A .-3 B .0 C .-2 2 D. 2 2.下列运算正确的是( ) A .a 2·a 3=a 5 B .x 3-x =x 2C.a 2+b 2=a +b D .(a -1)2=a 2-13.已知,如图J11,AD 与BC 相交于点O ,AB ∥CD ,如果∠B =20°,∠D =40°,那么∠BOD 为( )图J11A .40° B.50° C.60° D.70°4.不等式组⎩⎨⎧3x +2>-4,-x -的解集在数轴上表示正确的是( )A BC D5.多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图J12所示的折线统计图,下列说法正确的是( )图J12A .平均数是58B .众数是42C .中位数是58D .每月阅读数量超过40的有4个月6.如图J13,AB 是⊙O 的直径,AB =4,AC 是弦,AC =2 3,∠AOC 为( )A .120° B.130° C.140° D.150°二、填空题(本大题共4小题,每小题5分,共20分)7.计算:4m +3+m -1m +3=__________. 8.如图J14,E ,F 分别是正方形ABCD 的边BC ,CD 上的点,BE =CF ,连接AE ,BF ,将△ABE 绕正方形的中心按逆时针方向转到△BCF ,旋转角为∠α(0°<∠α<180°),则∠α=________.9.某校对初中学生开展的四项课外活动进行了一次抽样调查(每人只参加其中的一项活动),调查结果如图.根据图形所提供的样本数据,可得学生参加科技活动的频率是____________.10.如图J16,点P 在双曲线y =kx (k ≠0)上,点P ′(1,2)与点P 关于y 轴对称,则此双曲线的解析式为________________.三、解答题(本大题共5小题,每小题10分,共50分)11.先化简,再求值:(2a +b )(2a -b )+(4ab 3-8a 2b 2)÷4ab ,其中a =-2,b =1.12.如图,已知在平行四边形ABCD 中,点E 为边BC 的中点,延长DE ,与AB 的延长线交于点F .求证:CD =BF .13.如图,有一长方形的仓库,一边长为5米.现要将它改建为简易住房,改建后的住房分为客厅、卧室和卫生间三部分,其中客厅和卧室都为正方形,且卧室的面积大于卫生间的面积.若改建后卫生间的面积为6平方米,试求长方形仓库另一边的长.14.初三(1)班要举行一场毕业联欢会,规定每个同学同时转动图中的①、②两个转盘(每个转盘分别被二等分和三等分),两个转盘停止后,若指针所指的数字之和为奇数,则这个同学要表演唱歌节目;若数字之和为偶数,则要表演其他节目.试求出这个同学表演唱歌节目的概率(要求用树状图或列表方法求解).15.已知抛物线y=ax2-2ax-3a(a<0)与x轴交于A,B两点(点A在点B的左侧),与y 轴交于点C,点D为抛物线的顶点.(1)求点A,B的坐标;(2)过点D作DH⊥y轴于点H,若DH=HC,求a的值和直线CD的解析式;(3)是否存在实数a,使四边形ABDC的面积为18,若存在,求出实数a的值;若不存在,请说明理由.答案1.A 2.A 3.C 4.B 5.C 6.A7.1 8.90° 9.0.2 10.y =-2x11.解:原式=4a 2-b 2+b 2-2ab =2a (2a -b ). 当a =-2,b =1时,原式=2×(-2)×[2×(-2)-1]=20.12.证明:∵四边形ABCD 是平行四边形, ∴DC ∥AB ,即DC ∥AF .∴∠CDF =∠F ,∠C =∠EBF . ∵E 为BC 的中点,∴CE =BE . ∴△DCE ≌△FBE .∴CD =BF .13.解:设长方形的另一边的长为x 米 由题意,得(x -5)[5-(x -5)]=6, 解得x 1=7,x 2=8.当x =7时,卧室面积小于卫生间面积,故舍去. 答:长方形的另一边的长为8米. 14.解:画树状图如图97.图97由图可知,所有等可能的结果有6种,其中数字之和为奇数的有3种.∴P (表演唱歌)=36=12.15.解:(1)令y =0,得 ax 2-2ax -3a =0. ∵a ≠0,∴x 2-2x -3=0. 解得x 1=-1,x 2=3. ∵ 点A 在点B 的左侧,∴点A 的坐标(-1 , 0),点B 的坐标(3 , 0). (2)由y =ax 2-2ax -3a ,令x =0,得y =-3a , ∴C (0 ,-3a ).又∵y =ax 2-2ax -3a =a (x -1)2-4a , ∴D (1 ,-4a ).∴H (0,-4a )∴DH =HC =-4a -(-3a )=-a =1. ∴a =-1.∴C (0 , 3),D (1 , 4).设直线CD 的解析式为y =kx +b ,把点C ,D 的坐标分别代入,得 ⎩⎪⎨⎪⎧ b =3,k +b =4,解得 ⎩⎪⎨⎪⎧b =3,k =1. ∴直线CD 的解析式为y =x +3.(3)存在实数a ,四边形ABDC 的面积为18.理由:S 四边形ABDC =12×(-3a )×1+1×(-4a -3a )×12+12×(-4a )×2=18,解得a =-2.。
2015届中考数学专项复习之《四边形》基础测试(含答案)

