利用奇偶对称性算二三重积分
二重积分及三重积分的计算

第一部分 定积分的计算一、定积分的计算例1 用定积分定义求极限.)0(21lim 1>++++∞→a nn a a a a n . 解 原式=⎰∑=⋅⎪⎭⎫ ⎝⎛=∞→1011lim aani n x n n i dx =a a x a +=++11111.例2 求极限 ⎰+∞→1021lim xx n n dx . 解法1 由10≤≤x ,知nn x x x ≤+≤210,于是⎰+≤1210x x n ⎰≤1n x dx dx .而⎰10nx ()∞→→+=+=+n n n x dx n 0111101,由夹逼准则得⎰+∞→1021lim xx n n dx =0.解法2 利用广义积分中值定理()()x g x f ba⎰()()⎰=bax g f dx ξdx (其中()x g 在区间[]b a ,上不变号),().101111212≤≤+=+⎰⎰n n nn dx x dx xx ξξ由于11102≤+≤nξ,即211nξ+有界,()∞→→+=⎰n n dx x n01110,故⎰+∞→1021lim x x nn dx =0. 注 (1)当被积函数为()22,x a x R +或()22,a x x R -型可作相应变换.如对积分()⎰++3122112xxdx,可设t x tan =;对积分()02202>-⎰a dx x ax x a,由于()2222a x a x a x --=-,可设t a a x s i n =-.对积分dx e x ⎰--2ln 021,可设.sin t e x =-(2)()0,cos sin cos sin 2≠++=⎰d c dt td t c tb t a I π的积分一般方法如下:将被积函数的分子拆项,[分子]=A[分母]+B[分母]',可求出22d c bdac A ++=,22dc adbc B +-=. 则积分 ()220cos sin ln 2cos sin cos sin πππtd t c B A dt td t c t d t c B A I ++=+'++=⎰.ln2dc B A +=π例3 求定积分()dx x x x ⎰-1211arcsin分析 以上积分的被积函数中都含有根式,这是求原函数的障碍.可作适当变换,去掉根式. 解法1 ()dxx x x ⎰-1211arcsin 2t x xt ==12121211212arcsin arcsin arcsin 21arcsin 2tt d t dt tt ==-⎰⎰.1632π= 解法2 ()dx x x x⎰-1211arcsin .163cos sin cos sin 2sin 2242242πππππ==⋅=⎰u du u u uu u u x 小结 (定积分的换元法)定积分与不定积分的换元原则是类似的,但在作定积分换元()t x ϕ=时还应注意:(1)()t x ϕ=应为区间[]βα,上的单值且有连续导数的函数; (2)换限要伴随换元同时进行;(3)求出新的被尽函数的原函数后,无需再回代成原来变量,只要把相应的积分限代入计算即可.例4 计算下列定积分(1)⎰+=2031cos sin sin πx x xdx I , dx xx x I ⎰+=2032cos sin cos π; (2).1cos 226dx e xx ⎰--+ππ解 (1)⎰+=2031cos sin sin πxx xdxI)(sin cos cos 2023du uu uu x -+-=⎰ππ=.sin cos cos 223⎰=+πI dx xx x故dx xx xx I I ⎰++==203321cos sin cos sin 21π=()41cos cos sin sin 212022-=+-⎰ππdx x x x x . (2)=I .1cos 226dx e xx ⎰--+ππ()dxe xdu e uu x x u ⎰⎰--+=-+-=2262261cos 1cos