绿色有机化学研究进展
浅谈绿色有机合成的研究现状与展望

浅谈绿色有机合成的研究现状与展望绿色有机合成是一种以可持续发展和环保为目标的有机化学合成方法,它致力于降低化学合成过程对环境的影响,并减少对有毒或不可降解的化学试剂的使用。
随着社会对环保意识的不断提高,绿色有机合成逐渐成为有机合成领域的研究热点。
本文将就绿色有机合成的研究现状与展望进行浅谈。
绿色有机合成的研究现状1. 催化剂的研究在传统有机合成中,许多反应需要使用大量的金属催化剂,这些金属催化剂在合成反应中通常会产生大量废弃物,对环境造成负面影响。
绿色有机合成研究中,催化剂的设计和开发成为一个重要方向。
有机合成中常用的金属催化剂如铜、镍、钯等,绿色有机合成的研究者们致力于设计高效、低毒性、可再生利用的金属催化剂,以减少对环境的污染。
2. 可替代溶剂的研究传统有机合成中常使用的溶剂如二甲苯、甲苯等对环境具有一定的危害性,并且很难被分解。
绿色有机合成研究中,开发可替代溶剂成为一个重要的课题。
在水中进行有机合成反应,可以减少对有机溶剂的使用,减少废弃物的产生,是一种环保的合成方法。
一些可再生的天然产物如乙醇、丁醇等也被广泛用于绿色有机合成中。
3. 生物催化法的研究生物催化法是一种利用微生物或酶催化合成有机化合物的方法,它具有原料来源广泛、废弃物少、无机溶剂、反应条件温和等特点,是一种典型的绿色合成方法。
绿色有机合成研究中,生物催化法的研究备受重视,例如利用酶催化合成高附加值化合物等。
4. 可再生资源的利用绿色有机合成研究中,可再生资源的利用成为一个研究热点。
利用生物质、植物提取物等可再生资源进行有机合成反应,既可以减少对不可再生资源的需求,又可以减少对环境的污染,具有重要的环境保护意义。
1. 绿色催化剂的研究未来,绿色有机合成研究中,将继续加大对绿色催化剂的研究力度,开发更加高效、低毒性、可再生利用的催化剂是一个重要方向。
4. 绿色有机合成的工业化应用绿色有机合成虽然在学术界已经取得了一定的进展,但是在工业生产中的应用还需要进一步加强。
有机合成中的绿色化学原理与实践

有机合成中的绿色化学原理与实践随着环境保护和可持续发展意识的增强,绿色化学作为一种环境友好型的合成化学方法逐渐被广泛应用于有机合成领域。
本文将介绍有机合成中的绿色化学原理与实践,并探讨其在减少环境污染和资源消耗方面的重要作用。
一、绿色化学的基本原理绿色化学是一种以降低或消除对环境和人体健康的危害为目标的合成化学方法。
其基本原理包括以下几个方面。
1. 最小化废物产生:传统的有机合成过程中常常伴随着大量的废弃物生成,给环境带来严重污染。
绿色化学通过精确控制反应条件、合理选择反应物和催化剂,最大程度地减少废物产生。
2. 节约原料和能源:有机合成常常依赖于大量的原料和能源输入,造成资源的浪费。
绿色化学倡导从可再生资源中获取原料,通过优化反应条件和催化剂的设计,提高反应效率,减少能源消耗。
3. 使用可再生的溶剂:传统有机合成常常使用有机溶剂,如二氯甲烷、二甲基甲酰胺等,这些溶剂具有毒性和污染性。
绿色化学鼓励使用可再生的溶剂,如水、离子液体等,减少对环境的负面影响。
二、绿色合成方法的应用绿色化学的原理在有机合成中得到了广泛应用,下面将介绍几种常见的绿色合成方法及其应用。
1. 催化剂的应用:催化合成是一种高效的有机合成方法,它可以在较低的温度和压力下实现化学反应。
与传统合成方法相比,催化合成方法显著减少了废物产生和能源消耗。
常见的催化剂包括金属催化剂、生物催化剂等。
2. 微波辐射合成:微波辐射在有机合成中的应用已经成为一种绿色、高效的合成方法。
微波辐射具有快速、高效、选择性强等特点,可以缩短反应时间,提高产率,减少副产物的生成。
3. 绿色溶剂的选择:选择合适的溶剂对于绿色合成至关重要。
例如,水作为一种无毒、廉价、可再生的绿色溶剂,在许多有机合成反应中取得了显著的应用。
此外,离子液体等可再生溶剂也成为绿色合成的研究热点。
4. 生物催化合成:生物催化合成是一种利用生物催化剂(如酶)催化有机化合物合成的方法。
与传统的有机合成方法相比,生物催化合成可避免使用有机溶剂和高温高压条件,减少废物产生,具有环境友好性和高效性。
绿色化学的研究进展及前景

0 前 言
化学 对 人类 作 了 大 的贡 献 。 类 生 活 的各 人 方面 , 从衣 、 、 、 的生 活必 需 品 到汽 车 、 食 住 行 电视洗 、
绿色 象 人 与 自然 的 和谐 , 色 化学 是 人类 生 绿 存 和社 会可 持续 发展 的必 然选 择 。 0 5年 , 20 贝尔 化 学 奖 授 予 了 住 有 机 化 学 的烯 烃 复 分 解 反 应 研 究
l 0~
文 章编 号 :0 6 4 4 2 0 ) 0 1 - 4 J0 — (0 8 ¨- 0 O 0 J 8
Z J NG C E C Li DU T HE I A H MI A N S RY
V 1 9N .1(0 8 o 3 o1 2 0 ) .
绿色化学 的研究 进展及前景
同 .
