基于汽车钢板弹簧断裂失效研究

合集下载

重型汽车钢板弹簧的断裂失效形式及其材料的应用现状

重型汽车钢板弹簧的断裂失效形式及其材料的应用现状

其他f 也经 常 f 1 J 现残渣粉术。 、 板 赞 性 能 、 破坏 r 喷 凡肜 战的 表 饯 氽 受 力 发 生 微 振 导 致 的 磨 损 f f I f ,会 人 大 进 而 敛 力策 l I I 肜成 裂纹 。 一 l …} 板 碡 常 常 J L 干 公 l 凡 J 姚会火套 降 低 板 簧 的 坡 寿 命 。微 振 坡 火 效 多 裂 纹 , 片簧 t要的 失效 之 ,而 变 截 板 簧 } :
侏持 r 的 f ‘ 顺性f ¨ 个- . f 性。 能 降 重 已 伤 , 以 及
、 ・ 拔 l £ 溅 和 擦
图 1
7 过 巾 汴 火 裂 纹 、 野 蛮
随蕾i ‘ i 1 、 l k 的 发杖, 成为 l 1 i 』
操作l 乖 l 1 热 处 小 善 等 『 u j 题 , 也址 致 板
板 簧 何 时 会 l 1 1 心扎 处发, I - 断裂。
衬套之问装眦过 紧、 绉…I I f J l = ; 成 的 条纹 、 过 热 、 趔 度 过 “ I 挪 会 甘敛 橄 晴 I
材 料 和 I I : 艺 的 索 , 板 弹 磷 火 效 裂 纹 一般 l 起始 t : r } 1 心 扎 j 板 债 丧 的 交
2 . 2 板 簧卷耳失效
除 J ’ 故和 使 川 小 1 以外.毯 q 币 ¨
簧替代传统钏板弹赞,
l ^ 】 乍 也开 始
推 广 用 。 由 ¨ 1 人 J 艇 的 道路 情 况 和 辆] 况,以1 6 乏 钢 板弹 簧 制逃 过 巾 原
2 . 1 中心孔失效
力 破 传 递 到 板 簧 处 ,
『 f I 心 孔 附 近
车辆的使 J H 环 境 、拔 倚 人 小 、受 力 造 成 r应 力 集 中 。

基于ABAQUS某车型钢板弹簧断裂失效分析及解决方案

基于ABAQUS某车型钢板弹簧断裂失效分析及解决方案

,
考虑 黄片间 的 非线性接 触
.
,
建 立 了钢 板弹赞装 配及 加 载状
,
态 的精确 有 限元 模型
通 过分析计 算得到钢 板弹黄接 近 实 际工况 的应力分布 和 弹赞刚 度
,
并 对 比试 验 数据
,
从 板 赞失效 的角度考 虑
提 出 了更 改方 案
,
为结构 改进提 供 参考 接触 分 析
关健词 : 钢板 弹黄; 有 限 元分 析 ;

前 面 提到 由 于 收敛 性 的原
,
因 主 簧 刚 度 与 试 验值 会有 较 大 的差 别
当 副 簧 与主 簧 完全 接触 之 后
试验 与 仿真数 据对 比
载荷 由二 者共 同承 担

板 簧 刚 度 数据对 比 见 表 1
表1
主 簧 刚 度 侧厄皿)
N) 试验 ( 3 3 77
.
组 合 刚 度孙 劝 m )
o花 t
坛s a t
h 初t
a
e h t
P 面比 e n
n o
山欧e s
~
K ey w
s d
le a f S P
幻。 g ;
丘山 te d
。吐
; 皿 司岁 15 ; A B A QU s
a t
c
t
n a
l s si y
1
引言
汽 车钢 板 弹簧 是 汽车 的关 键 减振 元 件
,
其 主 要 功 能 是 作 为 悬 架 系统 的 弹 性元 件 起 吸振和
4 ) 最 大应 力 为 9 6 3 M Pa (见 图 1
图1 2
刚刚 接 触 状态 主 簧 的 应力 图