ππππ⎥⎦⎤⎢⎣⎡+++=⎰⎰--2222661cos 1cos 21ππππdx e x dx e x e I x xx.3252214365cos cos 21206226πππππ=⨯⨯⨯===⎰⎰-xdxxdx这里用到了偶函数在对称取间上的积分公式以及公式:dx xdx n n⎰⎰=2020cos sin ππ()()()()()()⎪⎪⎩⎪⎪⎨⎧=⋅⨯-⨯--=⨯-⨯--=偶数奇数n n n n n n n n n n ,22421331,1322431π小结 (1)常利用线性变换把原积分化为可抵消或可合并的易于积分的形式。
(整理)多元函数积分

(整理)多元函数积分多元函数积分1. 利用积分区域的对称性化简多元函数的积分1.1 利用积分区域的对称性化简多元函数的重积分题型一计算积分区域具有对称性,被积函数具有奇偶性的重积分类型(一)计算积分区域具有对称性、被积函数具有奇偶性的二重积分常用下述命题简化计算二重积分.命题1 若f(x,y)在积分区域D 上连续,且D 关于y 轴(或x 轴)对称,则(1)f(x,y)是D 上关于x (或y )的奇函数时,有??=Ddxdy y x f 0),(;(2)f(x,y)是D 上关于x (或y )的偶函数时,有=D D dxdy y x f dxdy y x f 1),(2),(;其中D 1是D 落在y 轴(或x 轴)一侧的那一部分区域.命题2 若D 关于x 轴、y 轴对称,D 1为D 中对应于x ≥0,y ≥0(或x ≤0,y ≤0)的部分,则-=--=-=-=D D y x f y x f y x f y x f y x f y x f dxdy y x f dxdy y x f ).,(),(),(,0),,(),(),(,),(4),(1或命题3 设积分区域D 对称于原点,对称于原点的两部分记为D 1和D 2.(1);),(2),(),,(),(1==--D D d y x f d y x f y x f y x f σσ则若(2).0),(),,(),(??=-=--Dd y x f y x f y x f σ则若命题4 积分区域D 关于y x ,具有轮换对称性,则+==DD D d x y f y x f d x y f d y x f σσσ)],(),([21),(),( 记D 位于直线y=x 上半部分区域为D 1,则-===D D y x f x y f y x f x y f dxdy y x f dxdy y x f ),,(),(,0),,(),( ,),(2),(1类型(二)计算积分区域具有对称性,被积函数具有奇偶性的三重积分.常用下述命题简化具有上述性质的三重积分的计算.命题1若Ω关于xOy 平面对称,而Ω1是Ω对应于z ≥0的部分,则Ω∈?=-Ω∈?--=-=ΩΩ;),,(),,,(),,(,),,(2,),,(),,,(),,(,0),,(1z y x z y x f z y x f d z y x f z y x z y x f z y x f d z y x f υυ 若Ω关于yOz 平面(或zOx 平面)对称,f 关于x (或y )为奇函数或偶函数有类似结论.命题2 若Ω关于xOy 平面和xOz 平面均对称(即关于x 轴对称),而Ω1为Ω对应于z ≥0,y ≥0的部分,则=ΩΩ为奇函数;或关于,当为偶函数,关于当z y f z y f d z y x f d z y x f 0,,),,(4),,(1υυ 若Ω关于xOz 平面和yOz 平面均对称(即关于z 轴对称),或者关于xOy 平面和yOz 平面均对称,那么也有类似结论.