抗体及抗原的结构与功能关系
抗原抗体结构学

抗原抗体结构学
抗原抗体结构学主要研究抗原和抗体之间的相互作用和结构关系。
抗体是B 细胞与抗原接触时产生的抗原特异性蛋白,作为血浆成分在血液和淋巴中循环。
每个个体都能够合成大量不同的抗体分子,与特定抗原相互作用。
抗体是具有4条多肽链的对称结构,其中2条较长、相对分子量较大的相同的重链(H链);2条较短、相对分子量较小的相同的轻链(L链)。
链间由二硫键和非共价键联结形成一个由4条多肽链构成的单体分子。
轻链有κ和λ两种,重链有μ、δ、γ、ε和α五种。
整个抗体分子可分为恒定区和可变区两部分。
在给定的物种中,不同抗体分子的恒定区都具有相同的或几乎相同的氨基酸序列。
可变区位于“Y”的两臂末端。
在可变区内有一小部分氨基酸残基变化特别强烈,这些氨基酸的残基组成和排列顺序更易发生变异区域称高变区。
高变区位于分子表面,最多由17个氨基酸残基构成,少则只有2 ~ 3个。
高变区氨基酸序列决定了该抗体结合抗原的特异性。
一个抗体分子上的两个抗原结合部位是相同的,位于两臂末端称抗原结合片段。
“Y”的柄部称结晶片段,糖结合在FC上。
以上内容仅供参考,建议查阅专业生物书籍或咨询生物领域专业人士获取更准确和全面的信息。
免疫系统的组成、各成分的功能和相互关系

免疫系统的组成、各成分的功能和相互关系免疫系统是人体抵御外来病原体和维持内环境稳定的重要防线。
它由一系列组织和细胞组成,各成分相互协作,共同维护身体健康。
以下是免疫系统的组成、各成分的功能和相互关系的详细说明:一、免疫系统的组成免疫系统由免疫器官、免疫细胞和免疫分子三部分组成。
免疫器官:包括胸腺、骨髓、淋巴结、脾脏等,是免疫细胞产生、发育、分化和成熟的场所。
免疫细胞:是执行免疫功能的细胞,包括淋巴细胞、巨噬细胞、树突状细胞等。
免疫分子:是由免疫细胞或其他细胞产生的蛋白质和糖蛋白,如抗体、细胞因子等,具有识别、结合和调节免疫反应的作用。
二、各成分的功能淋巴结:作为免疫系统的中枢,负责过滤和输送抗原信息,诱导和激活免疫应答。
巨噬细胞:作为“清道夫”,吞噬和消化衰老或损伤的细胞、细菌和病毒等病原体,并传递抗原信息。
T细胞:分为辅助T细胞、细胞毒T细胞和调节T细胞等,辅助T细胞刺激B细胞产生抗体,细胞毒T细胞杀伤被感染的细胞,调节T细胞调节免疫应答。
B细胞:在抗原刺激下分化为浆细胞,产生特异性抗体,与抗原结合形成复合物,从而中和或消灭抗原。
抗体:由浆细胞分泌,是免疫反应的主要效应分子,可与相应抗原结合,形成沉淀或复合物,被吞噬细胞吞噬消化。
细胞因子:由免疫细胞分泌的调节分子,可调节免疫细胞的分化、增殖和功能,同时也可调节其他细胞的反应。
三、相互关系免疫系统的各组成部分在功能上相互关联、相互影响。
例如,巨噬细胞在识别和清除病原体时产生的抗原信息会传递给淋巴结中的T细胞和B细胞,引发特异性免疫应答。
而辅助T 细胞的激活又可刺激B细胞分化为浆细胞并产生抗体。
此外,抗体与抗原结合形成的复合物又可被巨噬细胞吞噬消化。
这种复杂的相互作用使得免疫系统能够有效地应对各种外来威胁,维护身体的健康。
综上所述,免疫系统是一个精密而复杂的系统,其各组成部分相互协作,共同维护着身体的健康。
了解免疫系统的组成、各成分的功能和相互关系有助于深入理解其工作机制,为疾病预防和治疗提供科学依据。