汽车中的板簧的断裂失效分析

汽车中的板簧的断裂失效分析

材料断裂理论与失效分析汽车中的板簧的断裂失效分析专业:材料工程(锻压)类型:应用型姓名:***学号:15S******汽车中的板簧的断裂失效分析引言汽车板簧是汽车悬架系统中最传统的弹性元件,由于其可靠性好、结构简单、制造工艺流程短、成本低而且结构能大大简化等优点,从而得到广泛的应用。

汽车板簧一般是由若干片不等长的合金弹簧钢组合而成一组近似于等强度弹簧梁。

在悬架系统中除了起缓冲作用而外,当它在汽车纵向安置,并且一端与车架作固定铰链连接时,即可担负起传递所有各向的力和力矩,以及决定车轮运动的轨迹,起导向的作用,因此就没有必要设置其它的导向机构,另外汽车板簧是多片叠加而成,当载荷作用下变形时,各片有相对的滑动而产生摩擦,产生一定的阻力,促使车身的振动衰减,但是板簧单位重量储存的能量最低,因些材料的利用率最差。

1. 材质是什么?65Mn/低碳钢哪一类合适?材质一般为硅锰钢。

因为碳素弹簧钢因淬透性低,较少使用于汽车中;锰钢淬透性好,但易产生淬火裂纹,并有回火脆性。

因此,硅锰钢在我国应用在汽车的板簧上较为广泛。

65Mn 钢更为合适,因为:低碳钢为碳含量低于0.25%的碳素钢,因其强度低、硬度低而软,又称软钢。

它包括大部分普通碳素结构钢和一部分优质碳素结构钢,大多不经热处理用于工程结构件,有的经渗碳和其他热处理用于要求耐磨的机械零件。

低碳钢退火组织为铁素体和少量珠光体,其强度和硬度较低,塑性和韧性较好。

因此可以看出,低碳钢不符合板簧材料高强度和高硬度的要求。

65Mn弹簧钢,含有0.90%~1.2%的Mn元素,提高了材料的淬透性,© 12mm 的钢材油中可以淬透,表面脱碳倾向比硅钢小,经热处理后的综合力学性能优于碳钢,但有过热敏感性和回火脆性。

Mn 是弱碳化物形成元素,在钢中主要以固溶的形式存在于基体中。

一部分固溶于铁素体(或奥氏体),另一部分形成含Mn的合金渗碳体(Fe、Mn )。

Mn还能显著提高钢的淬透性,改善热处理性能,强化基体、降低珠光体的形成温度,细化珠光体的片间距离,从而提高钢的强度和硬度。

钢板弹簧断裂问题研究

钢板弹簧断裂问题研究

钢板弹簧断裂问题研究
钢板弹簧是一种常用的机械弹簧,具有重要的作用。

但是,在长时间使用过程中,弹
簧易发生断裂,对安全和可靠性将造成严重的影响。

因此,钢板弹簧断裂问题的研究具有
重要的意义。

1. 断裂形式
钢板弹簧通常会发生两种断裂形式:疲劳断裂和过载断裂。

疲劳断裂是由于弹簧长期
受重载振动作用,导致弹簧产生裂纹并逐渐扩展,最终导致断裂。

过载断裂则是由于弹簧
在短时间内受到超过其承受范围的负载而导致的断裂。

2. 断裂原因
弹簧的疲劳断裂往往是由于设计不当、材料质量问题或制造工艺不合理造成的。

例如,过小的直径、过低的初始张力或夹紧面积不足等都可能会导致弹簧的疲劳断裂。

过载断裂
的原因则可能是安全阀设置不合理、过载发生时未能及时停机等。

3. 预防方法
为了避免弹簧的断裂,我们可以从以下几个方面进行预防:
(1)合理设计:应根据实际工作负荷选择弹簧的直径、材料和初始张力等参数,并加强弹簧支撑及补强结构设计。