命题3 如果积分区域Ω关于三个坐标平面对称,而Ω1是Ω位于第一象限的部分,则=ΩΩ为奇函数;或或关于,当均为偶函数,关于当z y x f z y x f d z y x f d z y x f 0,,,),,(8),,(1υυ 命题4 若积分区域Ω关于原点对称,且被积函数关于x,y,z 为奇函数,即.0),,(),,,(),,(=----=Ωυd z y x f z y x f z y x f 则题型三计算积分区域具有轮换对称性的三重积分命题5 如果积分区域关于变量x,y,z 具有轮换对称性(即x 换成y,y 换成z,z 换成x ,其表达式不变),则ΩΩΩΩ++===υυυυd y x z f x z y f z y x f d y x z f d x z y f d z y xf )],,(),,(),,([31),,(),,(),,(.1.2 利用积分区域的对称性化简第一类曲线积分、曲面积分题型一计算积分曲线(面)具有对称性的第一类曲线(面)积分类型(一)计算积分曲线具有对称性的第一类曲线积分命题1.2.1 设曲线L 关于y 轴对称,则=??,0,),(2),(1L L ds y x f s d y x f 是奇函数,关于是偶函数,关于x y x f x y x f ),(),( 其中L 1是L 在x ≥0的那段曲线,即L 1是L 在y 轴右侧的部分;若曲线L 关于x 轴对称,则有上述类似结论.命题1.2.2 设f(x,y)在分段光滑曲线L 上连续,若L 关于原点对称,则=??,LL ds y x f s d y x f ),(2,0),( 为偶函数,关于若为奇函数,关于若),(),(),(),(y x y x f y x y x f 其中L 1为L 的右半平面或上半平面部分.类型(二)计算积分曲面具有对称性的第一类曲面积分第一类曲面积分的奇偶对称性与三重积分类似,可利用下述命题简化计算.命题1.2.3 设积分曲面Σ关于yOz 对称,则=∑∑1),,(2,0),,(dS z y x f dS z y x f 为偶函数,关于当为奇函数,关于当x z y x f x z y x f ),,(),,( 其中Σ1是Σ在yOz 面的前侧部分.若Σ关于另外两坐标面有对称性,则有类似结论.注意不能把Σ向xOy 面上投影,因第一类曲面积分的Σ投影域面积不能为0.题型二计算平面积分曲线关于y=x 对称的第一类曲线积分命题1.2.4 若L 关于直线y=x 对称,则??=L Lds x y f ds y x f ),(),(. 题型三计算空间积分曲线具有轮换对称性的第一类曲线积分命题1.2.5 若曲线Γ方程中的三变量x,y,z 具有轮换对称性,则ΓΓΓΓΓΓ====ds z ds y ds x zds yds xds 222,. 1.3 利用积分区域的对称性化简第二类曲线积分、曲面积分题型一计算积分曲线具有对称性的第二类曲线积分第二类曲线积分的奇偶对称性与第一类曲线积分相反,有下述结论.命题1.3.1 设L 为平面上分段光滑的定向曲线,P(x,y),Q(x,y)连续,(1)L 关于y 轴对称,L 1是L 在y 轴右侧部分,则=??,),(2,0),(1L L dx y x P dx y x P 为偶函数;关于若为奇函数,关于若x y x P x y x P ),(),( =??,),(2,0),(Q 1L L dy y x Q dy y x .),(),(为奇函数关于若为偶函数,关于若x y x Q x y x Q (2)L 关于x 轴对称,L 1为L 在x 轴上侧部分,则=??,),(2,0),(1L L dx y x P dx y x P 为奇函数;关于若为偶函数,关于若y y x P y y x P ),(),( =??,),(2,0),(1L L dy y x Q dy y x Q .),(),(为偶函数关于若为奇函数,关于若y y x Q y y x Q (3)L 关于原点对称,L 1是L 在y 轴右侧或x 轴上侧部分,则+=+,2,0),(),(1L L L Qdy Pdx dy y x Q dx y x P .),(),(),,(),(),(),,(为奇函数关于若为偶函数,关于若y x y x Q y x P y x y x Q y x P (4)L 关于y=x 对称,则.),(),(),(),(),(),(+-=+=+-LL L dx x y Q dy x y P dx x y Q dy x y P dy y x Q dx y x P 即若L 关于y=x 对称,将x 与y 对调,则L 关于直线y=x 翻转,即L 化为L —.