\(一)选择题(每小题3分,共30分)1.内角和与外角和相等的多边形是……………………………………………………( )(A )三角形 (B )四边形 (C )五边形 (D )六边形【答案】B . 2.顺次连结等腰梯形各边中点所得的四边形一定是…………………………………( )(A )菱形 (B )矩形(C )梯形 (D )两条对角线相等的四边形【答案】A .3.观察下列四个平面图形,其中中心对称图形有…………………………………( )(A )2个 (B )1个 (C )4个 (D )3个【提示】第一个图形不是中心对称图形.【答案】D .4.已知下列四个命题:(1)对角线互相垂直平分的四边形是正方形;(2)对角线垂直相等的四边形是菱形;(3)对角线相等且互相平分的四边形是矩形; (4)四边都相等的四边形是正方形.其中真命题的个数是………………( ) (A )1 (B )2 (C )3 (D )0【提示】(3)正确.【答案】A . 5.菱形的一条对角线与它的边相等,则它的锐角等于………………………………( )(A )30° (B )45° (C )60° (D )75°【答案】C .6.下列命题中的真命题是………………………………………………………………( )(A )一组对边平行,另一组对边相等的四边形是平行四边形 (B )有一组对边和一组对角分别相等的四边形是平行四边形 (C )两组对角分别相等的四边形是平行四边形(D )两条对角线互相垂直且相等的四边形是正方形【答案】C .7.如图,DE 是△ABC 的中位线,若AD =4,AE =5,BC =12,则△ADE 的周长是………………………………………………( )(A )7.5 (B )30 (C )15 (D )24【答案】C .8.矩形的边长为10 cm 和15 cm ,其中一内角平分线分长边为两部分,这两部分的长为………………………………………………………………………………………( ) (A )6 cm 和9 cm (B )5 cm 和10 cm (C )4 cm 和11 cm (D )7 cm 和8 cm【提示】长边被分成的两部分之中,有一部分与矩形短边相等.【答案】B . 9.如图,在等腰梯形ABCD 中,AD ∥BC ,AC 、BD 相交于点O ,则图中全等三角形共有……………………………………………………………………………………( ) (A )1对 (B )3对 (C )2对 (D )4对【提示】以AB 和CD 为对应边的两个三角形.【答案】B .10.菱形周长为20 cm ,它的一条对角线长6 cm ,则菱形的面积为…………………( )(A )6 (B )12 (C )18 (D )24 【提示】若菱形两对角线为a 和b ,则S 菱形=2ab .【答案】D .(二)填空题(每小题3分,共24分)11.如图,在□ABCD 中,则对角线AC 、BD 相交于O ,图中全等的三角形共有____对.【提示】考察以AB 、CD 为对应边的三角形,有3对全等三角形;抹去AB 、CD 两边,又有1对全等三角形.【答案】4.12.如果一个多边形的每个内角都等于108°,那么这个多边形是_____边形. 【提示】360°÷每个外角的度数.【答案】5.13.梯形的上底边长为5,下底边长为9,中位线把梯形分成上、下两部分,则这两部分的面积的比为_______.【提示】先算出中位线的长,然后用梯形面积公式计算.【答案】43.14.如图,等腰梯形ABCD 中,AD ∥BC ,∠B =45°,AE ⊥BC 于点E ,AE =AD =2 cm ,则这个梯形的中位线长为_____cm .【提示】BC =6 cm .【答案】4.15.请画出把下列矩形的面积二等分的直线,并填空(一个矩形只画一条直线,不写画法).在一个矩形中,把此矩形面积二等分的直线最多有_____条,这些直线都必须经过此矩形的_____点.【答案】无数;对称中心(或两条对角线的交点).16.如图,在梯形ABCD 中,AD ∥BC ,中位线EF 分别与BD 、AC 交于点G 、H .若AD =6,BC =10,则GH 的长是______.【答案】2.17.如图,矩形ABCD 中,O 是两对角线的交点AE ⊥BD ,垂足为E .若OD =2 OE ,AE =3,则DE 的长为______.【提示】OA =OD =2 OE ,用勾股定理求出OE 和OA 的长. 【答案】3.18.如图,在□ABCD 中,AE ⊥BC 于E ,AF ⊥CD 于F ,若AE =4,AF =6,□ABCD的周长为40,则S □ABCD 为______.【提示】在□ABCD 中,AE ·BC =AF ·CD =S □ABCD ,BC +CD =20,求BC 或CD . 【答案】48.(三)证明题(每小题5分,共20分)19.已知:如图,在梯形ABCD 中,AD ∥BC ,AB =DC ,P 是AD 中点.求证:BP =PC .【提示】证明△ABP ≌△DCP .【答案】在梯形ABCD 中,AD ∥BC ,∵ AB =DC , ∴ ∠A =∠D . ∵ P 是AD 中点, ∴ AP =DP .在△ABP 和△DCP 中,⎪⎩⎪⎨⎧=∠=∠=.,,DP AP D A DC AB ∴ △ABP ≌△DCP . ∴ PB =PC .20.已知:如图,AD ∥BC ,ED ∥BF ,且AF =CE .求证:四边形ABCD 是平行四边形.【提示】证明△ADE ≌△CBF ,得到AD =BC 即可. 