高三数学第一轮复习-知识点

合集下载

高三数学一轮复习知识点详细

高三数学一轮复习知识点详细

高三数学一轮复习知识点详细高三是整个中学生活的关键时期,对于将要面临高考的学生们来说,备考是最重要的任务之一。

而高考数学作为一门重要的科目,需要一轮复习提高自己的数学水平和应试能力。

本文将详细介绍高三数学一轮复习的知识点。

一、代数与函数在代数与函数中,我们需要重点复习的知识点有:1. 分式方程:包括分式的乘除与分式的方程与不等式;2. 二次函数:掌握二次函数的定义、性质以及相关的图像变换;3. 复杂函数的运算:包括函数的合并、分解、复合与反函数;4. 分式与整式的混合运算:理解分式与整式的加减及乘法与整式的除法运算;5. 二元一次方程组:熟悉二元一次方程组的解法;6. 等差数列与等比数列:掌握等差数列与等比数列的性质,并进行相关题目的解答;7. 幂指函数:理解幂函数与指数函数的图像变换与性质。

二、空间与几何在空间与几何中,我们需要重点复习的知识点有:1. 空间向量:包括向量的定义、加法、数量积与向量的共线与垂直关系;2. 圆锥曲线:掌握圆、椭圆、抛物线和双曲线的定义、相关性质与图像变换;3. 球与球面上的直线与平面:认识球与球面上直线与平面的性质、夹角、交点等;4. 空间几何体的体积与表面积:熟悉各种几何体的体积与表面积计算;5. 空间几何体的相交关系:包括平行与垂直关系、位似关系等。

三、数与统计在数与统计中,我们需要重点复习的知识点有:1. 随机事件与概率:理解随机事件的定义与基本性质,掌握概率的计算方法与相关公式;2. 二项式定理:掌握二项式展开的方法与应用;3. 组合数学与排列组合:了解排列组合计算的基本方法与公式,掌握应用技巧;4. 数据的整理与分析:学会收集数据、整理数据、制作统计图与分析统计结果。

四、解析几何在解析几何中,我们需要重点复习的知识点有:1. 平面直角坐标系与向量:理解平面直角坐标系的性质,掌握向量的加法、减法、数量积与向量的共线关系;2. 平面图形的方程:熟悉直线、圆、抛物线、双曲线及椭圆图形的方程;3. 几何变换:掌握平移、旋转、对称与放缩等几何变换的基本概念与性质。

余弦定理、正弦定理课件-2025届高三数学一轮复习

余弦定理、正弦定理课件-2025届高三数学一轮复习
2
2
5
10
(2)[2021全国卷乙]记△ ABC 的内角 A , B , C 的对边分别为 a , b , c ,面积为
3 , B =60°, a 2+ c 2=3 ac ,则 b =
1
2
[解析] 由题意得 S △ ABC = ac sin B =
2 2
3
ac =
4
.
3 ,则 ac =4,所以 a 2+ c 2=3 ac =
A为锐角
A为钝角或直角
图形
关系式
a<b sinA
解的个数
无解
a=b sinA
⑪ 一解
b sin A<a<b


两解

a≥b
⑬ 一解

a>b
a≤b
一解
无解
3. 三角形中常用的面积公式
△ ABC 中,角 A , B , C 对应的边分别为 a , b , c .则:
1
(1) S = ah ( h 表示边 a 上的高);
(2,8) .

2 + 1 > 0,
1
[解析] ∵2 a +1, a ,2 a -1是三角形的三边,∴ > 0,
解得 a > .显然2 a
2
2 − 1 > 0,
+1是三角形的最大边,则要使2 a +1, a ,2 a -1构成三角形,需满足 a +2 a -1
>2 a +1,解得 a >2.设最大边对应的角为θ(钝角),则 cos θ=
(
D )
A. 1
B. 2
C. 5
D. 3
[解析] 由余弦定理得 AC 2= AB 2+ BC 2-2 AB ·BC ·cos B ,得 BC 2+2 BC -15=