因而第二类曲线积分没有轮换对称性.题型二计算积分曲面具有对称性的第二类曲面积分命题1.3.2 设Σ关于yOz 面对称,则=∑∑,0,),,(2),,(1dydz z y x P dydz z y x P .),,(),,(为偶函数关于当为奇函数,关于当x z y x P x z y x P 其中Σ1是Σ在yOz 面的前侧部分.这里对坐标y 和z 的第二类曲面积分只能考虑Σ关于yOz 面的对称性,而不能考虑其他面,这一点也与第一类曲面积分不同.2. 交换积分次序及转换二次积分题型一交换二次积分的积分次序※直接例题,无讲解.题型二转换二次积分转换二次积分是指将极坐标系(或直角坐标系)下的二次积分转换成直角坐标系(或极坐标系)下的二次积分.由极坐标系(或直角坐标系)下的二次积分的内外层积分限写出相应的二重积分区域D 的极坐标(或直角坐标)表示,再确定该区域D 在直角坐标系(或极坐标系)中的图形,然后配置积分限.3. 计算二重积分题型一计算被积函数分区域给出的二重积分含绝对值符号、最值符号max 或min 及含符号函数、取整函数的被积函数,实际上都是分区域给出的函数,计算其二重积分都需分块计算.题型二计算圆域或部分圆域上的二重积分当积分区域的边界由圆弧、过原点的射线(段)组成,而且被积函数为)(22y x f y x m n +或)/(x y f y x m n 的形状时,常作坐标变换θθsin ,cos r y r x ==,利用极坐标系计算比较简单.为此,引进新变量r,θ,得到用极坐标(r ,θ)计算二重积分的公式:=')sin ,cos (),(D D rdrd r r f dxdy y x f θθθ (其中rd θdr 是极坐标系下的面积元素). 用极坐标系计算的二重积分,就积分区域来说,常是圆域(或其一部分)、圆环域、扇形域等,可按其圆心所在位置分为下述六个类型(其中a,b,c 均为常数).类型(一)计算圆域x 2+y 2≤a 上的二重积分. 类型(二)计算圆域x 2+y 2≤2ax 上的二重积分.类型(三)计算圆域x 2+y 2≤-2ax 上的二重积分.类型(四)计算圆域x 2+y 2≤2ay 上的二重积分.类型(五)计算圆域x 2+y 2≤-2ay 上的二重积分.类型(六)计算圆域x 2+y 2≤2ax+2by+c 上的二重积分.4. 计算三重积分题型一计算积分区域的边界方程均为一次的三重积分当积分区域Ω主要由平面围成时,宜用直角坐标系计算,如果积分区域Ω的边界方程中含某个坐标变量的方程只有两个,则可先对该坐标变量积分。
高等数学§9.3.2三重积分的计算2

x c os z
显 然 : y s 。 in
z z
M(x,y,z)
c o s 0 i s n
y J ( ( x , , y , , z z ) ) s i c n 0 o , s O
00 1 x
P(,)
∴ f (x, y, z)dxdydz f ( cos, sin, z) dddz.
z cr cos .
x2 a2
by22
cz22
r2.
r1
I (a x 2 2 b y2 2c z2 2)dx d y r2 d Jd z rd d
Jabcr2sin
I a b c 0 2 d0 s in d0 1 r 4 d r 54abc.
例 1 1 . 求 I ( a x 2 2 b y 2 2 c z 2 2 ) d x d y d z , :a x 2 2 b y 2 2 c z 2 2 1 .
f (rs ic n o ,rss isn i,r n c o )r2 s id n r d d
例 1 1 . 求 I ( a x 2 2 b y 2 2 c z 2 2 ) d x d y d z , :a x 2 2 b y 2 2 c z 2 2 1 .