水 资 源 紧 张和 污 染 ;6土 地 退 化 和沙 漠 化 ; ) ( ) f 森林 7
锐减 ; ) ( 生物 多 样 性 减 少 ; ) 境 公 害 ;1 ) 毒 化 8 (环 9 (0有
采 用 具 有 一 定 转 化 率 的高 选 择 性 化学 反 应 来生 产 目的产 品 , 生 成 或 很 少 生 成 副 产 品或 废 物 , 不 实现 或接 近废 物 的 ” 排 放 ” 程 。 色 化 学 的 目标 在 于 零 过 绿
刘永辉, 李静
( 昌学 院化 学4 _ 学院 , 南 许 昌 4 10 ) 许  ̄r - 河 6 ( 0 )
摘
要 : 随着科技 的迅猛 发展 , 来越 多的环 境 问题逐 渐 凸现 出来 , : 越 因此 , Gx 绿 , L学受到越 来越
多地 关注。 文分 别从 绿 色化 学 的定 义、 究进展及 其 前景 等 方面对 绿 色化 学进 行 了阐述 , 点论述 本 研 重 了实现 绿 色化 学的方 法和 途径
有机化学2011-绿色化学试剂过氧化氢在有机合成中的应用研究进展

2011年第31卷有 机 化 学V ol. 31, 2011 * E-mail: qingl z ng@Received July 8, 2010; revised October 25, 2010; accepted December 30, 2010.国家自然科学基金(No. 20672088)、国家人力资源与社会保障部2010年度留学人员科技活动项目择优资助(优秀类项目)、成都理工大学优秀创新团·综述与进展·绿色化学试剂过氧化氢在有机合成中的应用研究进展刘 洋b 曾庆乐*,a ,b 唐红艳b 高 珊b杨治仁b 张 颂b 刘建川b(a 成都理工大学油气藏地质及开发工程国家重点实验室 成都 610059)(b 成都理工大学材料与化学化工学院 成都 610059)摘要 综述了近十年来绿色化学试剂过氧化氢在合成亚砜、砜、环氧化物、醇、酚、醛、酮、酸、酯、卤代物等各种有机化合物中的研究进展, 也论述了一些新的合成反应介质体系, 如离子液体、氟相、超临界流体等绿色介质与过氧化氢结合在有机合成中的应用, 希望能促进绿色化学技术的研究与应用, 促进化学的可持续发展. 关键词 绿色化学; 过氧化氢; 有机合成; 进展; 离子液体; 氟相; 超临界流体; 环境保护Progress on Organic Synthesis Using Hydrogen Peroxide as a GreenChemical ReagentLiu, Yang b Zeng, Qingle *,a ,b Tang, Hongyan b Gao, San bYang, Zhiren b Zhang, Song b Liu, Jiangchuan b(a State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation , Chengdu University of Technology , Chengdu610059)(bCollege of Materials , Chemistry and Chemical Engineering , Chengdu University of Technology , Chengdu 610059)Abstract The developments of organic synthesis using hydrogen peroxide as a green chemical reagent are reviewed in synthesizing various organic compounds, such as sulfoxides, sulfones, epoxy compounds, alco-hols, phenols, aldehydes, ketones, carboxylic acids, esters and halides in recent ten years. The applications of hydrogen peroxide combining with some new classes of green reaction media including ionic liquids, fluor-ous phase solvents, and supercritical fluids in organic synthesis have also been described. We hope that more green technologies using hydrogen peroxide in place of unsustainable ones could be worked out and applied. Keywords green chemistry; hydrogen peroxide; organic synthesis; progress; ionic liquid; fluorous phase; supercritical fluid; environment protection人类作为美丽自然的一部分, 自诞生之日起就不断的认识和改造着自然. 人类创造了文明, 也严重的破坏着自然[1]. 事物的量变与质变, 如现有事物和新事物的消亡与产生、增减、分布的改变等是人类得以影响自然的一个本因. 化学就是这样的一种重要工具, 自其出现伊始, 发展所涉及的领域越来越多, 成为社会发展的最重要的基础之一; 在不断满足着人类需求的同时, 也产生了触目惊心的破环作用, 惨痛的环境污染和生态灾难比比皆是[2]. 自DDT(双对氯苯基三氯乙烷) 1874年被发明和1939年应用以来, 因其对生态造成严重破坏以及对人类健康造成重大危害而被禁用[3], 成为化学发展的一个典型的“DDT 模式”. 在我国, 近年来因化学污染N o. 7 刘洋等:绿色化学试剂过氧化氢在有机合成中的应用研究进展987导致的癌症高发村事件也频有报道[4]; 而一些企业尤其是建在一些边远地区的冶炼厂、化工厂, 肆意排污, 对生态、环境的破坏以及对人民生命财产的侵害更具严重性、隐蔽性和深远性. 我国环境形势十分严峻, 必须加强环境保护[5]. 事物的存在与发展是在一个特定的环境下进行的, 环境所含因素的变化尤其是突变与剧变可能超出事物的调节与适应极限而使其损害或消亡. 如果说物种的灭绝是因为不能适应环境, 那么人类的命运将取决于能否保护环境.化学污染容易, 治理难, 有些污染后果往往是不可逆的. 绿色化学的提出正是基于要解决这一问题. 绿色化学, 又可称环境无害化学、环境友好化学、清洁化学. Sheldon将其定义为: 在制造和应用化学产品时应有效地利用(最好是可再生的)原料, 消除废物和避免使用有毒的和/或危险的试剂和溶剂[6]. 