简述抗体的基本结构和生物学功能

简述抗体的基本结构和生物学功能抗体,也称为免疫球蛋白,是一种由哺乳动物免疫系统产生的蛋白质分子,具有多种结构和功能。
抗体具有重链和轻链组成,每个抗体分子由两个重链和两个轻链组成,形成Y形状。
抗体的基本结构包括可变区和恒定区,可变区决定了抗体的特异性,恒定区则决定了抗体的生物学功能。
抗体的结构可以分为四个区域:两个抗原结合部位,一个球部和一个棒部。
抗原结合部位位于抗体的顶端,并与抗原结合形成特异性复合物。
抗原结合部位的可变区域由重链和轻链的V区域共同决定,具有高度多样性,可以识别并结合多种抗原。
抗体的球部由重链和轻链的C区域组成,决定了抗体的种类和亚类。
棒部由抗体的重链的C区域组成,可与机体免疫细胞相互作用。
抗体的生物学功能包括中和病原微生物、沉淀抗原、激活补体系统、识别和标记异物、调节免疫应答等。
抗体可以通过与病原微生物的抗原结合来中和病原微生物,阻止其侵入机体细胞。
抗体还可以与抗原结合形成沉淀复合物,促使病原微生物和抗原沉淀而不再对机体产生损害。
抗体还可以与补体系统相互作用,激活补体系统来清除病原微生物。
此外,抗体还可以识别和标记异物,使其易于被机体免疫细胞识别和清除。
此外,抗体还可以调节免疫应答,通过与抗原结合来激活或抑制其他免疫细胞的功能,调节免疫应答的强度和方向。
抗体的生物学功能还可以通过其结构的多样性和可选择性来实现。
抗体的可变区域具有高度多样性,可以识别和结合多种抗原,因此可以用于特异性识别和治疗多种疾病。
抗体还可以通过亲和力成对的方式结合抗原,形成二聚体或多聚体,增强抗体的结合力和生物学功能。
总之,抗体具有重链和轻链组成的Y形结构,包括可变区和恒定区。
抗体的主要生物学功能包括中和病原微生物、沉淀抗原、激活补体系统、识别和标记异物、调节免疫应答等。
抗体的多样性和可选择性使其成为免疫系统中重要的分子,具有广泛的应用前景。
免疫学-抗原及抗体

是一类能刺激机体免疫系统使 之产生特异性免疫应答、并能与 相应免疫应答产物(抗体和致敏 淋巴细胞)在体内外发生特异性 结合的物质。
免疫原性和抗原性
➢免疫原性(immunogenicity) 抗原 能刺激特异性免疫细胞,使之活化、增 生、分化,最终产生免疫效应物质; ➢抗原性(antigenicity) 抗原可在体内 外与相应的免疫效应物质发生特异性结 合。
一定的物理性状
❖具有环状结构的蛋白质的免疫原性 比直链分子强;
❖聚合状态的蛋白质较单体免疫原性 强;
❖颗粒性抗原较可溶性抗原强。
完整性
须经非消化道途径进入机 体(包括注射、吸入、混入伤 口),并接触淋巴细胞,才能 成为良好抗原。
抗原特异性
❖特异性 是指物质之间的相互吻合性或针 对性、专一性。
1975年,Köhler 和 Milstein建立了 杂交瘤技术,可获得针对单一抗原决定 簇的高特异性抗体。
➢完全抗原(complete antigen) 具有免疫原性和抗原性的物质;
➢半抗原(hapten) 只有抗原 性而无免疫原性的物质。
➢抗 原 刺 激 是 引 起 机 体 产 生 特 异 性免疫应答的先决条件。
➢耐受原(tolerogen) 在某种情 况下,抗原也可诱导相应的淋巴 细胞克隆对该抗原表现为特异性 无应答状态(免疫耐受)。
超抗原的分类
(Classification of Superantigens) 内源性超抗原(endogenous SAg)