x ar sin cos , 解: y br sin sin ,
zzu,v,w
( 2 ) 上 面 变 换 中 的 函 数 在 区 域 具 连 续 偏 导 有 数 ;
( 3 ) J u x , , v y , , w z 0 , u , v , w , 则
f (x, y,z)dxdydz
f(xu ,v,w ,yu ,v,w ,z(u ,v,w )Jdudv
z
d
d
dz
计算二重积分的几种简便方法

计算二重积分的几种简便方法摘要:本文旨在探讨计算二重积分的几种简便方法,通过对不同方法的比较和分析,旨在提高计算效率和准确性。
文章首先介绍了二重积分的基本概念及其在计算中的重要性,随后详细阐述了极坐标法、换元法、对称性法,并结合具体实例展示了这些方法的应用过程。
关键词:二重积分;极坐标法;换元法;对称性法一、引言二重积分是数学分析中的重要内容,广泛应用于物理、工程、经济等领域。
然而,二重积分的计算往往较为复杂,需要选择合适的方法进行简化。
因此,本文旨在探讨计算二重积分的简便方法,为相关领域的研究者提供实用的计算工具。
二、二重积分的基本概念与重要性1.二重积分的定义二重积分是多元函数积分学中的一个基本概念,它描述了一个二元函数在某一给定二维区域上的面积积分。
具体而言,二重积分可以看作是函数值在二维平面上某区域内所有点的累积和,或者理解为函数曲面在指定区域内与坐标平面所围成的体积。
形式上,二重积分可以表示为对两个变量的连续积分,通常写成∫∫f(x,y)dxdy的形式。
2.二重积分的几何与数值意义从几何角度看,二重积分可以表示某个二维区域内函数曲面的面积或者体积。
当被积函数为1时,二重积分计算的就是该区域的面积;当被积函数表示某种密度或强度时,二重积分则计算的是该区域内的总质量或总强度。
因此,二重积分在几何和物理领域具有广泛的应用。
从数值角度看,二重积分提供了一种计算函数在一定区域内平均值的方法。
此外,通过二重积分还可以研究函数的极值、曲线的长度等性质,进而揭示函数图形的变化规律。
3.二重积分的应用领域与范围二重积分在自然科学、工程技术和社会科学等多个领域具有广泛的应用。
在物理学中,二重积分用于计算质心、转动惯量、引力势能等;在经济学中,可以用于计算总收入、总成本等经济指标;在图像处理、计算机视觉等领域,二重积分也被用于计算图像特征、积分变换等。
此外,二重积分还广泛应用于地理学、气象学、生物医学等领域,用于解决各种实际问题。
概率论 二重积分的计算(二)

2 ( y x2 )dxdy 2 ( x2 y)dxdy
D1
D2
201dx
1
x2
(
y
x2 )dy
201dx
x
0
2
(x2
y)dy.
例3.17——3.18不作要求
小结
一、二重积分在直角坐标系中计算
D
f (x, y)dxdy
b
dx
a
y2 ( x) y1 ( x )
2
dy
2 y y2
x2 y2 dx
D
0
0
二重积分在极坐标下的计算
例6 计算 (x2 y2 )dxdy,其中D由圆x2 y2 2y,
x2 y2 4y, x D 3y 0, y 3x 0所围成的平面区域.
解
x2 y2 2 y r 2sinθ
x2 y2 4 y r 4sin
当积分区域由直线和除圆以外的其它曲线围成时,
通常选择在直角坐标系下计算.
二重积分计算过程
选择坐标系
选择积分次序
化为累次积分
计算累次积分
二重积分在极坐标下的计算
二. 利用区域的对称性和函数的奇偶性计算二重积分
(1)若D关于y轴对称,则
2 f ( x, y)dxdy, f ( x, y) f ( x, y)
x
3y 0
θ1
π
6π
y 3x 0 θ2 3
故
( x2 y2 )dxdy
D
3 d
4sin r 2 rdr
6
2sin
15( 2
3).