【答案】在△ADE 和△CBF 中,∵ AD ∥BC ,∴ ∠DAE =∠BCF . ∵ ED ∥BF ,∴ ∠DEF =∠BFE . ∴ ∠DEA =∠BFC . ∵ AF =CE , ∴ AE =CF .∴ △ADE ≌△CBF . ∴ AD =BC . 又 AD ∥BC ,∴ 四边形ABCD 是平行四边形.21.已知:如图,矩形ABCD 中,E 、F 是AB 上的两点,且AF =BE .求证:∠ADE =∠BCF .【提示】证明Rt△ADE≌Rt△BCF.【答案】在矩形ABCD中,∠A=∠B=90°,AD=BC.又AF=BE,∴AF-EF=BE-EF,即AE=BF.∴Rt△ADE≌Rt△BCF.∴∠ADE=∠BCF.22.证明等腰梯形判定定理:在同一底上的两个角相等的梯形是等腰梯形.(要求:画出图形,写出已知、求证、证明.)【提示】作辅助线,构造等腰三角形.【答案】已知:在梯形ABCD中,AD∥BC,∠B=∠C(图(1)).求证:AB=DC.【证法一】如图(1),过点D作DE∥AB,交BC于E.图(1)∴∠B=∠1.又∠B=∠C,∴∠C=1.∴DE=DC.又AB∥DE,AD∥BE,∴四边形ABED为平行四边形,∴AB=DE.∴AB=DC.【证法二】如图(2),分别延长BA、CD,交于点E.图(2)∵∠B=∠C,∴BE=CE.∵AD∥BC,∴∠B=∠1,∠C=∠2.∴∠1=∠2.∴AE=DE.∴BE-AE=CE-DE,即AB=DC.(四)计算题(每小题6分,共12分)23.已知:如图,在□ABCD中,BE、CE分别平分∠ABC、∠BCD,E在AD上,BE=12 cm,CE=5 cm.求□ABCD的周长和面积.【提示】证明BE⊥EC和E为AD中点.【答案】在□ABCD 中,∵ AB ∥CD ,∴ ∠ABC +∠BCD =180°.∵ ∠ABE =∠EBC ,∠BCE =∠ECD ,∴ ∠EBC +∠BCE =21(∠ABC +∠BCD )=90°.∴ ∠BEC =90°.∴ BC 2=BE 2+CE 2=122+52=132. ∴ BC =13. ∵ AD ∥BC ,∴ ∠AEB =∠EBC . ∴ ∠AEB =∠ABE . ∴ AB =AE . 同理 CD =ED . ∵ AB =CD , ∴ AB =AE =CD =ED =21BC =6.5. ∴ □ABCD 的周长=2(AB +BC )=2(6.5+13)=39. S □ABCD =2 S △BCE =2·21BE ·EC =12×5=60.24.如图,在梯形ABCD 中,AD ∥BC ,AB =DC ,BD ⊥DC 于D ,且∠C =60°,若AD =5 cm ,求梯形的腰长.【提示】求出∠CBD ,∠ABD 和∠ADC 的度数,证明AB =AD ,或者过D 点作DE ⊥BC 于E ,CE 为下底与上底的差的一半,又是CD 的一半,CD 又是BC 的一半.从中找出CD 与AD 的关系. 【解法一】∵ BD ⊥CD ,∠C =60°,∴ ∠CBD =30°.在等腰梯形ABCD 中,∠ABC =∠C =60°, ∴ ∠ABD =∠CBD =30°. ∵ AD ∥BC ,∴ ∠ADB =∠CBD . ∴ ∠ABD =∠ADB . ∴ AB =AD =5(cm ).【解法二】过D 点作DE ⊥BC ,垂足为E 点.∵ 在Rt △CDE 中,∠CDE =30°,∴ CE =21CD . 又 CE =21(BC -AD ),∴ CD =BC -AD . 即 BC =CD +AD .又 在Rt △BCD 中,∠CBD =30°, ∴ CD =21BC . ∴ CD =2 CD -AD . 即 CD =AD =5(cm ).(五)解答题(每小题7分,共14分)25.如图,在正方形ABCD 中,点E 、F 分别在BC 、CD 上移动,但A 到EF 的距离AH 始终保持与AB 长相等,问在E 、F 移动过程中: (1)∠EAF 的大小是否有变化?请说明理由.(2)△ECF 的周长是否有变化?请说明理由.【提示】证明△EAH ≌△EAB ,△FAH ≌△FAD . 【答案】(1)∠EAF 始终等于45°.证明如下:在△EAH 和△EAB 中,∵ AH ⊥EF ,∴ ∠AHE =90°=∠B .又 AH =AB ,AE =AE ,∴ Rt △EAH ≌Rt △EAB . ∴ ∠EAH =∠EAB .同理 ∠HAF =∠DAF .∴ ∠EAF =∠EAH +∠FAH=∠EAB +∠FAD=21∠BAD =45°.因此,当EF 在移动过程中,∠EAF 始终为45°角. (2)△ECF 的周长不变.证明如下: ∵ △EAH ≌△EAB , ∴ EH =EB . 同理 FH =FD .∴△ECF 周长=EC +CF +EH +HF=EC +CF +BE +DF =BC +CD =定长.26.已知:如图,在四边形ABCD 中,E 为AB 上一点,△ADE 和△BCE 都是等边三角形,AB 、BC 、CD 、DA 的中点分别为P 、Q 、M 、N ,试判断四边形PQMN 为怎样的四边形,并证明你的结论.【提示】连结AC 和CD ,首先利用中位线定理和平行四边形判定定理,证明四边形PQMN 为平行四边形,然后证明△AEC ≌△DEB ,得到AC =BD ,再证明□PQMN 为菱形. 【答案】四边形PQMN 为菱形.证明如下:如图,连结AC 、BD .∵ PQ为△ABC 的中位线,∴ PQ21AC . 同理 MN 21AC .∴ MN PQ ,∴ 四边形PQMN 为平行四边形. 在△AEC 和△DEB 中,AE =DE ,EC =EB ,∠AED =60°=∠CEB , 即 ∠AEC =∠DEB . ∴ △AEC ≌△DEB . ∴ AC =BD . ∴ PQ =21AC =21BD =PN . ∴ □PQMN 为菱形.。