高三数学一轮复习精品资料——基础知识归纳

高三数学一轮复习精品资料——基础知识归纳

高三数学一轮复习:基础知识点概括第一部分 集合1.理解集合中元素的意义是解决集合问题的关键:元素是函数关系中自变量的取值?还.....是因变量的取值?还是曲线上的点?…2.数形结合是解集合问题的常用方法:解题时要尽可能地借助数轴、直角坐标系或韦恩 ....图等工具,将抽象的代数问题具体化、形象化、直观化,然后利用数形结合的思想方法 解决3.(1)元素与集合的关系: x A x C U A , x C U A x A . (2)德摩根公式: C U (A B) C U A C U B;C U (A B) C U A C U B . (3)A B A A BBABC U BC U AAC U BC U ABR注意:讨论的时候不要遗忘了 A 的情况.(4)集合{a 1,a 2,,a n }的子集个数共有2n 个;真子集有2n –1个;非空子集有非空真子集有2n –2个.2n –1个;4.是任何集合的子集,是任何非空集合的真子集.第二部分函数与导数1.映射:注意:①第一个集合中的元素必须有象;②一对一或多对一.2.函数值域的求法:①分析法;②配方法;③判别式法;④利用函数单调性;⑤换元法;aba ba2b 2⑥利用均值不等式;⑦利用数形结合或几何意义(斜率、距离、 2 2绝对值的意义等);⑧利用函数有界性(a 、sin x 、cos x 等);⑨平方法;⑩导数法 x3.复合函数的有关问题:(1)复合函数定义域求法:①若f(x)的定义域为[a ,b ],则复合函数f[g(x)]的定义域由不等式a≤g(x)≤ b 解出②若f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值 域.(2)复合函数单调性的判定: ①首先将原函数 yf [g(x)]分解为基本函数:内函数u g(x)与外函数 y f (u)②分别研究内、外函数在各自定义域内的单调性③根据“同性则增,异性则减”来判断原函数在其定义域内的单调性.4.分段函数:值域(最值)、单调性、图象等问题,先分段解决,再下结论。

高三数学一轮知识点总结归纳

高三数学一轮知识点总结归纳

高三数学一轮知识点总结归纳高三数学是学生们备战高考的关键时期,对于数学知识点的总结归纳是非常重要的。

本文将对高三数学一轮知识点进行全面梳理,帮助同学们更好地复习与巩固学习内容。

一、函数与方程1. 函数的性质与图像a. 定义域、值域与奇偶性b. 函数的增减性与最值c. 函数的周期性与对称性d. 常见函数的图像与性质总结2. 一次函数与二次函数a. 一次函数的定义与性质b. 一次函数的图像与常见问题c. 二次函数的定义与性质d. 二次函数的图像与常见问题3. 指数与对数函数a. 指数函数的定义与性质b. 指数函数的图像与常见问题c. 对数函数的定义与性质d. 对数函数的图像与常见问题4. 幂函数与反比例函数a. 幂函数的定义与性质b. 幂函数的图像与常见问题c. 反比例函数的定义与性质d. 反比例函数的图像与常见问题二、三角函数1. 基本概念与性质a. 弧度制与角度制的转换b. 正弦、余弦、正切函数的定义与性质c. 正弦、余弦、正切函数的图像与常见问题2. 三角函数的基本关系a. 三角函数的周期性与对称性b. 三角函数的和差化积与积化和差c. 三角函数的倍角与半角公式3. 解三角函数方程a. 解简单的三角方程b. 解复杂的三角方程c. 解三角方程组与实际问题应用三、数列与数列的表示方法1. 基本概念与通项公式a. 数列的定义与性质b. 等差数列的通项公式与性质c. 等比数列的通项公式与性质2. 数列求和问题a. 等差数列求和与常见问题b. 等比数列求和与常见问题c. 常用数列求和公式总结3. 递推数列与特殊数列a. 递推数列的定义与常见问题b. 斐波那契数列与常见问题c. 等差数列与等比数列的特殊性质四、空间几何与向量1. 点、直线与平面a. 点的定义与性质b. 直线的定义与性质c. 平面的定义与性质2. 空间图形的方程a. 点、直线的位置关系与方程b. 直线与平面的位置关系与方程c. 平面与平面的位置关系与方程3. 向量的基本概念与运算a. 向量的定义与性质b. 向量的加减法与数量积c. 向量的数量积与向量积4. 空间几何的应用a. 点到直线的距离与投影b. 直线与平面之间的夹角与距离c. 空间图形的体积与表面积计算通过以上的知识点总结归纳,我们可以更好地复习数学知识,加深对各个知识点的理解,并且在解题过程中能够迅速找到思路,提高解题效率。