病毒编码的膜蛋白
外源性超抗原(exogenous SAg) 细菌分泌的外毒素
超抗原激活淋巴细胞的特点
❖强大的刺激能力 ❖无须抗原处理 ❖无MHC限制性 ❖选择性结合TCRβ链的V区 ❖激活T细胞的量比丝裂原少 ❖识别T细胞表位和MHC结合
从四个方面举例说明蛋白质的结构与功能之间的关系并做简要阐述

从四个方面举例说明蛋白质的结构与功能之间的关系并做简要阐述蛋白质是生物体内一类重要的有机化合物,其结构与功能之间具有密切的关系。
通过四个方面的例子,我们可以更好地理解蛋白质的结构与功能之间的关系。
1.结构与功能之间的关系:酶酶是一类具有催化作用的蛋白质,其结构与功能之间的关系非常密切。
例如,淀粉酶是一种能够催化淀粉水解成葡萄糖的酶。
淀粉酶的催化作用是通过其特定的结构来实现的。
具体来说,淀粉酶通过其特有的活性位点与底物淀粉分子结合,从而使淀粉分子发生水解反应。
淀粉酶的结构中具有许多氨基酸残基,这些氨基酸残基通过互相作用形成了酶的三维结构,从而使其能够与底物结合并发生催化作用。
因此,淀粉酶的特定结构决定了其特定的功能。
2.结构与功能之间的关系:抗原与抗体抗原是指能够诱导免疫系统产生抗体的物质。
抗原与抗体之间的相互作用是通过它们的结构来实现的。
例如,抗原通常通过其特定的结构域与抗体中的抗原结合位点结合,从而触发免疫反应。
抗体是由蛋白质组成的,具有与抗原结合的结构域。
抗原与抗体之间的结合是高度特异性的,即一个特定的抗原只能与一个特定的抗体结合。
这是因为抗原与抗体之间的结合是通过互补的结构基础实现的。
抗原与抗体之间的结构互补性是由其氨基酸序列决定的,不同的氨基酸排列可导致不同的结构,从而决定抗原与抗体的结合特异性。
3.结构与功能之间的关系:信号传导许多蛋白质参与信号传导,其结构与功能之间的关系非常重要。
例如,蛋白激酶是一类能够将细胞内信号转导为细胞内化学反应的蛋白质。
蛋白激酶的结构中包含一个催化结构域和一个信号传递结构域。
催化结构域用于将底物分子催化为产物,而信号传递结构域则用于感知细胞外信号并将其传递给催化结构域。
蛋白激酶的结构决定了其信号传导的效率和特异性。
不同的蛋白激酶在结构上有所差异,从而导致其在信号传导过程中具有不同的功能。
4.结构与功能之间的关系:运输与储存蛋白质在细胞内扮演着运输和储存物质的重要角色,其结构与功能之间的关系也很重要。
抗原与抗体的区别通俗易懂

抗原与抗体的区别通俗易懂
抗原和抗体具有本质上的区别,主要表现在性质、特点和功能这三个方面,但是两者又是一种密不可分的关系,因为只有抗原才能够产生抗体。
1、性质不同:抗体是在抗原的刺激下产生的具有保护作用的蛋白质,主要是由效应B细胞分泌,是一种免疫球蛋白,主要是用来鉴别与中和外来的物质,例如细菌、病毒、寄生虫等,主要是存在于血液中。
抗原是指能够引发抗体生成的物质,所以抗体所识别的外来物质就是抗原;
2、特点不同:抗体包括IgG、IgM、IgA等,其中IgG是在出生后3个月左右开始生成,在4岁时可以达到成人水平,IgM在血清中的浓度大约是1mg/ml,IgA包括又有血清型和分泌型两种。
而抗原不分类,抗原主要是看分子量,其分子量越大,活性就越强,抗原还具有特异性的特点,主要与相应的T细胞结合发生特异性反应;