2015北京数学中考基础题汇编

BA10.分解因式:322x x x -+= . 13.计算: 20(1)3tan302)︒---15.求不等式组()x x 111,212ìïï-ïíïï-ïî≤<的解集,并求它的整数解.16. 已知2310x x +-=,求代数式()()()23113x x x +---的值.9.若分式32x x -+的值为零,则x 的值为 . 10.一次函数的图象过点(0,1),且函数y 的值随自变量x 的增大而减小,请写出一个符合条件的函数解析式 .11.已知小聪的身高为1.8米,在太阳光下的地面影长为2.4米,若此时测得一旗杆在同一地面的影长为20米,则旗杆高应为.131012sin 452-⎛⎫︒+- ⎪⎝⎭.14.解不等式组:42,2(3)35.x x x +>⎧⎨+->⎩16.已知210x x +=,求2(21)(31)(2)1x x x --+--的值.9.如果二次根式13+x 有意义,那么x 的取值范围是 .10.分解因式:231212x x -+= .11.如图,AB 是⊙O 的直径,点C 、D 在圆上,∠D =68°, 则∠ABC 等于 .13.计算:().330cos 212)21(02-+-+-π14.解不等式:2(2)31x x ++≤.ABCDEF C '15.已知:y x 23=,求代数式22)2()2(y y x x y x ----的值.17.已知:关于x 的一元二次方程x 2+ax +a -2=0.(1)求证:无论a 取任何实数,此方程总有两个不相等的实数根; (2)当方程的一个根为-2时,求方程的另一个根.9.若二次根式23-x 有意义,则x 的取值范围是 .10. 分解因式:=+-n mn n m 22 . 11.为了测量校园水平地面上一棵树的高度,数学兴趣小组利用一组标杆、皮尺,设 计了如图所示的测量方案.已知测量同 学眼睛A 、标杆顶端F 、树的顶端E 在 同一直线上,此同学眼睛距地面1.6m , 标杆长为3.3m ,且m BC 1=,m CD 4=, 则树高=ED m .13. 计算:00160sin 2122014)51(-+--15. 解分式方程:13932=-+-x xx .16. 已知0132=--x x ,求2)12)(1()2(2--+-+x x x 的值.9.把多项式32m mn -分解因式,结果为 .10.请写出一个位于第一、三象限的反比例函数表达式,y = .11.如图,已知平行四边形纸片ABCD 的周长为20,将纸片沿某条直线折叠,使点D 与点B 重合,折痕交AD 于点E ,交BC 于点F ,连接BE ,则△ABE 的周长为 .13.计算:1014sin 4520142-⎛⎫︒-+ ⎪⎝⎭.15.解方程:211x x x-=-.16. 已知210x x --=,求22(1)(+3)4x x x x +-+的值.树标杆人CDEF B A9x 的取值范围是 . 10.分解因式:22363b ab a +-= .11. 若把代数式 225x x --化为2()x m k -+的形式,其中m ,k 为常数,则m+k= .14.计算:129tan 30-︒+0)4(-π1)21(--.15.求不等式组417523.,-<⎧⎨+>⎩x x x 的整数解.16. 已知2220--=x x ,求(2414x +-)⋅(2)-x 的值9. 分解因式:3a a -=________________.10. 现定义运算“★”,对于任意实数a 、b ,都有a ★b =a 2﹣3a +b ,如:3★5=32﹣3×3+5,根据定义的运算求2★(-1)= .若 x ★2=6,则实数x 的值是 . 11. 在平面直角坐标系中,点O 为坐标原点,点P 在第一象限,P 与x 轴交于O , A 两点, 点A 的坐标为(6,0),PP 的坐标为 ____________.13.计算:1012cos 45()(2014)2-︒+-.14.求不等式组20,132x x x ->⎧⎪⎨+≥-⎪⎩的最小整数解.16.先化简,再求值: 2442m m m m m++⎛⎫+÷ ⎪⎝⎭,其中m 是方程22410x x +-=的根. 9.函数y=1x 2- 中自变量x 的取值范围是_________________. 10.分解因式:ab 2-4a = .11.请写出一个在各自象限内,y 的值随着x 值的增大而减小的反比例函数的表达式_________________.14.计算:011(20142013)2cos30()2--+︒+15.解不等式组:30,2(1) 3.x x x -<⎧⎨+≥+⎩16.已知23210x x +-=,求代数式()23(2)(2)(1)1x x x x x ++---+的值.F18.已知:关于错误!未找到引用源。
【9份】2015年全国各地中考数学试题(真题)分类汇编(精品推荐)

二、填空题
1.(2015•南京)若式子 在实数范围内有意义,则x的取值范围是.