(2)质量控制:对材料进行严格的检测和筛选,确保使用的材料符合要求,同时控制弹簧制造过程中的工艺参数,保证每一只弹簧的品质稳定。

(3)维护保养:定期检查弹簧的使用状况,发现异常及时处理。

特别是在高温、潮湿、腐蚀等环境下,应更加重视弹簧的保养。

4. 结论
钢板弹簧的断裂会给工程师带来安全和可靠性的隐患。

因此,在设计、制造和维护过
程中需要注意弹簧的使用条件,严格执行相关的规范和与之相应的标准,避免断裂问题的
发生。

同时,也需要提高制造工艺和质量管理水平,确保弹簧的品质和寿命符合设计要
求。

汽车后桥板簧的断裂分析

汽车后桥板簧的断裂分析

汽车后桥板簧的断裂分析摘要:整车可靠性耐久道路试验中,后桥板簧是重要试验验证对象,是影响整车性能的重要因素之一。

本文通过对耐久性道路试验中的后板簧断裂现象,应用设计复核、宏观分析、微观分析、金相分析、硬度检测等技术手段开展分析判断,阐述了后桥板簧表面凹坑缺陷、后悬架无减振器是造成板簧早期断裂的关键及实施优化的设计方案,为后续车型开发提供必要的经验积累。

关键词:汽车后桥板簧断裂前言板簧是汽车悬架系统的弹性元件,具有可靠性好、结构简单、制造工艺流程短、成本低等优点。

车板簧一般是由若干片不等长的簧片组成,簧片按照一定的组合方式使得板簧呈现线性或非线性弹性特征,在悬架系统中起到缓冲作用。

汽车在非平整路面上行驶时,在交互冲击载荷作用下,各片板簧有相对的滑动而产生摩擦,产生一定的阻力,促使车身的振动衰减。

板簧结构在商用车及轻小型车辆上应用广泛,实际应用场景中,在交变应力下板簧可能发生疲劳和断裂,故板簧应具有较高的疲劳强度和耐蚀等性能。

一、后板簧断裂案例某汽车后悬架根据该车型的总质量、底盘布置等特点,采用板簧结构,用于连接车身与后桥,且不装后减振器。

主要由三片不等长的钢板弹簧组成,并用夹箍将三片板簧固定,防止各簧片横向错位,在弹簧回弹将力传递给其他片,减少主板簧片的应力。

后悬架采用板簧结构,开发阶段需在试验场进行道路耐久试验验证,试验场给汽车提供各种类型的路面试验条件,满足零件的耐久试验要求。

在可靠性耐久道路试验中,3台试验车均出现了后钢板弹簧断裂的情况,在第一片到第三片板簧均有发生断裂情况。

二、后板簧断裂原因探讨为确定后桥板簧断裂的根本原因,应用设计复核、金相分析、硬度检查等技术手段开展分析。

1、设计复核应用CAE软件对板簧设计进行复核,对板簧应力分析结果与已量产车型进行横向对比,根据分析结果并结合设计经验,板簧设计满足设计要求。

按汽车行业标准QC/T 29035-1991对板簧进行强度台架测试,测试结果均不低于试验标准(板簧的疲劳寿命不小于8万次)。

汽车中的板簧的断裂失效分析

汽车中的板簧的断裂失效分析

材料断裂理论与失效分析汽车中的板簧的断裂失效分析专业:材料工程(锻压)类型:应用型姓名:***学号: 15S******汽车中的板簧的断裂失效分析引言汽车板簧是汽车悬架系统中最传统的弹性元件,由于其可靠性好、结构简单、制造工艺流程短、成本低而且结构能大大简化等优点,从而得到广泛的应用。

汽车板簧一般是由若干片不等长的合金弹簧钢组合而成一组近似于等强度弹簧梁。

在悬架系统中除了起缓冲作用而外,当它在汽车纵向安置,并且一端与车架作固定铰链连接时,即可担负起传递所有各向的力和力矩,以及决定车轮运动的轨迹,起导向的作用,因此就没有必要设置其它的导向机构,另外汽车板簧是多片叠加而成,当载荷作用下变形时,各片有相对的滑动而产生摩擦,产生一定的阻力,促使车身的振动衰减,但是板簧单位重量储存的能量最低,因些材料的利用率最差。