3、功能不同:减毒后的抗原可以制成疫苗,有预防疾病的作用,有时也根据微生物抗原的特异性进行各种试验。
而抗体产生之后,可以有效地清除体内有害的微生物和寄生虫等物质。
抗体结构与功能之间关系的深入认识

抗体结构与功能之间关系的深入认识引言:抗体是人体免疫系统中重要的成分,能够识别和抵御外源性病原体,维护机体免疫稳态。
抗体的结构与功能之间存在紧密联系,其结构的细微变化能够对功能产生重大影响。
深入认识抗体的结构与功能之间的关系对于免疫学的研究和开发新药具有重要意义。
本文将从抗体的结构和功能两个方面,探讨其之间的关系,以期加深对该领域的认识。
一、抗体的结构:1. 抗体的组成:抗体分子由两部分组成:重链和轻链。
重链有两条,分别称为H链,轻链有两条,分别称为L链。
H链和L链通过二硫键连接在一起,形成一条完整的抗体分子。
抗体分子的两个末端有高度多样化的变量区,其中的氨基酸序列决定了抗体的特异性。
2. 抗体的结构域:抗体分子可划分为三个结构域:Fab、Fc和FcR。
Fab (Fragment antigen-binding)位于抗体的两个末端,包含抗原结合位点,可与抗原分子结合。
Fc(Fragment crystallizable)位于抗体分子的中部,由H链的常变区组成,可与免疫效应细胞进行结合。
FcR(Fc receptor)是一类与Fc结合的受体分子,介导了抗体的免疫效应。
二、抗体的功能:1. 抗原结合和识别:抗体的最主要功能是识别和结合抗原,抗原通常是病原体表面的分子。
抗体的变量区通过与抗原表面的特定结构相互作用,形成抗原-抗体复合物。
这种结合可以阻止病原体进一步侵入机体细胞,或者标记病原体,促使免疫效应细胞进行清除。
2. 免疫效应的调节:抗体通过结合Fc受体分子,调节机体免疫效应。
FcR 的活化可以激活免疫效应细胞,如巨噬细胞和自然杀伤细胞,促进病原体的摧毁。
此外,抗体也可以通过FcR的活化调节炎症反应,增强或抑制炎症过程。
3. 细胞介导的毒杀作用:某些抗体能够通过结合潜在病原体表面的抗原,直接诱导细胞发动毒杀作用。
例如,由特定抗体介导的细胞毒杀过程中,免疫效应细胞释放的溶酶体酶能够直接作用于病原体,引起其溶解或破坏。
简述抗体的结构及其功能

简述抗体的结构及其功能1. 抗体的结构概述1.1 抗体的基本形态抗体,听起来是不是很高大上?其实,它们也不过是一群非常聪明的“免疫小卫士”。
它们的外形看起来像个字母“Y”,两条“手臂”加上一条“杆子”,这个形象有点像古代神话里的神杖。
不过,这个“Y”不仅仅是为了好看,它其实是抗体功能的关键所在。
每个抗体都有两个“手臂”,这两个手臂叫做“重链”和“轻链”,它们就像超级好搭档,一个负责抓捕敌人,另一个则负责汇报情况。
抗体的两条手臂末端有特殊的区域叫做“抗原结合部位”,就像每个警察都有一个专门的证件,抗体则有它们专属的“证书”,可以精准地识别并绑定到特定的入侵者身上。
这种“锁和钥匙”的关系,简直就是科学界的经典搭档。
1.2 抗体的结构细节抗体的“杆子”部分被称为“恒定区”,它的主要工作是支撑整个抗体的结构,稳定而牢固。
这个部分就像是抗体的“基石”,确保抗体不会像没有支撑的建筑一样崩溃。
而抗体的“手臂”部分则是“可变区”,这里的每一个小细节都可能有所不同,让每个抗体都能独特地识别各种入侵者。
简直就是免疫系统的“特工”,随时准备迎接不同的挑战。