2.(2015•南京)计算 的结果是.
3.(2015•四川自贡)化简: =.
考点:绝对值、无理数、二次根式
分析:本题关键是判断出 值得正负,再根据绝对值的意义化简.
略解:∵ ∴ ∴ ;故应填 .
4.(2015•四川自贡)若两个连续整数 满足 ,则 的值是.
A.x≤2 B. x≥2 C. x<2 D.x>2
6.(2015•浙江杭州)若 k<<k+1(k是整数),则k=( )
A. 6B.7C. 8D. 9
【答案】D.
【考点】估计无理数的大小.
【分析】∵ ,
∴k=9. B. C. D.
8.(2015•重庆B)计算 的值是()
考点:无理数、二次根式、求代数式的值.
分析:本题关键是判断出 值是在哪两个连续整数之间.
略解:∵ ∴ ∴ ∴ ;故应填7.
5.(2015•四川资阳)已知: ,则 的值为_________.
三.解答题
1.(2015•江苏苏州)计算: .
【考点分析】考察实数计算,中考必考题型。难度很小。
【详细分析】解:原式=3+5-1=7.
涉及的公式为:金额=单价×数量
金额
单价
数量
乒乓球
1.5×20=30
1.5
20
球拍
22
将相关数据代入①即可解得:
解:设购买球拍 个,依题意得:
解之得:
由于 取整数,故 的最大值为7。
6.(山东菏泽)13.不等式组 的解集是__________-1≤x<3
7.(云南)已知不等式组 ,其解集在数轴上表示正确的是( )
2015届中考数学专项复习之《二次根式》基础测试(含答案)

(一)判断题:(每小题1分,共5分).1.2)2(=2.……( ) 2.21x --是二次根式.……………( ) 3.221213-=221213-=13-12=1.( )4.a ,2ab ,ac 1是同类二次根式.……( )5.b a +的有理化因式为b a -.…………( )【答案】1.√;2.×;3.×;4.√;5.×.(二)填空题:(每小题2分,共20分)6.等式2)1(-x =1-x 成立的条件是_____________.【答案】x ≤1.7.当x ____________时,二次根式32-x 有意义.【提示】二次根式a 有意义的条件是什么?a ≥0.【答案】≥23. 8.比较大小:3-2______2-3.【提示】∵ 243=<,∴ 023<-,032>-.【答案】<.9.计算:22)21()213(-等于__________.【提示】(321)2-(21)2=?【答案】23. 10.计算:92131·3114a =______________.【答案】92aa .11.实数a 、b 在数轴上对应点的位置如图所示: a o b 则3a -2)43(b a -=______________.【提示】从数轴上看出a 、b 是什么数?[a <0,b >0.]3a -4b 是正数还是负数?[3a -4b <0.]【答案】6a -4b .12.若8-x +2-y =0,则x =___________,y =_________________.【提示】8-x 和2-y 各表示什么?[x -8和y -2的算术平方根,算术平方根一定非负,]你能得到什么结论?[x -8=0,y -2=0.]【答案】8,2.13.3-25的有理化因式是____________.【提示】(3-25)(3+25)=-11.【答案】3+25.14.当21<x <1时,122+-x x -241x x +-=______________. 【提示】x 2-2x +1=( )2;41-x +x 2=( )2.[x -1;21-x .]当21<x <1时,x -1与21-x 各是正数还是负数?[x -1是负数,21-x 也是负数.]【答案】23-2x .15.若最简二次根式132-+b a 与a b -4是同类二次根式,则a =_____________,b =______________.【提示】二次根式的根指数是多少?[3b -1=2.]a +2与4b -a 有什么关系时,两式是同类二次根式?[a +2=4b -a .] 【答案】1,1.(三)选择题:(每小题3分,共15分)16.下列变形中,正确的是………( )(A )(23)2=2×3=6 (B )2)52(-=-52 (C )169+=169+ (D ))4()9(-⨯-=49⨯【答案】D .【点评】本题考查二次根式的性质.注意(B )不正确是因为2)52(=|-52|=52;(C )不正确是因为没有公式b a +=b a +.17.下列各式中,一定成立的是……( )(A )2)(b a +=a +b (B )22)1(+a =a 2+1(C )12-a =1+a ·1-a (D )b a =b1ab 【答案】B .【点评】本题考查二次根式的性质成立的条件.(A )不正确是因为a +b 不一定非负,(C )要成立必须a ≥1,(D )要成立必须a ≥0,b >0.18.若式子12-x -x 21-+1有意义,则x 的取值范围是………………………( ) (A )x ≥21 (B )x ≤21 (C )x =21(D )以上都不对 【提示】要使式子有意义,必须⎩⎨⎧≥-≥-.021012x x【答案】C .19.当a <0,b <0时,把ba化为最简二次根式,得…………………………………( ) (A )ab b 1 (B )-ab b 1 (C )-ab b-1 (D )ab b 【提示】b a =2b ab =||b ab.