他还首次提出环境因子(E)、原子效率(AE)和环境商(EQ), 并引入作为评价化学反应是否“绿色”的量化依据[7,8]. “绿色化学”的提出标志着人类对运用化学手段认识和改造自然方式的飞跃. 1990年, 美国通过《污染预防法》, 1995年设立“总统绿色化学挑战奖”; 1999年, “英国皇家化学会”的《绿色化学》杂志创刊; 在我国, 1995年确立了《绿色化学与技术》的院士咨询课题[9], 2008年设立环境保护部.化学的可持续发展应得到学术界的广泛关注; 产业界应该用更为“绿色”工艺进行技术升级; 教育界应及时将相关成果写入教科书、纳入教学内容; 化学工作者作为化学工具的具体操纵者应该有强烈的责任感, 秉持绿色化学的理念, 在运用化学手段时, 慎思慎行.1 过氧化氢简介过氧化氢(H2O2), 其水溶液称为双氧水. 氧原子采取不等性的sp3杂化轨道成键, 分子为共价极性分子, 立体结构处在犹如半展开书的两页纸上(Figure 1), 熔点-0.4 ℃, 沸点150 ℃; 其化学性质主要表现为一定的酸性、氧化性、还原性和不稳定性[10,11]. 过氧化氢在酸性介质中的氧化性比在碱性介质中的强, 还原性则相反[12]. 金属离子等杂质能催化分解过氧化氢[13]. 过氧化图1H2O2的分子结构Figure 1The chemical structure of H2O2氢在反应中分解产物为无毒害的水和氧气, 是一种重要的绿色化学试剂[14].过氧化氢在自然界的植物、动物等中有少量存在. 如放屁甲虫利用催化分解体内的过氧化氢来保护自己[15]. 过氧化氢最早于1818年由Thenard报道, 是用硝酸酸化过氧化钡制备(Eq. 1). 目前, 全世界每年的过氧化氢产量已超过了220万吨[16], 其中95%以上是由20世纪40年代开始商业化的蒽醌自氧化法(AO)制备(Scheme 1). 最近有报道用酸处理的碳载体Au-Pd纳米催化剂催化O2和H2直接合成过氧化氢取得了重大进展[17], 该方法不但经济, 而且避免了AO法污染大, 耗能高的缺点.(1)Scheme 1过氧化氢广泛用于纺织、化工、造纸、环保、电子、食品、卫生、军工等几乎所有行业[18], 尤其是化学化工和环保行业. 在美国, 与过氧化氢相关的研究分别在1999年、2007年和2010年三度获得“总统绿色化学挑战奖”[19]; 在欧洲, 过氧化氢在化学合成中的用量已占到了过氧化氢使用总量的43%[16], 尤其在有机合成中作为绿色化学试剂的应用越来越普遍.2 过氧化氢人名反应人名反应对于推广合成的科学和艺术起到了巨大的作用. 很多人名反应的发明者还是诺贝尔奖得主[20]. 过氧化氢在人名反应中有广泛的应用.2.1 Fenton反应该反应在1893年被报道[21]. 在过氧化氢和亚铁盐(Fenton试剂)存在下, 可将α-羟基酸氧化成α-酮酸, 还可将1,2-乙二醇氧化成羟基醛(Eq. 2).(2)2.2 Ruff-Fenton降解反应1898年Ruff [22]报道的这个反应可用于糖类的减链或脱羧. 如用过氧化氢、铁盐与醛糖酸反应, 可得减少988有机化学V ol. 31, 2011一个羧基的醛糖(Eq. 3).(3)2.3 Baeyer-Villiger氧化反应1899年Baeyer等[23]报道这类将酮或环酮转化为酯或内酯的反应是酯的重要合成反应. 反应在过酸下进行, 如过氧化氢、MCBPA或路易斯酸等(Eq. 4).(4)3.4 Harries臭氧化反应该反应在1905年被报道[24]. 反应可将烯烃双键断开, 然后在还原性条件下得到醇或羰基化合物; 在氧化性条件下, 如过氧化氢氧化下, 可得到羧酸和酮(Scheme 2).Scheme 22.5 Dak in氧化反应该反应在1909年被报道[25], 反应在碱性过氧化氢条件下, 可将芳甲基醛或酮氧化成酚(Eq. 5).(5)2.6 Algar-Flynn-Oyamada反应1934年Algar等[26]报道了这一反应, 它可将2'-羟基查尔酮经碱性过氧化氢氧化反应转化为2-芳基-3-羟基四氢苯并吡喃-4-酮(Eq. 6).(6)2.7 Milas烯烃羟基化反应该反应在1936年被报道[27]. 烯烃在紫外光下或锇、钒或铬氧化物的催化下, 可被过氧化氢氧化为顺式邻二醇(Eq. 7).(7)2.8 Baudisch反应1939年Baudisch[28]报道的反应可将苯或取代苯在过氧化氢和铜盐存在下, 得到邻位亚硝基苯酚(Eq. 8).(8)2.9 Brown硼氢化反应1958年Brown等[29]报道的这类反应是烯的硼氢化-氧化反应, 常用于醇的合成(Eq. 9).(9)过氧化氢在有机合成人名反应中的应用还有很多. 这些人名反应可以广泛的用于醇、酚、醛、酮、羧酸等有机物的合成.3 过氧化氢在有机合成中的一些最新应用关于过氧化氢在有机合成中的应用, 国内外已有过一些不同角度和时间段的综述[30~33]. 20世纪90年代起, 一些绿色介质体系如超临界流体、氟相、离子液体等与过氧化氢结合用于有机合成, 成为绿色化学的研究热点之一[34]. 过氧化氢在有机合成中的应用按照反应类型来分, 可用于: 氧化反应、环氧化反应、羟基化反应、氧卤化反应、阻止乳浊夜聚合的反应等[16]. 从反应起始物来看, 过氧化氢可参与烯烃、炔烃、醇、酚、醛、酮、芳烃、胺类、硫醚等的反应. 根据逆合成法原理, 按目标分子来分类, 过氧化氢可用于亚砜、砜, 醚, 醇、酚, 醛、酮, 羧酸, 酯, 氮氧化物等有机物的合成.3.1 过氧化氢用于合成(手性)亚砜、砜(手性)亚砜、砜及其衍生物广泛用作手性辅剂、手性配体、手性催化剂和手性药物等[35,36]. 通过硫醚氧化合成(手性)亚砜、砜已成为目前的一个研究热点, 过氧化氢是这类反应中最常用的氧化剂之一. 1995年, Bolm 等[37]报道了一种全新的硫醚或二噻烷的不对称催化氧化合成亚砜的方法. 该方法以VO(acac)2和手性单亚胺配体生成的手性钒配合物为催化剂, 过氧化氢为氧源, 不对称选择性高达85% (Eq. 10).2001年, 日本名古屋大学的Noyori教授[38] (2001年诺贝尔化学奖得主)报道了用无害的钨酸钠作催化剂, 硫酸氢三辛基甲基铵作相转移催化剂, 过氧化氢作氧化剂, 在无有机溶剂、无卤化物的体系中氧化硫醚的反应, 其中二苯硫醚氧化成砜的产率达到了96%; 在无钨酸钠N o. 7刘洋等:绿色化学试剂过氧化氢在有机合成中的应用研究进展98911). 该体系还在烯烃环氧化制环氧醚[39], 醇氧化制醛、酮和酸[40], 醛氧化制酸[41], 环已烯氧化制已二酸[42]等方面表现出很强的适用性.(11)2003年, Matteucci 等[43]报道用钪的化合物作催化剂催化过氧化氢氧化烷基芳基硫醚和含有缩氨酸的甲基半胱氨酸等成亚砜, 方法可用于固相反应, 产率达到98%以上(Eq. 12). 