2. 抗体的功能2.1 抗体的识别与中和抗体的主要功能之一就是识别外来的入侵者,比如病毒和细菌。
想象一下,抗体就像是精明的侦探,专门在体内寻找那些不速之客。
一旦找到,抗体就会通过它们的“手臂”紧紧地抓住这些入侵者。
然后,它们会把这些入侵者“锁住”,或者把它们送去“接受审判”。
这个过程称为“中和”,就是把入侵者搞定的意思。
抗体可以帮助消灭病毒,阻止它们在体内繁殖,简直是“天降神兵”。
2.2 抗体的标记与清除除了直接中和,抗体还有另一个重要功能,就是给入侵者打上“标签”,让其他免疫细胞更容易找到它们。
抗体会在入侵者的表面附上标记,这样那些专业的“清理工”就能迅速识别并处理这些入侵者了。
这个过程就像是给坏人贴上了“通缉令”,让他们无处遁形。
免疫系统的“清理队”会迅速行动,确保体内环境干净利索。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
抗体及抗原的结构与功能关系赵颖, 指导教师:杨俊年生命科学与工程学院2010级生物技术(201013064140)摘要:抗原是一类能够诱导机体免疫应答并能与相应抗体或T细胞受体发生特异性免疫的物质。
这些物质对机体来说是外源的,即非自身的。
但在特定条件下,机体某些自身成分也能被免疫系统当成抗原来识别。
抗体是一种糖蛋白,存在于血清蛋白的γ-球蛋白组分中,故又称免疫球蛋白。
抗原刺激机体产生免疫应答,抗体是体液应答的产物。
抗体与抗原能特异性的非共价结合,引发一系列生物学效应。
关键字:抗原抗体特异性免疫受体1 抗体1.1 免疫球蛋白指具有抗体活性的动物蛋白。
主要存在于血浆中,也见于其他体液、组织和一些分泌液中。
人血浆内的免疫球蛋白大多数存在于丙种球蛋白(γ-球蛋白)中。
1.2 免疫球蛋白分类免疫球蛋白可分为五类,即免疫球蛋白G(IgG)、免疫球蛋白A(IgA)、免疫球蛋白M(IgM)、免疫球蛋白D(IgD)和免疫球蛋白E(IgE),IgG,IgA和IgM还有亚类。
IgG,IgD,IgE均为单体,分泌液中IgA(SIgA)是双体,IgM是五聚体。
1.3 免疫球蛋白结构Ig 分子的基本结构是由四肽链组成的,即由二条相同的分子量较小的轻链(L 链)和二条相同的分子量较大的重链(H 链)组成的。
L链与H链是由二硫键连接形成一个四肽链分子,称为Ig分子的单体,是构成免疫球蛋白分子的基本结构。
现已知5 种免疫球蛋白中IgG、IgA 和IgD的H链各有一个可变区(VH)和三个恒定区(CH1、CH2 和CH3)共四个功能区。
IgM和IgE 的H链各有一个可变区(VH)和四个恒定区(CHl、CH2、CH3 和CH4)共五个功能区。
VL和VH 是与抗原结合的部位,单体由一对L链和一对H链组成的基本结构,只有2 个与抗原结合的位点,如IgG、IgD、IgE、血清型IgA;双体由J链连接的两个单体,有4 个与抗原结合的位点,如分泌型IgA(SIgA),所以SigA 结合抗原的亲合力要比血清型IgA 高。
五聚体由J 链和二硫键连接五个单体,如IgM。
五聚体IgM 理论上应为10 个与抗原结合的位点,但实际上由于立体构型的空间位阻,—般只有5 个结合点可结合。
H和L链上都有可变区,同类重链和同型轻链的近N端约110个氨基酸序列的变化很大,其他部分的氨基酸序列相对恒定,据此可将轻链和重链区分为可变区(V)和恒定区(C)。