【答案】B .【点评】本题考查性质2a =|a |和分母有理化.注意(A )错误的原因是运用性质时没有考虑数.20.当a <0时,化简|2a -2a |的结果是………( )(A )a (B )-a (C )3a (D )-3a【提示】先化简2a ,∵ a <0,∴ 2a =-a .再化简|2a -2a |=|3a |.【答案】D .(四)在实数范围内因式分解:(每小题4分,共8分)21.2x 2-4;【提示】先提取2,再用平方差公式.【答案】2(x +2)(x -2).22.x 4-2x 2-3.【提示】先将x 2看成整体,利用x 2+px +q =(x +a )(x +b )其中a +b =p ,ab =q 分解.再用平方差公式分解x 2-3.【答案】(x 2+1)(x +3)(x-3).(五)计算:(每小题5分,共20分)23.(48-814)-(313-5.02); 【提示】先分别把每一个二次根式化成最简二次根式,再合并同类二次根式.【答案】33.24.(548+12-76)÷3; 【解】原式=(203+23-76)×31=203×31+23×31-76×31=20+2-76×33=22-221. 25.50+122+-421+2(2-1)0;【解】原式=52+2(2-1)-4×22+2×1=52+22-2-22+2=52.26.(b a 3-b a +2a b +ab )÷ab. 【提示】本题先将除法转化为乘法,用分配律乘开后,再化简. 【解】原式=(b a 3-b a +2a b +ab )·b a=b a 3·ba -ba ·ba +2ab ·ba+ab ·ba=a -2)(ba +2+2a =a 2+a -b a+2.【点评】本题如果先将括号内各项化简,利用分配律乘开后还要化简,比较繁琐. (六)求值:(每小题6分,共18分)27.已知a =21,b =41,求b a b --ba b+的值. 【提示】先将二次根式化简,再代入求值. 【解】原式=))(()()(b a b a b a b b a b +---+=b a b ab b ab -+-+=b a b -2.当a =21,b =41时,原式=4121412-⨯=2. 【点评】如果直接把a 、b 的值代入计算,那么运算过程较复杂,且易出现计算错误. 28.已知x =251-,求x 2-x +5的值. 【提示】本题应先将x 化简后,再代入求值. 【解】∵ x =251-=4525-+=25+.∴ x 2-x +5=(5+2)2-(5+2)+5=5+45+4-5-2+5=7+45.【点评】若能注意到x -2=5,从而(x -2)2=5,我们也可将x 2-x +5化成关于x -2的二次三项式,得如下解法:∵ x 2-x +5=(x -2)2+3(x -2)+2+5=(5)2+35+2+5=7+45.显然运算便捷,但对式的恒等变形要求甚高. 29.已知y x 2-+823-+y x =0,求(x +y )x的值.【提示】y x 2-,823-+y x 都是算术平方根,因此,它们都是非负数,两个非负数的和等于0有什么结论? 【解】∵y x 2-≥0,823-+y x ≥0,而 y x 2-+823-+y x =0,∴ ⎩⎨⎧=-+=-.082302y x y x 解得 ⎩⎨⎧==.12y x ∴ (x +y )x =(2+1)2=9.(七)解答题:30.(7分)已知直角三角形斜边长为(26+3)cm ,一直角边长为(6+23)cm ,求这个直角三角形的面积.【提示】本题求直角三角形的面积只需求什么?[另一条直角边.]如何求?[利用勾股定理.]【解】在直角三角形中,根据勾股定理:另一条直角边长为:22)326()362(+-+=3(cm ). ∴ 直角三角形的面积为:S =21×3×(326+)=23336+(cm 2) 答:这个直角三角形的面积为(23336+)cm 2.31.(7分)已知|1-x |-1682+-x x =2x -5,求x 的取值范围.【提示】由已知得|1-x |-|x -4|=2x -5.此式在何时成立?[1-x ≤0且x -4≤0.]【解】由已知,等式的左边=|1-x |-2)4(-x =|1-x |-|x -4 右边=2x -5.只有|1-x |=x -1,|x -4|=4-x 时,左边=右边.这时⎩⎨⎧≤-≤-.0401x x 解得1≤x ≤4.∴ x 的取值范围是1≤x ≤4.。
2015年中考数学试题及答案word

2015年中考数学试题及答案word一、选择题(每题3分,共30分)1. 下列哪个选项是无理数?A. 0.5B. 2C. πD. √4答案:C2. 一个数的平方根是它本身,这个数是:A. 0B. 1C. -1D. 2答案:A3. 一个数的立方等于它本身,这个数是:A. 0B. 1C. -1D. 2答案:A、B、C4. 一个数的倒数等于它本身,这个数是:A. 0B. 1C. -1D. 2答案:B5. 下列哪个选项是二次方程的解?A. x = 1B. x = -1C. x = 2D. x = 3答案:B6. 一个三角形的内角和是:A. 90°B. 180°C. 360°D. 720°答案:B7. 一个圆的周长是2πr,那么它的面积是:A. πr²B. 2πrC. 4πr²D. 2πr³答案:A8. 一个正方体的体积是8立方厘米,那么它的边长是:A. 2厘米B. 4厘米C. 8厘米D. 16厘米答案:A9. 一个数的绝对值是它本身,这个数是:A. 正数B. 负数C. 0D. 非负数答案:D10. 下列哪个选项是等腰三角形的判定条件?A. 两边相等B. 三边相等C. 三角相等D. 两边不等答案:A二、填空题(每题4分,共20分)1. 一个数的相反数是-5,那么这个数是________。