2004年, Sun 等[44]报道了用钒的配合物作催化剂不对称氧化硫醚成手性亚砜, 并获得了高产率和较高的对映选择性(Eq. 13).(12)2005年, 我们课题组[45]首次合成了一种手性Schiff 碱, 并用其作为配体与VO(acac)2制备预制钒配合物催化剂, 以过氧化氢为氧源, 成功用于不对称氧化芳基烷基硫醚, 亚砜的ee 值高达99% (Eq. 14); 并进一步推测了合理的反应机理[46], 对相关钒络合物研究其ESI-MS 裂解规律[47].2005年, Drago 等[48]用另一种配体与VO(acac)2制备预制钒配合物为催化剂催化氧化烷基芳基硫醚成亚砜,均得到了较高的产率和ee 值. Karimi 等[49]报道用可回收的氧化硅载钨酸盐界面催化剂在室温下催化过氧化氢选择性地氧化各种烷基芳基硫醚成亚砜或砜, 方法的分离产率均在85%以上(Eq. 15).2007年, Mba 等[50]用过氧化氢在室温下氧化硫醚, 反应的分离产率在61%~92%之间. 所用催化剂是一种不需要在反应前活化的且耐空气和湿气的含有C 3轴对称的三苯酚盐与钛(IV)的配合物. 这克服了常用钛催化剂在空气中易变质的不足. Egami 等[51]报道了用Fe(Salan)配合物作催化剂实现对诸多硫醚包括烷基芳基硫醚和甲基烷基等硫醚进行不对称氧化, 产物的ee 值在87%以上. 该方法不需要表面活性剂, 直接在水相中进行.3.2 过氧化氢用于合成环氧化物环氧化物/醚在食品、药物、添加剂、杀虫剂等方面应用广泛. 由过氧化氢氧化烯烃的环氧化反应是合成环氧化物的重要方法. 1996年, N oyori 研究组[39]报道了用在无有机溶剂、无卤化物的条件下, 用钨酸钠、硫酸氢三辛基甲基铵、胺甲基磷酸、过氧化氢体系对简单烯进行环氧化, 反应的产率和催化效率很高(Eq.16).1999年, Stoop 等[52]首次报道了用过氧化氢作氧化剂, 钌化合物作催化剂不对称催化烯烃环氧化的反应. 但该反应的选择性(52%~80%)和ee 值(41%)欠佳, 且用污染较大的二氯甲烷作溶剂. 2001年, 丙烯环氧化的研究取得重大突破. 中科院大连化物所的奚祖伟研究员[53]以过氧化氢为氧化剂, 采用一种含钨的相转移催化剂, 通过反应来控制催化剂, 使该催化体系兼具均相和异相催化的优点, 反应产率达到85%, 且无任何副产物, 被誉为是“具有环境友好体系”的研究成果(Scheme 3).Mandelli 等[54]采用相对廉价、简单的Al 2O 3作催化剂进行烯的环氧化. 反应底物的适应范围广, 包括多种α-链烯和环烯等. 产物与催化剂物质的量比达到4.3∶1, 虽然偏小, 但催化剂比较经济、易得, 且可反复回收使用. 2003年, 烯的环氧化再次取得了重大进展. 日本东京大学的Mizuno 研究组[55]用(Me 4N)4[γ-SiW 10O 34(H 2O)2]990有 机 化 学 V ol. 31, 2011Scheme 3为催化剂, 过氧化氢为氧化剂, 使用乙腈作溶剂, 实现了对包括异丙烯在内的链烯、环烯、端烯、非端烯和共轭烯等各类烯的环氧化, 反应的选择性和过氧化氢的氧化效率均达到了99%, 产率均在84%以上, 催化剂也容易回收(Eq. 17).(17)2005年, Marigo 等[56]报道了第一个用有机催化剂催化α,β-不饱和醛的环氧化方法 (Eq. 18). 采用的有机催化剂为手性吡咯烷衍生物, 反应可在乙醇/水等这类环境友好型的介质中进行, 方法的产率和ee 值都很高.2006年, Goodman 等[57]则报道了用硒化合物作催化剂催化过氧化氢氧化烯成环氧化物的方法, 反应底物范围广. 2007年, Sawada 等[58]用钛催化剂催化不活泼烯进行不对称环氧化研究取得了新进展, 适应底物包括了含有末端脂基的Z 式烯烃, 这类烯烃一般对环氧化缺乏活性, 反应的产率和对映选择性都很高(Eq. 19). Gelacha 等[59]则研究了芳基或/和烷基取代的E 式烯烃的不对称环氧化. 采用的是用含有铁化合物、吡啶衍生酸和一种新型手性配体的催化体系, 以2-甲基-2-丁醇为溶剂, 反应的产率、转化率以及ee 值都在90%以上(Eq. 20).(19)对于末端烯烃和内部孤立双烯的选择性氧化问题, Colladon 等[60]使用一种含有缺电子的铂(II)催化剂, 实现了对末端双键进行选择性环氧化. 对该反应的机理研究表明, 这是一个少有的过氧化氢对烯的亲核氧化反应. 2008年, Garcia-Bosch 等[61]报道用锰的配合物作催化剂, 在乙酸的存在下, 用过氧化氢氧化烯烃成环氧化物. 该方法的适应范围广, 具有很好的化学选择性. 李记太等[62]报道用KF/碱性Al 2O 3催化体系催化过氧化氢氧化查尔酮, 合成了一系列2,3-环氧-1,3-二芳基丙酮(Eq. 21). 反应条件温和, 收率在79%~99%, 对环境友好.离子液体溶剂与过氧化氢结合的反应体系在有机合成中表现出了独特的优越性[63,64]. 2003年, 香港理工大学陈德恒研究组[65]报道在室温下的离子液体介质中, 实现了亲酯性烯的高效率环氧化(Eq. 22). 2005年, Ya-maguchi 等[66]报道用衍生的吡啶六氟磷酸盐作离子液体, 改性固定的SiO 2, 用来催化烯的环氧化, 使这一反应体系在催化性能上具有均相催化剂的性能, 同时又具有异相催化体系分离产物和回收催化剂方便的优点.(22)氟相体系是一类以全氟化或高氟化的有机物为介质的液相体系, 在20世纪90年代已用于有机合成[67]. 2003年有报道, 在氟化醇(如三氟乙醇和六氟异丙醇等)介质中, 无其他催化剂的情况下, 直接用过氧化氢进行烯的环氧化[68]. 2006年, Berkessel 等[69]对在六氟异丙醇溶剂中的烯环氧化作了进一步研究, 在无其他催化剂的情况下, 烯的环氧化比在1,4-二氧六烷中的反应快1万倍(Eq. 23), 初步研究表明这种氟相介质能够大大降低反应的活化能. 显示了氟相体系在过氧化氢进行烯烃环氧化中的优越性.N o. 7 刘洋等:绿色化学试剂过氧化氢在有机合成中的应用研究进展991(23)超临界流体具有溶解能力强、物性可调、绿色无污染等优点, 常用于做理想的提取分离溶剂. 近来, 超临界流体尤其是超临界二氧化碳作为一种理想的绿色反应溶剂, 越来越受到青睐[70~72]. 2001年, Nolen等[73]在超临界二氧化碳介质中, 在不添加任何金属催化剂和过氧酸的情况下, 用过氧化氢水溶液氧化环己烯环氧化成环氧烷, 反应选择性高, 产率达到89%. 研究者认为反应过程中H2O和CO2可能原位生成过氧乙酸, 从而实现了在无其他催化剂条件下环氧化烯.3.3 过氧化氢用于合成醇、酚过氧化氢氧化烯合成醇是制备醇、酚的常用方法,研究的热点主要是筛选高性能的氧化反应体系以满足不同的合成反应要求. 