1.材质是什么?65Mn/低碳钢哪一类合适?材质一般为硅锰钢。

因为碳素弹簧钢因淬透性低,较少使用于汽车中;锰钢淬透性好,但易产生淬火裂纹,并有回火脆性。

因此,硅锰钢在我国应用在汽车的板簧上较为广泛。

65Mn钢更为合适,因为:低碳钢为碳含量低于0.25%的碳素钢,因其强度低、硬度低而软,又称软钢。

它包括大部分普通碳素结构钢和一部分优质碳素结构钢,大多不经热处理用于工程结构件,有的经渗碳和其他热处理用于要求耐磨的机械零件。

低碳钢退火组织为铁素体和少量珠光体,其强度和硬度较低,塑性和韧性较好。

因此可以看出,低碳钢不符合板簧材料高强度和高硬度的要求。

65Mn弹簧钢,含有0.90%~1.2%的Mn元素,提高了材料的淬透性,φ12mm 的钢材油中可以淬透,表面脱碳倾向比硅钢小,经热处理后的综合力学性能优于碳钢,但有过热敏感性和回火脆性。

Mn是弱碳化物形成元素,在钢中主要以固溶的形式存在于基体中。

一部分固溶于铁素体(或奥氏体),另一部分形成含Mn的合金渗碳体(Fe、Mn)。

Mn还能显著提高钢的淬透性,改善热处理性能,强化基体、降低珠光体的形成温度,细化珠光体的片间距离,从而提高钢的强度和硬度。

重型汽车钢板弹簧断裂失效形式及应用现状

重型汽车钢板弹簧断裂失效形式及应用现状钢板弹簧(Leaf Spring)是广泛用于汽车悬架结构的具有一定弹性的元件,由宽度相等长度不相同的复合金属弹簧片组合而成,该元件各个部位的强度是相等的,可以起到很强的减缓压力的作用,但是钢板弹簧由于长期受到大力压迫导致其在达到一定的承受值后会发生断裂,本文重点分析了钢板弹簧断裂的形式,并提出相关的技术改进方案供相关生产商参考。

标签:钢板弹簧;断裂失效形式;应用现状车辆在正常行驶时,会受到自身振动和外部一定强度的挤压力作用,此时钢板弹簧会压缩从而吸收车辆的动能,将动能转化为弹簧的弹性势能,由此车辆的动能逐渐被转化,避免了巨大的冲击作用,起到很好的缓冲效果,使车辆运行更平稳,操作更流畅,安全性更好。

当钢板弹簧承受的压力过大会发生断裂失效,下面重点分析钢板弹簧断裂的几种形式。

1 钢板弹簧断裂失效的形式1.1 中心孔失效中心孔是钢板弹簧最脆弱的部位,因为钢板弹簧受到力作用时,其所承受的力会共同作用于中心孔,使其发生断裂失效。

其断裂时会产生很多裂纹,其位于孔板的结合处,跨越整板。

经过专业人员研究发现,该种失效是由于螺栓松动,弹簧承受的作用力被汇集到中心孔,中心孔承受力的表面积小,故而力的强度就大,当强度超过一定的值,孔就断裂,导致裂纹,随后弹簧便失效。

1.2 卷耳失效车辆在行驶过程中会不可避免受到各种摩擦力以及外力碰撞作用,此外,司机在驾驶过程中也会出现挂挡力度过大等不规范的操作,如果卷耳和衬套之间过于紧密,会导致发热,变硬等现象,这会使钢板膨胀变大,导致一定的变型,使得弹簧卷上方失效。

当车辆行驶过长时间时,卷耳上已有的些许裂纹会进一步加速断裂,加速弹簧失效的过程。

1.3 腐蚀疲劳钢板弹簧持续受力,而且很多零件露天之后会遭到空气腐蚀,生锈变型,致使弹簧在裂纹处承受力大幅度降低,裂纹便会不断加深,当达到极限时,弹簧便会断裂。

失效的切面看起来像是一系列同心的半圆形,在腐蚀和摩擦的作用下,裂纹外侧变暗。

钢板弹簧失效分析

斯太尔991车钢板弹簧失效分析摘 要:文章针对斯太尔991车发生的进口板簧断裂事故,在分析失效件的基础上,采取有关材料失效分析技术,得出该板簧的早期失效原因,为有效控制产品质量提供了依据。