答案:52. 一个数的绝对值是5,那么这个数可以是________或________。
答案:5或-53. 一个三角形的两边长分别为3厘米和4厘米,第三边长为5厘米,那么这个三角形是________三角形。
答案:直角4. 一个数的平方是25,那么这个数是________或________。
答案:5或-55. 一个圆的半径是3厘米,那么它的面积是________平方厘米。
答案:28.26三、解答题(每题10分,共50分)1. 解方程:2x - 3 = 7答案:2x - 3 + 3 = 7 + 32x = 10x = 52. 已知一个直角三角形的两条直角边长分别为3厘米和4厘米,求斜边长。
2015届中考数学专项复习之《整式的乘除》基础测试(含答案)

(一)填空题(每小题2分,共计20分)1.x 10=(-x 3)2·_________=x 12÷x( )【答案】x 4;2. 2.4(m -n )3÷(n -m )2=___________.【答案】4(m -n ).3.-x 2·(-x )3·(-x )2=__________.【答案】x 7.4.(2a -b )()=b 2-4a 2.【答案】-2a -b .5.(a -b )2=(a +b )2+_____________.【答案】-4ab . 6.(31)-2+0=_________;4101×0.2599=__________.【答案】10;16. 7.2032×1931=( )·( )=___________.【答案】20+32,20-32,39995. 8.用科学记数法表示-0.0000308=___________.【答案】-3.08×10-5.9.(x -2y +1)(x -2y -1)2=( )2-( )2=_______________.【答案】x -2y ,1x 2-4xy +4y .10.若(x +5)(x -7)=x 2+mx +n ,则m =__________,n =________.【答案】-2,35.(二)选择题(每小题2分,共计16分)11.下列计算中正确的是…………………………………………………………………( )(A )a n ·a 2=a2n (B )(a 3)2=a 5 (C )x 4·x 3·x =x 7 (D )a 2n -3÷a 3-n =a 3n -6 【答案】D .12.x 2m +1可写作…………………………………………………………………………( )(A )(x 2)m +1 (B )(x m )2+1 (C )x ·x 2m (D )(x m )m +1【答案】C .13.下列运算正确的是………………………………………………………………( )(A )(-2ab )·(-3ab )3=-54a 4b 4(B )5x 2·(3x 3)2=15x 12(C )(-0.16)·(-10b 2)3=-b 7(D )(2×10n )(21×10n )=102n 【答案】D . 14.化简(a n b m )n ,结果正确的是………………………………………………………( )(A )a 2n b mn (B )n m n b a 2 (C )mn n b a 2 (D )nm n b a 2 【答案】C .15.若a ≠b ,下列各式中不能成立的是………………………………………………( )(A )(a +b )2=(-a -b )2 (B )(a +b )(a -b )=(b +a )(b -a ) (C )(a -b )2n =(b -a )2n (D )(a -b )3=(b -a )3 【答案】B .16.下列各组数中,互为相反数的是……………………………………………………( )(A )(-2)-3与23 (B )(-2)-2与2-2 (C )-33与(-31)3 (D )(-3)-3与(31)3 【答案】D .17.下列各式中正确的是………………………………………………………………( )(A )(a +4)(a -4)=a 2-4 (B )(5x -1)(1-5x )=25x 2-1(C )(-3x +2)2=4-12x +9x2 (D )(x -3)(x -9)=x 2-27 【答案】C .18.如果x 2-kx -ab =(x -a )(x +b ),则k 应为…………………………………( )(A )a +b (B )a -b (C )b -a (D )-a -b【答案】B .(三)计算(每题4分,共24分)19.(1)(-3xy 2)3·(61x 3y )2; 【答案】-43x 9y 8. (2)4a 2x 2·(-52a 4x 3y 3)÷(-21a 5xy 2);【答案】516ax 4y . (3)(2a -3b )2(2a +3b )2;【答案】16a 4-72a 2b 2+81b 4.(4)(2x +5y )(2x -5y )(-4x 2-25y 2); 【答案】625y 4-16x 4.