2003年, Usui等[74]开发了一种清洁、安全的从烯烃合成反式邻二醇的方法, 该方法采用易于回收的磺酸树脂反应体系替代一般的有机溶剂和金属反应体系. 2005年, Trudeau等[75]报道了顺式邻二醇的合成方法, 所用催化剂为铑配合物(Eq. 24).苯酚的制备常采用Fenton试剂氧化苯及其衍生物的方法, 主要问题在于产物苯酚比反应底物更活泼, 易发生过氧化. 2003年, 中国科学院兰州化物所的邓有全研究组[76]实现了在水相-离子液体(3-甲基-1-辛基咪唑六氟磷酸盐)两相体系中, 用三(十二烷基硫酸)铁作催化剂高选择性地氧化苯制备酚. 产物酚进入水相, 与离子液体相中的催化剂、底物分开, 从而避免了酚的过氧化.反应的催化效率高, 选择性可达到90%以上. 2005年,Bernini等[77]报道采用三氧化甲基铼和过氧化氢为氧化催化体系, 从安息香醛合成苯酚的方法(Eq. 25). 反应介质可为[bmim]BF4或[bmim]PF6的离子溶液.(25)3.4 过氧化氢用于合成醛、酮醛、酮化合物应用很广, 其所含羰基是一种很活泼的基团, 是很多有机反应的中间体. 用过氧化氢作氧源氧化合成醛、酮, 反应条件一般比较温和, 可控, 副反应少. 1997年, N oyori等[40]报道了使用钨酸钠作催化剂,硫氢酸三辛基甲基铵作相转移催化剂, 用过氧化氢做氧化剂, 可以将芳甲醇氧化成醛(Eq. 26), 将仲醇氧化成酮(Eq. 27).(26)(27)2006年, 张燕飞等[78]报道一种合成酮醇的直接和温和的方法. 反应底物主要为芳基烯烃衍生物, 钨磷酸化合物为催化剂, 方法的产率和区域选择性较高(Eq.28).(28)苯乙酮的制备常用Friedel-Crafts反应和Wacker 反应, 但选择性往往较差, 产物分离困难, 并伴有大量有毒、腐蚀性废液产生. 2007年, Wang等[79]首次报道在超临界二氧化碳作反应介质, 用Au-Pd载体(Al2O3)催化剂催化过氧化氢选择性氧化苯乙烯制苯乙酮, 产物转化率达到68%, 选择性达到了87% (Scheme 4).Scheme 42008年, Ganguly等[80]用醛肟或酮肟制备酮. 用溴化钾和四水合钼酸铵作催化剂, 反应条件温和, 产率在80%以上. 龚树文等[81]也用四水钼酸铵和草酸配位形成配合物作催化剂, 实现由环己醇合成环己酮, 收率达85%. 据报道, 该法反应体系无卤素及相转移催化剂和992有 机 化 学 V ol. 31, 2011酸氧化法制备环己酮更环保, 是一种实用的环境友好型绿色清洁氧化方法. 苏金龙[82]在其2009年的硕士论文中首次报道用H 2O 2/Ti(SO 4)2体系催化氧化苄醇或其衍生物成相应醛、酮的方法(Eq. 29). 方法的部分产物的产率达到99%.(29)3.5 过氧化氢用于合成酸目前, 用过氧化氢氧化烯烃、醇、醛等制备相应的酸均有报道. 传统方法采用硝酸等作氧化剂, 所产生的废酸严重污染环境. 用过氧化氢氧化体系能从源头避免这一问题. 1997年, N oyori 等[40]报道了使用钨酸钠作催化剂, 硫氢酸三辛基甲基铵作相转移催化剂, 用过氧化氢作氧化剂, 可以氧化伯醇成酸, 最高产率达到了96%, 该反应适用于链烷基或芳基取代的伯醇. 1998年, N oy-ori 等[42]用过氧化氢氧化环已烯制备已二酸取得重大突破. 同样使用上述催化体系, 且不使用有机试剂和卤化物, 使已二酸的产率达到了90%以上(Eq. 30). 同时提出了这一反应的机理(Scheme 5). 该反应体系对环辛烯和庚烯等更大的烯类为底物的反应效果欠佳, 主要原因是这类烯在氧化形成环氧化物后比较稳定, 不易发生水解裂键.(30)Scheme 52000年, N oyori 研究组[41]发现, 同样在该反应体系下, 当不使用钨酸钠等金属催化剂时, 可以选择性地把含有吸电子取代的链烷基醛或苯甲醛氧化成相应的酸, 而伯醇基、仲醇基和烯基不受影响(Eq. 31).(31)为了拓宽过氧化氢合成酸反应的底物适用范围以及使用更为经济的反应体系, 国内外研究人员开展了更[83]化铵为相转移催化剂, 用磷钨酸催化氧化环己烯合成己二酸, 收率可达87%. 2004年, 丁宗彪等[84]也报道了过氧化氢氧化环己烯合成己二酸的方法, 该反应不使用相转移催化剂, 直接用钨酸钠或磷钨酸为催化剂. 2005年, 曹发斌[85]报道了对以上合成方法的改进, 以钨酸/有机酸性添加剂为催化体系, 在无有机溶剂、相转移剂的情况下, 催化30%过氧化氢氧化环己烯合成己二酸, 产率达90%以上, 有机酸性添加剂可以为磺酸水杨酸、间苯二酚等.3.6 过氧化氢用于合成酯用过氧化氢合成酯的方法较多, Baeyer-Villiger 氧化反应是其中的一个重要方法. 2000年, Gopinath 等[86]报道用氧化钒作催化剂, 在高氯酸存在下, 催化过氧化氢氧化芳甲醛与甲醇反应生成芳甲酸甲酯. 反应条件温和, 反应时间短, 产率高, 目标产物易分离(Eq. 32).(32)2002年, Murahashi 等[87]报道用他们合成的一种具有手性结构的催化剂用于不对称Baeyer-Villiger 氧化反应, 合成环内酯(Eq. 33). 2003年, Mutsumura 等[88]也用Baeyer-Villiger 反应, 以过氧化氢或过氧化氢的尿素加合物作为氧化剂, 钴配合物为催化剂, 从3-苯基环丁酮合成相应的内酯, 获得了68%的产率和87%的ee 值 (Eq.34).(34)2007年, 兰州大学黄国生研究组[89]报道了一类酮羰基的α位活泼氢的取代反应. 该反应在过氧化氢和碘苯作用下, 对酮的α位进行乙酰氧基化(Eq. 35).(35)N o. 7刘洋等:绿色化学试剂过氧化氢在有机合成中的应用研究进展9933.7 过氧化氢用于合成有机卤代化合物有机卤代化合物的合成有几个问题: 一是有机卤代反应的化学选择性较差, 副产物多; 二是往往直接用卤素作卤化剂, 污染大; 三是碘代物的合成较困难. 2004年, Iskra 等[90]报道了一种合成碘苯的方法. 该方法使用硫酸进行催化, 用过氧化氢和KI 在甲醇介质中对富电子的苯进行碘化反应. 反应的选择性好, 分离产率达到了97% (Eq. 36).(36)佟拉嘎等[91]报道以噻吩、48% (m /m )氢溴酸水溶液、35% (m /m )过氧化氢水溶液、高纯氨、金属钠为原料, 以(dppp)NiCl 2为催化剂, 合成了3-溴噻吩和3,4-二溴噻 吩. 2006年, Terentev 等[92]报道羰基α位的双溴化方法.反应用H 2O 2 -HBr 溶液体系对1-芳基乙酮以及其衍生物的甲基位进行双溴化反应(Eq. 37). 