叙 词:汽车;钢板弹簧;失效分析1 概述重汽公司技术中心质检所在总后试车场进行斯太尔991车3万km道路试验中,汽车在行驶至17491km时,车上装用的进口板簧左前板簧第一片断裂,行驶至19696km时后板簧第一片、第二片断裂。

为查明失效原因,特对断裂件进行了分析。

2 断口宏观观察前簧断在离骑马螺栓中心孔350mm处,在板簧受拉面有两个裂纹源,裂纹源产生在直径约3mm的小坑内;断口具有典型早期疲劳失效特征:具有贝壳纹特征的疲劳裂纹扩展区占整个断面的10%左右,瞬断区占90%左右,如图1所示。

后簧第二片断在包耳开卷处,断口为早期疲劳失效特征,断口附近有多处疲劳裂纹源(如图2所示),且在断口附近有多条与断口同向深度在0.2mm左右的裂纹。

图1 前簧宏观断口(箭头指裂纹源) 图2 后簧第二片宏观断口(箭头指裂纹源)3 化学成分化学成分检测结果见表1,符合DIN17222中58CrV4的成分要求。

4 硬度检查前后簧布氏硬度测量结果为:前簧HB417,后簧HB411。

5 金相检查(1)前簧在断裂处附近取样,基体为回火屈氏体组织,表面脱碳层深度为0.21mm。

显微硬度检查脱碳层如表2。

在裂纹源小坑处取样,表层为白亮层,白亮层厚度约为0.2mm;对试样进一步腐蚀,经观察得知白亮层为马氏体组织,如图3所示;白亮层显微硬度HV0.2=743,心部基体显微硬度HV0.2=396。

图3 白亮层组织 400×(2)后簧在裂纹附近取样,心部为回火屈氏体组织,表面脱碳层为0.28mm。

显微硬度检验脱碳层,结果见表3。

6 电镜观察及能谱分析利用SEM535、EDAX进行断口及微区成分分析,得知前簧裂纹源有两处存在许多附着物,裂纹源形貌如图4所示;用能谱仪进行定量分析,确定附着物的主要成份为锌元素,裂纹源小坑内有金属熔化流动结晶现象,附近存在很多小裂纹。

重卡钢板弹簧断裂分析

重卡钢板弹簧断裂失效分析白培谦 泮战侠 慕松 赵鹏英 杜飞(陕西汽车集团有限责任公司质量管理部,陕西西安,710200)摘 要:通过宏观检查、化学成分分析、硬度测试以及微观组织检查等结果分析,确定了重型卡车用钢板弹簧断裂原因。

分析结果表明:因超载使钢板弹簧出现过度反弓,造成板簧卡中的螺栓与钢板弹簧动态接触,发生磨损腐蚀现象,在过大的交变应力下出现疲劳断裂。

并提出了防止其发生断裂事故的预防措施。

关键词:钢板弹簧;磨损腐蚀;交变应力;疲劳断裂Fracture Failure Analysis of Heavy Truck Leaf SpringBai Pei-qian, PAN Zhan-xia, Mu Song, Zhao Peng-ying, Du Fei,(1.Shaanxi Automobile Group Co., Ltd. Quality Management Department, Xi ’an 710200, China ) Abstract:The fracture cause of heavy truck leafspring is researched by macrography, chemical composition analysis, hardness test and microstructure test. The research shows that leaf spring excessive inverse arch-shaped for overload causes Frictional Contact between plate spring bolt and leaf spring and erosion corrosion and the leaf spring is broken for fatigue fracture Under alternating stress. In the paper the measures of preventing leaf spring fracture accident is put forward.Key words: leaf spring; erosion corrosion; alternating stress; fatigue fracture.钢板弹簧是汽车悬架中重要的弹性元件,主要影响汽车行驶的平顺性和操纵的稳定性,在车辆行驶过程中起到缓冲减振的作用。