(5)(20an -2b n -14a n -1b n +1+8a 2n b )÷(-2a n -3b );【答案】-10ab n -1+7a 2b n -4a n +3.(6)(x -3)(2x +1)-3(2x -1)2. 【答案】-10x 2+7x -6.20.用简便方法计算:(每小题3分,共9分)(1)982;【答案】(100-2)2=9604.(2)899×901+1;【答案】(900-1)(900+1)+1=9002=810000. (3)(710)2002·(0.49)1000. 【答案】(710)2·(710)2000·(0.7)2000=49100. (四)解答题(每题6分,共24分)21.已知a 2+6a +b 2-10b +34=0,求代数式(2a +b )(3a -2b )+4ab 的值.【提示】配方:(a +3)2+(b -5)2=0,a =-3,b =5,【答案】-41. 22.已知a +b =5,ab =7,求222b a +,a 2-ab +b 2的值. 【答案】222b a +=21[(a +b )2-2ab ]=21(a +b )2-ab =211. a 2-ab +b 2=(a +b )2-3ab =4.23.已知(a +b )2=10,(a -b )2=2,求a 2+b 2,ab 的值.【答案】a 2+b 2=21[(a +b )2+(a -b )2]=6, ab =41[(a +b )2+(a -b )2]=2. 24.已知a 2+b 2+c 2=ab +bc +ac ,求证a =b =c . 【答案】用配方法,a 2+b 2+c 2-ab -bc -ac =0,∴ 2(a 2+b 2+c 2-ab -ac -bc )=0,即(a -b )2+(b -c )2+(c -a )2=0.∴ a =b =c .(五)解方程组与不等式(25题3分,26题4分,共7分) 25.⎩⎨⎧+=-+=+-++.3)3)(4(0)2()5)(1(xy y x y x y x 【答案】⎪⎩⎪⎨⎧=-=.237y x26.(x +1)(x 2-x +1)-x (x -1)2<(2x -1)(x -3).【答案】x >-31.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考必考基础题(人人必过关!) 一.填空
1.2
1-的相反数是 ,倒数是 ,绝对值
是 。
2.8的平方根是 ,算术平方根是 ,立方根是 。
3.4= ,±16= ,3
27= 。
4.
3
1= ,
1
31-= 。
5.=-1
2 ,=-2
2 ;
=-2)3
1
( ;0)1(+x = 。
6.把下列各数用科学记数法表示: (1) 380000= ; (2)0.0000023= ; (3)-0.000056= ;
(4)82300要求保留两个有效数字可以表示为 。
7.分解因式: (1)
(2)
=
(3)bc ab += (4)39a a -= (5)x 3y-2x 2y 2+xy 3= 8.当x 时,分式
2
1
-x 有意义。
当x 时,分式2-x 有意义
当x 时,分式
2
1-x 有意义。
9.3是反比例函数x
k y =的图象,
则k 与0的大小关系是k 0. 10.一次函数21y x =-的图象大致是( )
11.如图(1),二次函数y =ax 2
+bx +c 图象
如图所示,则下列结论成立的是( ) A 、a >0,b >0,c >0 B 、 a <0,b >0,c <0 C 、 a >O ,b <0,c <O D 、 a <0,b <0,c >0
二.实数计算
⎛÷ ⎝
3sin60°+2COS45°-3
8
+-2
21
0123-⎛⎫
-+- ⎪⎝⎭
(2009×2010-1)0+(-2)—
1-|-3|+tan60º.
222009394⎪⎭⎫ ⎝
⎛
--+---π
101
()(20094sin 302
---+º-2
-
(π-1)0+1
1()2
-+275--23
三.整式化简
()
()2
121x x ++-
[(2x -y )(2x +y )+y (y -6x )]÷2x ;
)6()3)(3(--+-a a a a
()()()2,x y x y x y x ⎡⎤-+-+÷⎣⎦
四.分式化简
1
)121(2-÷---x x x x x x (写出每一步的理由)
y
x x
y x xy ++-222
2
2
21x x
x x x +∙-
1
)111(2-÷-+
x x
x )1
(1x
x x x -÷-
211()339
a
a a a +÷-+-;
35
(2)482y y y y -÷+---
五.解不等式组
63
142
x x +--
> (写出每一步的理由)
⎪⎩⎪
⎨⎧-≥++>-31212
1
50
2x x x
()⎪⎩
⎪
⎨⎧<-+≤+3212352x
x x x 434212
63x x x x -<5⎧⎪
-+⎨+⎪⎩≤,,(写出每一步的理由)
六.解方程(组)
16
2
23=---x x (写出每一步的理由)
142
312-+=-y y
⎩⎨
⎧-=-=+1039
43y x y x
⎪⎩
⎪
⎨⎧=++=+-=++72413c b a c b a c b a
y=x -2
2x+3y=4。