反应速度快, 不足之处是富电子的芳基环上易发生溴化.(37)Kirihara 等[93]报道了羰基α位的另一种溴化方法.反应为β-二酮的单溴化反应, 反应在KBr, HCl, 过氧化氢体系中进行, 反应适用底物范围广, 化学选择性高, 且是个定量反应(Eq. 38).(38)3.8 过氧化氢用于合成其他有机化合物使用过氧化氢参与的有机反应合成的有机物种类还有很多. 2002年, Ichihashi 等[94]报道了一种更为“绿色”的用环己酮合成己内酰胺的方法(AE =75%, E =0.32)取代了原有的硫酸氧化法(AE =29%, E =4.5), 大大提高了反应的原子效率(AE ), 降低了环境影响因子(E ), 该反应采用钛硅分子筛(TS-1)作催化剂(Eq. 39).(39)2004年, Defoin[95]报道了以芳胺为起始物, 用钼化合物为催化剂合成亚硝基芳烃的方法, 产物可控进一步氧化成硝基芳烃(Eq. 40). 2007年, Žmitek 等[96]报道用单质碘催化过氧化氢氧化酮合成偕二过氧化氢的方法, 芳基醛也可发生类似反应(Eq. 41).(40)(41)Kirihara 等[97]用催化量的碘离子或碘单质催化硫醇成二硫化物, 反应的分离产率达到了99% (Eq. 42). Bahrami 等[98]报道了一种简洁有效的一锅法合成取代苯并咪唑的方法. 目标产物可在乙腈、过氧化氢、HCl 体系中用邻苯二胺和芳醛于室温下合成, 反应产物易分离, 产率均在96%以上(Eq. 43).(42)(43)李洪珍等[99]连续报道了氨基硝基呋咱的合成方法研究(Scheme 6), 其采用的反应体系均为H 2O 2/ CH 3SO 3H/Na 2WO 4或(NH 4)2S 2O 8. 以67%的产率获得了3-氨基-4-硝基呋咱(ANF), 以54.7%的产率得到3,3'-二硝基-4,4'-偶氮呋咱(DNAzF). 后来又以高于65%的产率合成了ANF 和3-氨基-3'-硝基-4,4'-氧化偶氮呋咱(ANAF); 并首次合成了3-氨基-3'-硝基-4,4'-偶氮呋咱(ANAzF), 收率为15%[100].Scheme 62009年, 苏金龙[82]报道首次用H 2O 2/V 2O 5催化体系和H 2O 2/Ti(SO 4)2催化体系促进汉斯酯1,4-二氢吡啶芳构化, 目标产物的收率均在94%以上(Eq. 44). 其中H 2O 2/V 2O 5催化体系比H 2O 2/Ti(SO 4)2催化体系在反应时间等方面更具优势.。
绿色化学及其研究发展

大量的与化学品制造相关的 污染问 题不仅 来源于 原料和产 品 , 而且源自在其制造过程 中使用的 物质. 最常 见的是 在反应介 质 、分离和配方中所用的溶 剂. 当 前广泛 使用的 溶剂是 挥发性有 机化合物 ( VOC), 其在使用过程中 有的会 引起地面 臭氧的 形成, 有 的会引起水源污染, 因此. 需要限制这类溶剂的使用. 采用无毒 无 害的溶剂代替挥发性有机化合 物作溶 剂已成 为绿色 化学的重 要 研究方向 2. 5 环境友好产品
今天, ! 绿色化学 已被公认为是 21世纪最 重要的 科学领域 之 一, 是实现污染预防最基 本的科学 手段. 尽管 现在还 很难对其 未 来发展趋势做出准确而全面的预测, 但根据现在的研 究进展可 以 断定, 绿色化学在一些具 体研究领 域既具 有科学 研究价 值, 又 将 产生重要的社会和经济效益. 绿色化学从原理和方法 上给传统 的 化学工业带来了革命性的变化, 在设计新的化学工艺 方法和设 计新的环境 友好产品两个方面, 通过 使用原 子经济 反应, 无毒无 害 原料、催化剂和溶剂等来实现化学工艺的清洁生产, 通过加工、 使 用新的绿色化学品使其对人身健康、社区安全和生态 环境无害 化 . 绿色 化学是 有效的, 也是 有益的. 21 世纪绿色 化学的 进步将 会 证明我们有能力为我们生存的地球负责. 绿色化学是 对人类健 康 和我们的生存环境所作的正义事业. 参考文献 [ 1] 李业梅, 夏明俊. 绿色化学及其研究进展. [ 2] 唐有祺. 展望今后化学之发展 [ J]. 化学通报, 1998( 6 ). [ 3] 闵恩泽, 陈家镛, 等. 绿色化学与技术一推进化工生产可持续发展的
为使制得的中间 体具有进一步转化所需的官能团和反应性, 在现有化工生产中仍 使用剧毒的光气和氢氰酸等作为原料. 为了 人类健康和社区安全 . 需要用无毒无害的原料代替它们来生产所 需的化工产品. 2. 3 采用无毒、无害的催化剂
绿色化学的相关研究进展

绿色化学的相关研究进展随着环保意识的提高以及可持续发展理念的普及,绿色化学已经成为了当今化学领域的一个热门话题。
它的出现不仅可以有效地保护环境,还可以帮助我们更好地利用资源,降低成本,提高效率。
在绿色化学领域,有很多研究正在进行中,下面我们就来了解一下相关的研究进展。
1. 绿色催化剂的研究催化剂是加速化学反应的关键,而绿色催化剂则是指在制备过程中无需采用有机溶剂等对环境有害的化学品。
近年来,各种绿色催化剂的研究已经取得了很大的进展。
比如,利用金属-有机骨架化合物可以制备出高效、低毒的催化剂,从而实现对环境的保护。
此外,也有一些无机催化剂,如固体酸催化剂、氧化钒催化剂等被广泛研究。
2. 绿色溶剂的研究溶剂在化学合成中占有重要的地位,但是传统溶剂对环境的影响极大。
因此,绿色溶剂的研究也成为了绿色化学领域的重要研究内容。
绿色溶剂主要是指可再生、可降解的有机溶剂以及水等无毒溶剂。
研究表明,许多天然物质也可以作为绿色溶剂,如环境友好的乙醇、甘油、葡萄糖等。
这些绿色溶剂具有良好的环保性能和低毒性,可以显著降低合成过程中对环境和人体的危害。
3. 绿色反应的研究绿色反应主要是指在反应过程中无需使用有毒、危险的化学品,如酸、碱等;同时该反应可以高效、可控地进行。
在绿色化学领域,绿色反应的研究也十分活跃。
例如,绿色合成化学反应包括脱氢、还原、羰基还原等等,这些反应可以高效地进行,并且无需使用有害的化学试剂。
此外,化学修饰领域的绿色反应也取得了令人瞩目的成果。
4. 绿色材料的研究绿色材料是指环保、可持续的材料,这种材料不仅对环境无害,而且对人体也无毒。
随着人们对环保、健康新概念的逐渐认识,绿色材料的研究也逐渐得到了重视。
如利用天然纤维素材料、开发高效、可再生的太阳能电池、开发无毒、易降解的生物基材料等等,这些绿色材料不仅可以提高新能源的利用效率,而且能够减少进一步危害环境的行为。
在绿色化学研究领域,还有很多其他的研究正在进行中。
有机化学的新进展与应用

有机化学的新进展与应用有机化学是化学科学的一个分支,主要研究有机化合物的结构、性质和反应。
有机化学的理论与实践研究已经有了重大进展,给人们的生产生活带来巨大的变化和进步。
以下是有机化学的新进展和应用。