VH和VI。
各有3个区域的氨基酸组成和排列顺序高度变化,称为高变区(HVR)或互补决定区(CDR),分别为CDRl、CDR2和CDR3。
CDR以外区域的氨基酸组成和排列顺序相对不易变化,称为骨架区(FR)。
VH和VI。
各有113和107个氨基酸残基,组成4个FR(分别为FRl、FR2、FR3和FR4)和3个CDRs。
VH和VI-中的各氨基酸可编号,一些保守的氨基酸都有其固定的编号位置,将不同序列和已编号的序列进行对比以后,在某个位置上多出来氨基酸编号为A、B、C等,如27A、27B、27C、106A等。
VH和VL的3个CDR共同组成Ig的抗原结合部位,识别及结合抗原,并决定抗体识别的特异性。
1.4 免疫球蛋白的功能人体血清免疫球蛋白IgG是初级免疫应答中最持久、最重要的抗体,它仅以单体形式存在。
大多是抗菌性、抗毒性和抗病毒抗体属于IgG,它在抗感染中起到主力军作用,它能够促进单核巨噬细胞的吞噬作用(调理作用),中和细菌毒素的毒性(中和毒素)和病毒抗原结合使病毒失去感染宿主细胞的能力(中和病毒)。
IgG 在机体合成的年龄要晚于IgM,在出生后第3 个月开始合成,3-5 岁接近成年人水平。
它是唯一能通过胎盘的Ig,在自然被动免疫中起重要作用。
此外,IgG 还具有调理吞噬和结合SPA等作用。
IgA 分血清型和分泌型两种,血清型多为单体,也有二聚体,分泌型的都是二聚体,且含有分泌片。
血清型IgA可介导调理吞噬ADCC 作用;分泌型IgA(SIgA)是机体粘膜防御系统的主要成分,覆盖在鼻、咽、气管、肠和膀胱粘膜的表面,它能抑制微生物在呼吸道上皮附着,减缓病毒繁殖,是粘膜重要屏障,对某些病毒、细菌和—般抗原具有抗体活性,是防止病原体入侵机体的第一道防线。
外来抗原进入呼吸道或消化道,局部免疫系统受到刺激后,无需中央免疫系统的参与,自身就可进行免疫应答,产生分泌型抗体,即SIgA。
已有研究证明,呼吸道分泌液中SigA 含量的高低直接影响呼吸道粘膜对病原体的抵抗力,两者呈正相关。
初乳中含有分泌型的sIgA。
IgA的凝聚物可以通过经典途径激活补体。
IgM 是抗原刺激诱导体液免疫应答中最先产生的Ig ,IgM 不是细胞,但可结合补体,主要分布于血清中。
由于IgM 有较高的结合价,所以是高效能的抗生物抗体,其杀菌、溶菌、促吞噬和凝集作用比IgG 高500- 1000 倍,IgM 在机体的早期防御中起着重要的作用。
2 抗原2.1 抗原(antigen, Ag)是一类能诱导免疫系统发生免疫应答,并能与免疫应答的产物(抗体或效应细胞)发生特异性结合的物质。
抗原具有免疫原性和反应原性两种性质。
2.2 抗原的分类2.2.1 按抗原性质可以分为完全抗原和不完全抗原2.2.2 按抗原刺激B细胞产生抗体是否而要T细胞协助可分为胸腺依赖性抗原(TD-Ag)和胸腺非依赖性抗原(TI-Ag)。
TD-Ag是指需要T细胞辅助和巨噬细胞参与才能激活B细胞产生抗体的抗原性物质。
TD抗原免疫应答特点:能引起体液免疫应答也能引起细胞免疫应答;产生IgG等多种类别抗体;可诱导产生免疫记忆。
TI-Ag是指无需T细胞辅助可直接刺激B细胞产生抗体的抗原,其特点是,只能引起体液免疫应答;只能产生IgM类抗体;无免疫记忆。
2.2.3 抗原 - 抗原分子2.3 抗原 - 结构抗原在化学结构上与机体自身不同,具有异物性:2.3.1 异种物质。