汽车用钢板弹簧失效分析

汽车用钢板弹簧失效分析摘要:钢板弹簧是汽车悬架的重要组成部分,钢板弹簧在汽车行驶中承受交变应力载荷,其产品质量直接关系到车辆行驶的平顺性及操控稳定性。

汽车钢板弹簧是汽车悬架应用最为广泛的一种弹性元件,具有可靠性好、结构简单、制作工艺流程短等优点。

关键词:汽车用;钢板弹簧;失效分析引言汽车钢板弹簧由若干片曲率半径不同、长度不同、宽度相同的弹性钢片叠加而成,在整体上近似等强度的弹性梁,具有减震和导向作用。

钢板弹簧的中部通过U型螺栓(又称骑马螺栓)固定在车桥上,其作用是通过悬挂的方式连接车架和车桥。

钢板弹簧裸露在车架与车桥之间,承受车轮对车架的冲击、弯曲和振动载荷,通过吸收车辆动能,将动能转化为弹性势能,从而起到缓冲作用,保证车辆的平稳性和安全性。

1理化检验1.1断口宏观分析断裂位置距离钢板弹簧中心35mm处,从图中可以看到钢板弹簧表面布满喷丸留下的凹坑。

钢板弹簧的断口形貌,从图中可以看出,断口与钢板弹簧长度方向垂直,无明显塑性变形,为宏观脆性开裂,断口表面较粗糙,在B区域可以观察到明显的撕裂棱,根据撕裂棱的方向可知A区域为裂纹源区,钢板弹簧断裂起源于表面,其余区域(C区)为最终断裂区。

1.2断口微观分析用扫描电镜观察钢板弹簧断口中的裂纹源区和扩展区的微观形貌,从图中可以看出该区域为解理断裂,属于微观脆性断裂,在裂纹源区可以观察到二次裂纹。

可以观察到疲劳辉纹,说明扩展区是在力的循环作用下形成的。

将钢板弹簧放到UniMT-12000A/D荧光磁粉探伤机中进行复合磁化,轴向电流为3500A,纵向电流为2000A,磁化2次,磁化时间为1s。

钢板弹簧表面磁粉探伤形貌,从图中可以看到钢板弹簧表面存在多条磁痕,钢板弹簧断口的裂纹源区域A和B处有明显的裂纹存在,说明钢板弹簧在台架试验前表面已有裂纹存在,需要进一步分析裂纹产生的原因。

1.3裂纹微观形貌分析用OLYMPUSGX53光学显微镜对裂纹形貌和裂纹处的显微组织进行检测。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于汽车钢板弹簧断裂失效研究
摘要:汽车是我们日常生活中常见的一个交通工具,为人们出行提供了很多
便捷,而钢板弹簧是汽车悬架系统中的重要零件,倘若其出现问题,会对驾驶人
员带来一定的影响。

其中致使汽车钢板弹簧断裂失效的原因,也来自方方面面,
本文则主要针对弹簧断裂失效的主要形式进行了分析,同时也提出一些可行的改
进方法,希望以此来确保钢板弹簧处于有效状态,这不仅可以保障车辆的安全性
和可靠性,也可以极大的降低安全事故的发生概率。

关键词:汽车;钢板弹簧;断裂失效;研究
前言:
社会经济的发展促进了我国汽车行业的发展,而汽车也成为人们生活中不可
缺少的一部分。

通常情况下,车辆在正常行驶时,会受到自身震动或者是外部因
素的影响,而致使钢板弹簧出现一些问题,其中当应力超过钢板弹簧自身承受能
力时,就会出现断裂而失效,这难以保障驾驶人员的生命安全。

因为作者多年从
事钢板弹簧的质量检测及失效分析,所以根据自身工作经验提出几点改进方法,
希望以此来尽量避免钢板弹簧断裂失效问题的出现,切实保障驾驶人员的生命安全。

1.
汽车钢板弹簧断裂失效主要形式
1.
中心孔失效
现阶段,汽车钢板弹簧断裂失效的形式很多,具体从以下进行分析。

第一,
中心孔失效,中心孔本身就是钢板弹簧最为脆弱的部分,一旦其失效,就会导致
车辆过程中出现诸多问题,严重者还会引发安全事故[1]。

致使中心孔失效的原因,可能是由于螺栓松动,造成弹簧承受的作用力被汇聚到中心孔,也可能是由于其
他原因,比如:当中心孔的承受力的表面积变小时,也会致使其产生裂纹,此时
的钢板弹簧会失去作用,这会影响到汽车的正常行驶,针对此类问题我们要采取
措施进行处理。