一、生物有机化合物的研究现在,生物有机化学是有机化学领域中一个重要的分支。
生命体系中有着许多的有机化合物,这些化合物可以用来交换信息、形成新的酵素、抵抗疾病、规范代谢等等。
因此,对于生物有机化合物的研究有助于更深入地了解生物之间的关系,研究生命体系的进化,开发新的药物等。
二、绿色化学绿色化学,是指在制备和使用化学品时遵循可持续发展原则和尽可能使用少的资源和环境的化学,是有机化学的一个重要发展方向。
绿色化学的研究旨在通过节约能源、减少废弃物和改善健康与环境等方面的方法,提高生产的效率和产生更多高品质的化学品。
绿色化学的应用意义非常广泛,在某些领域特别关键,如:食品、药品、医疗等领域。
三、有机金属化学有机金属化学是有机化学领域中的一个重要分支,它研究由有机物和金属离子所形成的化合物。
这些化合物对于合成原理、制备新材料、新反应的发现和研究以及解决各项化学问题都有着很大的帮助。
目前有机金属化学的应用已经渗透到各个领域中去,包括生物界、催化领域、电子材料、石油和石化领域等等。
四、新型催化剂的研究新型催化剂的研究是有机化学中的一个非常重要的领域,因为催化剂可以提高化学反应的速率,提高化学反应的效率以及在化学反应中获得更高的选择性等等。
新型催化剂也可以对一些化学反应进行高效催化,从而控制分子之间的反应。
新型催化剂的研究对于解决环境和资源问题有着很好的推动作用。
五、光化学光化学是有机化学中的一个新兴领域,它通过将化学反应和光学相结合,使用光照来促进有机反应的发生。
光化学可以大大提高许多有机反应的复杂度和效率。
有机化学在新材料、药品、表面修饰、无机合成等方面具有广泛的应用潜力。
光化学是通过量子级别中电磁波与物质之间相互作用的一种方法,常常被用于制造杂揉结构,制造新材料,甚至用于高速数据传输中。
绿色化学中的新成果

绿色化学中的新成果绿色化学是指在合成化学和化学生产中,始终保持环境、健康和安全为优先原则的策略。
随着环境问题的日益严重,人们对绿色化学的需求也越来越迫切。
绿色化学不仅为环境保护做出了贡献,还为化学领域带来了新的机遇和挑战。
在这篇文章中,我们将探讨绿色化学中的新成果。
1. 可再生资源的利用可再生资源是指那些可以持续利用且不会对环境造成重大危害的资源。
在绿色化学中,可再生资源被广泛地应用。
例如,生物质可以作为基础化学原料,生物可降解塑料可以替代传统塑料,生物燃料可以替代传统燃料等等。
2. 催化剂的发展催化剂是一种可以加速化学反应的物质。
通过催化剂,化学反应可以在较低的温度和压力下进行,从而减少能源消耗和废物排放。
目前,绿色催化剂的研究已经成为绿色化学的重要研究方向之一。
绿色催化剂不仅高效、选择性好,且无毒、易得、易分离和易回收。
3. 有机合成的改进有机化学合成是制造化学品的必要步骤。
近年来,绿色化学在有机合成中的应用不断推进。
绿色合成的实现方法包括:使用可再生资源、催化剂、微波辐射等;使用环保溶剂、少量剂量、少步骤等;使用微生物或酶催化等。
与传统化学合成相比,绿色合成更加高效、可持续且环保。
4. 废弃物的转化利用废物处理和利用是绿色化学中的一个重要议题。
传统方法对废弃物的处理大多采用焚烧和填埋,这会导致二次污染和浪费资源。
绿色化学提倡对废弃物进行资源化利用和循环利用。
例如,废矿渣可以用于制备高强度水泥,废油可以分离为有用组分,废金属可以回收再利用等等。
总之,绿色化学提出了一系列新的思路和方法,为环境、健康和安全提供了保障。
未来,随着人们对环境保护意识的增强,绿色化学的研究和应用将变得更加重要。
我们需要不断探索和实践,为创造更加绿色、可持续的生态环境做出贡献。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绿色有机化学研究进展摘要现代社会中,科技已成为发展一个国家经济的重要指标,科技的进步就是一个国家的进步。
绿色有机化学作为科技的不可或缺的力量,其发展前景一直备受关注。
绿色有机化学也就是我们在有机合成过程中怎样做到绿色有机,用新反应,新技术,新工艺获得所需要的目标产物。
那么,现在社会中,在发展经济的同时,环境也在不同程度上受到污染,影响我们的健康的同时,还威胁着我们的子孙后代,于是,绿色有机化学在资源的合理开发和利用、减少或消除环境污染等可持续发展问题提出了更高的要求。
近年来绿色化学,洁净技术,环境友好过程已成为合成化学追求的目标和方向。
本世纪,有机合成的有效性,选择性,经济性,环境影响和反应速率将是绿色有机化学研究的重中之重。
关键词环己烯绿色实验改进催化剂正文绿色有机合成是指采用无毒、无害的原料、催化剂和溶剂,选择具有高选择性、高转化率,不生产或少生产副产品的对环境友好的反应进行合成,其目的是通过新的合成反应和方法,开发制备单位产品产污系数最低,资源和能源消耗最少的先进合成方法和技术,从合成反应入手,从根本上消除或减少环境污染。
进入21世纪以后,在人类物质生活不断提高和工业化高度发展的同时,大量排放的工业和生活污染物却反过来使人类的生存环境迅速恶化,这就使化学家面临新的挑战,即要去发展对人类健康和环境较少危害的化学。
这一问题近年来已受到相当重视,并出现了一系列新名词,如绿色化学、环境友好化学、洁净化学、原子经济性等。
所谓绿色化学又称“环境无害化学”、“环境友好化学”、“清洁化学”,绿色化学是近十年才产生和发展起来的,是一个“新化学婴儿”。
它涉及有机合成、催化、生物化学、分析化学等学科,内容广泛。
绿色化学的最大特点是在始端就采用预防污染的科学手段,因而过程和终端均为零排放或零污染。
世界上很多国家已把“化学的绿色化”作为新世纪化学进展的主要方向之一。
绿色化学研究过程中应遵循12条原则:1.防止污染优于治理污染2.注重原子经济性3.无害化学合成4.设计安全化学品5.使用安全溶剂和助剂6.设计能源经济性反应7.使用可再生原料8.尽量避免不必要的衍生步骤9.催化剂优于化学计量试剂10.降解设计11.预防污染中的实时分析12.防止意外事故的安全工艺。
以这十二条原则为准则,化学家们不断寻求实现绿色合成的方法、技术与途径。
比如:采用无毒、无害的高效催化剂、采用无毒、无害的溶剂、反应方式的改变、采用高效合成法、固态反应、利用可再生的生物质资源等。
微波有机合成技术是近年来发展起来的一种新型有机绿色合成新技术。
他不但能使不能发生的化学反应能进行,而且也能使有些化学反应的效率大大提高。
我们以环己烯的制备实验为例,了解其反应过程环己烯反应原理:环己醇通常可用浓磷酸或浓硫酸作催化剂[1]脱水制备环己烯,本实验是以浓磷酸作脱水剂来制备环己烯的。
主反应:OHH 3P04副反应: OHOOHO H +130-140o C[O]实验试剂药品与仪器装置试剂药品:环己醇(10 g), 浓磷酸(4 ml),食盐(1g), 无水氯化钙(1~2 g),5%碳酸钠(4 mL)。
仪器与设备:圆底烧瓶(50 mL),分留住,分液漏斗,锥型瓶。