二重积分在极坐标下的计算
例7 求广义积分 I e x2 dx.(泊松积分,例3.19)
01-积分的奇偶对称性

积分的奇偶对称性----定积分、二重积分、三重积分、第一类曲线积分、第一类曲面积分.)(2)()()2(;0)()()1(],,[0⎰⎰⎰==-∈--aa a a a dx x f dx x f x f dx x f x f a a C f 为偶函数,则若为奇函数,则若设01 定积分的奇偶对称性.),(2),(),,(),(),()2(;0),(),,(),(),()1(,,,),(12121⎰⎰⎰⎰⎰⎰==-=-=-+=D D Ddxdy y x f dxdy y x f y x f y x f x y x f dxdy y x f y x f y x f x y x f y D D D D D D y x f 则为偶函数,即关于若则为奇函数,即关于若轴对称,关于上连续在有界闭区域设02 二重积分的奇偶对称性.),(2),(),,(),(),()4(;0),(),,(),(),()3(,,,),(12121⎰⎰⎰⎰⎰⎰==-=-=-+=D D Ddxdy y x f dxdy y x f y x f y x f y y x f dxdy y x f y x f y x f y y x f x D D D D D D y x f 则为偶函数,即关于若则为奇函数,即关于若轴对称,关于上连续在有界闭区域设02 二重积分的奇偶对称性03 三重积分的奇偶对称性;),,(2),,(),,,(),,(),,()2(;0),,(),,,(),,(),,()1(,,,),,(12121⎰⎰⎰⎰⎰⎰⎰⎰⎰ΩΩΩ==-=-=-ΩΩΩ+Ω=ΩΩdxdydz z y x f dxdydz z y x f z y x f z y x f z z y x f dxdydz z y x f z y x f z y x f z z y x f xoy z y x f 则为偶函数,即关于若则为奇函数,即关于若面对称,关于上连续在有界闭区域设;),,(2),,(),,,(),,(),,()4(;0),,(),,,(),,(),,()3(,,,),,(12121⎰⎰⎰⎰⎰⎰⎰⎰⎰ΩΩΩ==-=-=-ΩΩΩ+Ω=ΩΩdxdydz z y x f dxdydz z y x f z y x f z y x f x z y x f dxdydz z y x f z y x f z y x f x z y x f yoz z y x f 则为偶函数,即关于若则为奇函数,即关于若面对称,关于上连续在有界闭区域设03 三重积分的奇偶对称性;),,(2),,(),,,(),,(),,()6(;0),,(),,,(),,(),,()5(,,,),,(12121⎰⎰⎰⎰⎰⎰⎰⎰⎰ΩΩΩ==-=-=-ΩΩΩ+Ω=ΩΩdxdydz z y x f dxdydz z y x f z y x f z y x f y z y x f dxdydz z y x f z y x f z y x f y z y x f zox z y x f 则为偶函数,即关于若则为奇函数,即关于若面对称,关于上连续在有界闭区域设03 三重积分的奇偶对称性04 第一类曲线积分的奇偶对称性.⎰⎰⎰==-=-=-+=1),(2),(),,(),(),()2(;0),(),,(),(),()1(,,,),(2121L L Lds y x f ds y x f y x f y x f x y x f ds y x f y x f y x f x y x f y L L L L L L y x f 则为偶函数,即关于若则为奇函数,即关于若轴对称,关于上连续在平面曲线设04 第一类曲线积分的奇偶对称性.⎰⎰⎰==-=-=-+=1),(2),(),,(),(),()4(;0),(),,(),(),()3(,,,),(2121L L Lds y x f ds y x f y x f y x f y y x f ds y x f y x f y x f y y x f x L L L L L L y x f 则为偶函数,即关于若则为奇函数,即关于若轴对称,关于上连续在平面曲线设05 第一类曲面积分的奇偶对称性.