1.
板簧卷耳失效
板簧卷耳失效,也是汽车钢板弹簧断裂失效的一个主要形式,他对驾驶人员
所带来的影响也比较大。

汽车在行驶过程中难免会遇到各种摩擦力或者是外力的
碰撞作用,导致板簧卷耳处于失效的状态,致使此类问题出现的原因,我们从以
下分析:第一点,可能是由于驾驶人员在驾驶过程中因操作不规范,例如急停或
快速换挡引起汽车非正常窜动,长期之后会致使板簧卷耳处于失效状态,很难保
障车辆运行的平顺性。

第二点,也可能是由于卷耳与衬套之间过于紧密配合,在
相互摩擦时会导致其发热,这样也会因此而导致钢板变形,从而出现裂纹,长此
以往,出现宏观断裂[2]。

1.
腐蚀疲劳失效
钢板弹簧在车辆行驶时往往因遭到空气的腐蚀,而出现生锈等现象,甚至出
现点蚀或微小凹坑而造成应力集中,若不能及时保养,就会致使腐蚀情况越来越
严重,从而致使钢板弹簧承受能力大幅度下降,应力集中处产生腐蚀疲劳失效,
间接性也会致使驾驶人员在驾驶车辆过程中出现问题。

此外,由于腐蚀问题的存在,也会致使已经出现的钢板弹簧裂纹不断加深,当达到一定极限时会出现断裂,从而难以确保汽车的安全行驶。

1.
微振疲劳失效
微振疲劳失效也是汽车钢板弹簧断裂失效的形式。

微振疲劳失效,通常发生
在钢板弹簧片或者板簧与压板之间,两者的接触面在车辆行驶状况中产生微振摩擦,互相挤压,同时会逐渐产生磨碎颗粒或粉末,时间较长之后两者表面会逐渐
受到损伤,慢慢产生了疲劳失效,从而降低了钢板弹簧的使用寿命。

因此,微振
疲劳失效也是板簧失效的比较常见的情况之一,所以我们也要将其作为重点解决
对象。

1.
应力腐蚀断裂
应力腐蚀断裂,它主要是应力和腐蚀力叠加作用所产生的一个效果,而致使
该问题产生的原因也是叠加的结果:一,当钢板弹簧承受的强应力时间较长;二,由于环境中酸性过大,钢板弹簧受到了腐蚀;三,钢板弹簧材质或热处理缺陷造
成的过硬过脆;四,车辆过载行驶,会加速这一断裂过程。

1.
过热或者过烧
钢板弹簧在热处理的过程中,如果加热温度太高,不但奥氏体晶粒剧烈长大,而且在晶界上会出现熔融的液态金属和易熔共晶氧化物。

过烧会使晶间联结遭到
破坏,大大降低钢板弹簧的强度,一旦汽车在行驶中,钢板弹簧受到外界力量的
碰撞,就会很容易发生断裂。

此类问题迫切需要我们重视并采取正确方法去处理。

1.
淬火裂纹
目前,汽车钢板弹簧断裂失效的形式有很多种,除了上述形式之外,淬火裂
纹同样是常见的一种类型,这种情况一般是因为淬火工艺不佳或者是材料质量问
题所导致的。

例如材料内部有缺陷,或淬火升温时间过长、温度过高,或淬火冷
却过快,都容易造成淬火裂纹。

此外,淬火裂纹通常是显微裂纹,很难察觉,所
以车辆在日常行驶过程中,钢板弹簧在其它应力作用下,显微裂纹很容易会发展
成宏观裂纹。

1.
汽车钢板弹簧的性能要求
钢板弹簧是在周期性的弯曲、扭转等交变应力下工作,经受拉、压、扭、冲挤、疲劳、腐蚀等多种作用,有时还要承受极高的短时冲击载荷,因此要求弹簧钢
具有很高的抗拉强度、屈服强度、塑性、韧性、硬度及弹性极限、疲劳强度。