从生物进化过程来看,异种动物间的血缘关系越远,则免疫原性越强。
如马的血清和各种微生物与人的血缘关系远,所以免疫原性强。
而马的血清与驴、骡的血缘关系近,所以免疫原性相对就弱。
2.3.2 同种异体物质。
如人的红细胞抗原物质和人的白细胞抗原等。
2.3.3 自身物质。
自身物质一般不具免疫原性。
有些物质如隐蔽的自身成分(眼晶体蛋白、精子等),在正常情况下与免疫系统是隔绝的。
但是一旦屏障遭到破坏,这些物质进入血流,即可与免疫活性细胞接触而成为自身抗原异物。
另外,自身物质在外伤、感染、药物和射线的影响下,其理化性质发生质的改变时,也可成为具有免疫原性的抗原物质。
2.4 抗原的功能2.4.1 捕获与处理辅佐细胞可通过多种方法捕获抗原,例如吞噬作用(对同种细胞或细菌等大型颗粒)和胞饮作用(对病毒等微小颗粒或大分子)等。
这种吞噬和吞饮作用无抗原特异性,可能的识别机制在于吞噬细胞与被吞噬颗粒之间的表面亲水性差异。
另外还有受体介导的内摄作用,这是弱吞噬力的辅佐细胞捕获抗原的主要方式,例如B细胞可借助抗原受体(表面免疫球蛋白)与相应的抗原特异性结合,并将抗原内化处理。
这些捕获方式与中性粒细胞的吞噬作用。
抗原呈递细胞处理抗原过程示意图抗原处理(antigenprocessing)是指辅佐细胞将天然抗原转变成可被TH细胞识别形式的过程;这一过程包括抗原变性、降解和修饰等。
例如细菌在吞噬体内被溶菌酶消化降解,将有效的抗原肽段加以整理修饰,并将其与MHC?类分子相连接,然后转运到细胞膜上。
可与MHC?类分子结合的都是蛋白性抗原;多糖和脂类不易于MHC?类分子连接,难以被TH细胞识别,因而多不是良好的免疫原;但有时可以诱导抗体性免疫应答。
2.4.2 递呈抗原递呈(antigenpresentation)是辅佐细胞向辅助性,细胞展示抗原和MHC?类分子的复合物,并使之与TCR结合的过程。
这个过程是几乎所有淋巴细胞活化的必需步骤。
抗原递呈之前,经处理后的抗原肽段已经连接在MHC分子顶端的槽中,这个复合物便是TCR的配体。
TCR与配体结合的精确模式尚未清楚,一个合理的说法是TCR中α和β链的V段接触MHC分子的α螺旋(形成MHC分子顶端槽的肽段),使高可变的连接部(V-J及V-D-J)与抗原肽段相结合。
这样保证了TCR识别抗原的特异性。
超抗原的递呈有独特的模式,它不需要胞内处理,可以直接与MHC?类分子结合。
超抗原不结合在MHC?类分子的顶端槽中,而是结合在槽的外侧;与TCR结合时,不结合其α链,只结合β链的V节段。
超抗原对TCR和MHC?类分子的结合都非常牢固,象一支双向钩子将T细胞和辅佐细胞紧紧地连在一起,很容易使T细胞活化。
另外,任何超抗原都只与含特殊β链V节段的TCR结合,这样的TCR约占外周T细胞总数的1%,10%,这一数字远远大于任何普通抗原所能识别的细胞数;所以某些产毒细胞感染时,容易发生急性期素休克综合征,就是超抗原刺激的结果。
3 抗原与抗体抗体能特异性地识别相应的抗原,并与之结合。
这种结合在体外也能发生,这种抗原抗体反应模式图特性就是许多免疫检测方法的基础。
抗原与抗体相互作用是非共价的,可逆的,其特性符合许多化学反应的基本原理。
但因为抗体分子的结构特点,以及抗原分子结构的多样性,使抗原抗体结合反应表现出复杂性。