⎰⎰⎰⎰⎰⎰∑∑∑==-=-=-∑∑∑+∑=∑∑1),,(2),,(),,,(),,(),,()2(;0),,(),,,(),,(),,()1(,,,),,(2121dS z y x f dS z y x f z y x f z y x f z z y x f dS z y x f z y x f z y x f z z y x f xoy z y x f 则为偶函数,即关于若则为奇函数,即关于若面对称,关于上连续在曲面设05 第一类曲面积分的奇偶对称性.⎰⎰⎰⎰⎰⎰∑∑∑==-=-=-∑∑∑+∑=∑∑1),,(2),,(),,,(),,(),,()4(;0),,(),,,(),,(),,()3(,,,),,(2121dS z y x f dS z y x f z y x f z y x f x z y x f dS z y x f z y x f z y x f x z y x f yoz z y x f 则为偶函数,即关于若则为奇函数,即关于若面对称,关于上连续在曲面设05 第一类曲面积分的奇偶对称性.⎰⎰⎰⎰⎰⎰∑∑∑==-=-=-∑∑∑+∑=∑∑1),,(2),,(),,,(),,(),,()6(;0),,(),,,(),,(),,()5(,,,),,(2121dS z y x f dS z y x f z y x f z y x f y z y x f dS z y x f z y x f z y x f y z y x f zox z y x f 则为偶函数,即关于若则为奇函数,即关于若面对称,关于上连续在曲面设。
考研数学中二重积分的计算方法与技巧

考研数学中二重积分的计算方法与技巧顾 贞 洪 港 高恒嵩高等数学作为大多数专业研究生考试的必考科目,其有自己固有的特点,大纲几乎不变,注重基本知识点的考察,注重学生的综合应用能力,也考察学生解题的技巧.二重积分作为考研数学必考的知识点,在解题方面有一定的技巧可循,本文针对研究生考试中二重积分的考察给出具有参考性的解题技巧.二重积分的一般计算步骤如下:(1) 画出积分区域D 的草图;(2) 根据积分区域D 以及被积函数的特点确定合适的坐标系;(3) 在相应坐标系下确定积分次序,化为二次积分; (4) 确定二次积分的上、下限,做定积分运算.但是在历年考试题中,越来越多的题目注重解题技巧的考查,考题经常以下列几种情况出现:1分段函数的二重积分如果被积函数中含有函数关系min max,以及绝对值函数,则需要对二重积分进行分区域积分.例1:(2008年试题)计算⎰⎰Ddxdy xy }1,max{,其中}20,20),({≤≤≤≤=y x y x D .解:积分区域如图1所示:因为⎩⎨⎧>≤=111}1,max{xy xy xy xy ,所以有:max{,1}Dxy dxdy ⎰⎰1122222111022x xdx dy dx dy dx xydy=++⎰⎰⎰⎰⎰⎰2ln 419)ln 21(21ln 2ln 2212212+=-+-+⨯=x x2交换二重积分的次序交换积分次序的步骤如下: (1) 先验证二次积分是否是二重积分的二次积分(积分下限小于上限)(2) 由所给二次积分的上、下限写出积分区域D 的不等式组(3) 依据不等式组画出积分区域D 的草图(4) 根据积分区域D 的草图写出另一种积分次序下的二次积分。
例2:计算dy e dx xy ⎰⎰-222解:积分区域如图2所示:因为⎰-22xy dy e 不可积,所以交换二重积分次序,则有:)1(214022022222-----===⎰⎰⎰⎰⎰⎰e dx dy e dx e dy dy e dx yy yy xy图1 图2 图3 图43利用积分区域的对称性计算二重积分(1)利用积分区域的对称性,被积函数的奇偶性计算 设()y x f ,在积分区域D 上连续,D 关于y 轴对称,1D 为D 中0≥x 的部分.则有:()()⎰⎰⎰⎰⎪⎩⎪⎨⎧-=-=-=DD y x f y x f y x f y x f d y x f d y x f ),(),(0),(),(,2,1σσ设()y x f ,在积分区域D 上连续,D 关于x 轴对称,1D 为D 中0≥y 的部分.则有:()()⎰⎰⎰⎰⎪⎩⎪⎨⎧-=-=-=D D y x f y x f y x f y x f d y x f d y x f ),(),(0),(),(,2,1σσ 例3:(2017年试题)已知平面区域22{(,)2}D x y x y y =+≤,计算二重积分2(1).Dx dxdy +⎰⎰解析:积分区域具有对称性如图3,首先考虑使用奇偶性,其次,因为积分区域为圆域,需要使用极坐标进行求解。