前钢板弹簧生产多采用淬火+中温回火得到均匀细密的回火屈氏体组织来满足钢
板弹簧的使用性能要求。

疲劳失效和弹性减退是钢板弹簧最主要的两种破坏形式,所以为了延长弹簧的使用寿命,在提高弹簧的设计应力时,应保证弹簧钢具有优良
的抗疲劳性能和抗弹性减退能力。

钢板弹簧同时要求要有良好的理化性能,主要
包括耐热性、耐低温性、抗氧化性和抗腐蚀性能等。

同时,钢板弹簧在承受各种
载荷时,表面的应力最大,很容易发生各种破坏,所以弹簧钢的表面质量对于生产
的钢板弹簧质量影响很大,另外脱碳会使钢板弹簧的抗疲劳性能及抗弹减性能降低,因此,也要保证弹簧钢具备良好的抗脱碳性能。

1.
基于汽车钢板弹簧断裂失效改进方法
1.
强化簧片表面等
为了解决以往汽车钢板弹簧断裂失效问题,我们还需要采取有效的改进方法
去解决问题。

首先,强化簧片表面,可以显著提升板簧的抗应力,例如减少表面
脱碳层深度等。

我们对板簧表面进行抛光工艺,也可以有效的去除簧片表面的脱
碳层以及其他缺陷,不过此工艺会耗费较长的时间以及增加成本,所以通常情况下,此方法对高级轿车的钢板弹簧应用较多。

其次,我们也可以通过增加主片长度,来降低外界应力对钢板弹簧所带来的影响,也可以通过其他途径来提高钢板
弹簧抗冲击能力,比如增加钢板弹簧总成的自由弧高等。

1.
改进热处理工艺
针对汽车钢板弹簧断裂失效的问题,我们还可以通过改进热处理工艺,来实
现延长钢板弹簧使用寿命的目的。

例如在生产钢板弹簧簧片时,可以采用形变热
处理或者是高温快速回火等热处理方法,来提高钢板弹簧的综合机械性能。

第一,
形变热处理,它主要是指在簧片加热之后,进一步在相应的机械设备上对其进行
再次热变型压榨处理,这可以极大提升表面质量以及减少脱碳层。

第二,高温快
速回火法,这也是常见的一种热处理工艺,能够明显改善钢板弹簧的机械性能,
它是指通过提高回火温度、缩短回火时间等手段来提高弹簧的疲劳强度。

数据显示,回火温度较高时,马氏体能快速分解;回火时间较短时,能让碳化物聚集和
长大受到限制,此外,在高温快速回火后快速冷却,也能有效避免材质产生回火
脆性。

1.
改进钢板弹簧材料
除了上述改进方法之外,我们还可以通过改进钢板弹簧材质来实现此目的,
例如在钢中加入微量元素硼(0.0005%-0.003%),就能够显著提高钢的淬透性,
从而可以代替大量的合金元素和降低生产成本。

有数据表明,随着硼含量的增加,中碳高强度弹簧钢的强度有所降低,但冲击韧性得到了明显的提高,同时弹减抗
力也相应地得到增加,这样也能有效延长钢板弹簧的使用寿命。

结语:
综上所述,汽车在正常行驶时,由于钢板弹簧持续受到外界的应力作用,同
时因自身原因所带来的问题,都可能会导致钢板弹簧出现断裂失效等现象,从而
难以确保车辆的平顺性和安全性,所以针对钢板弹簧断裂失效的原因进行分析,
并采取有效改进措施,可以既延长了汽车的使用寿命,也有效降低了安全事故的
发生,做到真正意义上的现代化安全出行。

参考文献:
[1]张艳霞,王长朋,高立强,王茂川. 汽车用钢板弹簧失效分析[J]. 装备
环境工程,2021,18(11):129-136.
[2]唐刚. 汽车钢板弹簧断裂失效分析[J]. 汽车零部件,2019,(07):94-97.
[3]丁礼权,丁文胜,董水要,刘祥军. SUP10汽车钢板弹簧早期断裂失效分析[J]. 理化检验(物理分册),2018,54(12):924-927.
[4]王军,冯益坤,张光明,闫宇浩,赵文涛. 某重型汽车后钢板弹簧断裂失效分析[J]. 重型汽车,2017,(05):22-23.。

相关文档
最新文档