实验步骤1.粗环己烯的制备在50 mL 干燥的圆底烧瓶中,放入10 g 环己醇(10.4 mL ,0.1 mol)、4 mL 浓磷酸和几粒沸石,充分振摇使混合均匀。
烧瓶上装一短的分馏柱作分馏装置,接上冷凝管(见图2-21),用锥形瓶作接受器,外用冰水冷却。
将烧瓶在石棉网上用小火慢慢加热,控制加热速度使分馏柱上端的温度不要超过90℃[2],慢慢的蒸出生成的环己烯和水(混浊液体[3]。
当烧瓶中只剩下很少量的残渣并出现阵阵白雾时,即可停止蒸馏。
全部蒸馏时间约需l h 。
2. 环己烯的精制将蒸馏液用精盐饱和,然后加入3~4 mL 5%碳酸钠溶液中和微量的酸。
将此液体倒入小分液漏斗中,振摇后静置分层。
将下层水溶液自漏斗下端活塞放出、上层的粗产物自漏斗的上口倒入干燥的小锥形瓶中,加入1~2 g 无水氯化钙干燥[4]。
将干燥后的产物滤入干燥的蒸馏瓶中,加入沸石后用水浴加热蒸馏。
收集80~85℃的馏分于一已称重的干燥小锥形瓶中。
产率 3.8~4.6 g (产率 46%~56%)。
纯粹环己烯的沸点为82.98℃,n 20D = 1.4465。
图3-1 环己烯的红外光谱绿色化学的特点绿色化学是从源头上减少或消除在设计、 生产和应用化学产品过程中产生或使用有害物质 的安全环保的化学方法。
通过选择安全的物质去替代危险的原料和避免危险物排放的手段 来消除化学研究和生产对环境和人类的危害 本文依据绿色化学方法.对环己烯制备实验进行了绿色化改进,由以前实验可知,实验生成的环己烯具有令人不快的味道,为避免挥发到空气中危害师生健康,一般要求实验在通风橱中进行,安装通风橱和持续保持通风费用昂贵,大大增加了教学成本。
在实验时,我们可以采用廉价的气球缓冲密封装置,使得蒸发出的环己烯不会挥发到空气中,保证了师生的安全,也节约了教学成本。
催化剂的绿化 相对于化学当量的反应,高选择性、高效的催化反应更符合绿色化学的基本要求。
许多有机合成反应中,液体酸或碱是最常用的催化剂,其价格便宜、催化效率高,但对设备腐蚀严重、污染大、副反应多、后处理困难。
为克服传统催化带来的危害,研究和开发新型绿色催化剂自然就成为目前最前沿的热点之一。
较成功的有各种新型分子筛催化剂、固体超强酸或碱催化剂、杂多酸催化剂、夹层固体催化剂及相转移催化剂。
这些新型催化剂的催化能力均优于传统的酸碱催化剂,同时对环境友好,目前正大量应用于有机合成中。
在环己烯的制备实验中,所用的催化剂为具有强腐蚀性的浓硫酸,然而,浓硫酸有两个限制,一是具有高腐蚀性,对学生安全存在潜在危害,操作不当极易被浓硫酸毁伤,二是浓硫酸具有极强的反应能力,在生成环己烷的同时还常常伴随碳化,生成废物较多,加重了环境污染,降低了反应效率。
为解决上述问题,我们采用了低腐蚀,反应活性低很多的磷酸做催化剂。
不仅提高了反应收率,而且还降低了安全风险,保证了师生在实验过程中的安全。
总结展望未来,全球的城市化、工业化将继续发展,人口还要继续增加,对化学工业的需求也将增多。
而传统化学工业虽在农药、聚合物、材料科学、去污剂、石油添加剂、水处理、废物处置等方面做出了巨大贡献,但另一方面它也增加了对环境的压力。
而人们对改善环境、提高生活质量的要求又越来越强烈,联合国环保小组反复强调“保护环境是可持续发展的重要内容,直接关系到全球经济建设的成败”。
绿色化学以其“原子经济性”为基本原则,一方面充分利用资源防止浪费,另一方面实现“零排放”,达到不污染环境的效果。
因此,有机合成化学应该遵守绿色化学的基本原则,研究和发展对环境友好、造福于人类的新型化学。
参考文献[1]《绿色合成技术的新进展》杨海贤《济南职业学院学报》2006年03期1[2]《绿色化学在有机合成方面的应用》高宝平吕梁[3] 雍胜利李树颖微波在有机合成中的应用[J]包头师范学院化学学院,2005年03期[4]《绿色合成在有机化学中的含义及应用》《内蒙古石油化工》2007年第8期[5] 肖翠玲,王艳花,董树生.21[J].工进展,2000,2:40-42,45.[6] 古凤才,肖衍繁,张明杰,刘炳泗.基础化学实验教程[M](第二版).北京:科学出版社,2005.[7]徐家宁,张锁秦,张寒琦.基础化学实验[M ].北京:高等教育出版社,2006.[8]Anastas P.T .,Warner J.c .Green Chemistry [M].Oxford:Oxford University Press,1998.The green organic chemistry is reviewedIn this paperIn the modern society, science and technology has become an important indicator of a country economy development, the progress of science and technology is the progress of a country. Green organic chemistry as the indispensable power of science and technology, its development prospect has been closely watched.Green organic chemistry in organic synthesis process known as how to achieve green, organic, with a new response, new technology, new process for the need of the target product. So, now, in the society in the development of the economy at the same time, the environment is also polluted in different extent, affect our health at the same time, also threatens our future generations, so the green organic chemistry in the rational development and utilization of resources, reduce or eliminate environmental pollution and so on sustainable development put forward higher requirements. In recent years ?Keywords cyclohexene green The experiment to improve catalyst。