利用区域对称性及函数奇偶性简化二重积分的计算归纳

利用区域对称性及函数奇偶性简化二重积分的计算归纳一、 设D 关于y 轴对称:1. 若f 关于x 为奇函数,则I =0.2. 若f 关于x 为偶函数,则I =2∬f (x,y )dσD 1,其中D 1={(x,y)∈D:x ≥0},即D 1为D 中位于y 轴右边的那一部分区域.3. 若f 关于x 没有奇偶性,则I =∬[f (x,y )+f(−x,y)]dσD 1,其中D 1={(x,y)∈D:x ≥0},即D 1为D 中位于y 轴右边的那一部分区域.(这是因为任意一个函数f(x)都可以表示成“奇函数+偶函数”的形式,即f (x )=f (x )+f(−x)2+f (x )−f(−x)2.)二、 设D 关于X 轴对称:1. 若f 关于y 为奇函数,则I =0.2. 若f 关于y 为偶函数,则I =2∬f (x,y )dσD 2,其中D 2={(x,y)∈D:y ≥0},即D 1为D 中位于X 轴上边的那一部分区域.3. 若f 关于y 没有奇偶性,则I =∬[f (x,y )+f(x,−y)]dσD 1,其中D 1={(x,y)∈D:y ≥0},即D 1为D 中位于X 轴上边的那一部分区域.三、 设D 关于原点对称:1. 若f 关于x,y 为奇函数,则I =0.2. 若f 关于x,y 为偶函数,则I =2∬f (x,y )dσD 3,其中D 3={(x,y)∈D:x ≥0},即D 3为D 在上半平面的那一部分区域.四、 设D 关于y =x 对称:1. 若f (x,y )=−f (y,x ),则I =0.2. 若f (x,y )=f(y,x),则I =2∬f (x,y )dσD 4,其中D 4={(x,y)∈D:y ≥x},即D 4为D 在直线y =x 以上的那一部分区域.注:三重积分利用区域对称性与函数奇偶性简化计算与二重积分类似.例题.计算I =∭e |x|dxdydz Ω,其中Ω为:x 2+y 2+z 2≤1.解:设Ω在第一象限内的区域为Ω1,由于Ω关于三个坐标面均对称,同时,函数e |x|关于x,y,z 都为偶函数,所以I =∭e |x|dxdydz Ω=8∭e |x|dxdydz =8∭e x dxdydz Ω1Ω1. 由于Ω1在X 轴上的投影区间为[0,1],在Ω1上垂直于X 轴的截面区域D x 为y ≥0,z ≥0,y 2+z 2≤1−x 2,所以I =8∫dx 10∬e x D x dxdy =8∫e x 1014π(1−x 2)dx =2π∫e x (1−x 2)dx =2π10. 注:此题利用三重积分的对称性既简化了计算,又去掉了被函数中的绝对值符号,降低了计算的难度.若此题用球面坐标法计算,尽管积分限很简单,但被积函数的积分却不易求得.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、利用奇偶对称性算二三重积分(简单)
这类题目看上去很难。首先看积分区间。积分区间为对称区间。
判别法:比较判别法、比值判别法、根植判别法、莱布尼茨判别法
再看被积函数,奇函数直接为0,偶函数2倍
2、直角坐标二重积分(一般边界函数为一次函数)
书p86 4-7题
3、极坐标二重积分的计算(一般积分函数为二次,形式圆方程Байду номын сангаасX^2+y^2<8)
书p87 17题20 21题
4、交换积分次序
书p87 13题
5、三重积分
P97 6题9题
6、级数收敛的必要条件
把书上的定义,和性质看几遍。