高三数学第一轮复习知识点

高三数学第一轮复习知识点

高三数学第一轮复习知识点高三数学第一轮复习知识点总结第一:高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节。

主要是考函数和导数,这是我们整个高中阶段里最核心的板块,在这个板块里,重点考察两个方面:第一个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析就是二次方程的分布的问题,这是第一个板块。

第二:平面向量和三角函数。

重点考察三个方面:一个是划减与求值,第一,重点掌握公式,重点掌握五组基本公式。

第二,是三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质,第三,正弦定理和余弦定理来解三角形。

难度比较小。

第三:数列。

数列这个板块,重点考两个方面:一个通项;一个是求和。

第四:空间向量和立体几何。

在里面重点考察两个方面:一个是证明;一个是计算。

第五:概率和统计。

这一板块主要是属于数学应用问题的范畴,当然应该掌握下面几个方面,第一……等可能的概率,第二………事件,第三是独立事件,还有独立重复事件发生的概率。

第六:解析几何。

这是我们比较头疼的问题,是整个试卷里难度比较大,计算量最高的题,当然这一类题,我总结下面五类常考的题型,包括第一类所讲的直线和曲线的位置关系,这是考试最多的内容。

考生应该掌握它的通法,第二类我们所讲的动点问题,第三类是弦长问题,第四类是对称问题,这也是2008年高考已经考过的一点,第五类重点问题,这类题时往往觉得有思路,但是没有答案,当然这里我相等的是,这道题尽管计算量很大,但是造成计算量大的原因,往往有这个原因,我们所选方法不是很恰当,因此,在这一章里我们要掌握比较好的算法,来提高我们做题的准确度,这是我们所讲的第六大板块。

第七:押轴题。

考生在备考复习时,应该重点不等式计算的方法,虽然说难度比较大,我建议考生,采取分部得分整个试卷不要留空白。

这是高考所考的七大板块核心的考点。

高三数学第一轮知识点:直线与方程

高三数学第一轮知识点:直线与方程

高三数学第一轮知识点:直线与方程第1篇:高三数学第一轮知识点:直线与方程导语:直线与方程就是直线的方程,在几何问题的研究中,我们常常直接依据几何图形中点,直线,平面间的关系研究几何图形的*质。

以下是小编整理高三数学第一轮知识点的资料,欢迎阅读参考。

(1)直线的倾斜角定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。

特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。

因此,倾斜角的取值范围是0180(2)直线的斜率①定义:倾斜角不是90的直线,它的倾斜角的正切叫做这条直线的斜率。

直线的斜率常用k表示。

即。

斜率反映直线与轴的倾斜程度。

当时,。

当时,;当时,不存在。

②过两点的直线的斜率公式:注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90(2)k与p1、p2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。

(3)直线方程①点斜式:直线斜率k,且过点注意:当直线的斜率为0时,k=0,直线的方程是y=y1。

当直线的斜率为90时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。

②斜截式:,直线斜率为k,直线在y轴上的截距为b③两点式:()直线两点,④截矩式:其中直线与轴交于点,与轴交于点,即与轴、轴未完,继续阅读 >第2篇:高三数学一轮直线与方程的知识点一、直线与方程(1)直线的倾斜角定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。

特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。

因此,倾斜角的取值范围是0180(2)直线的斜率①定义:倾斜角不是90的直线,它的倾斜角的正切叫做这条直线的斜率。

直线的斜率常用k表示。

即。

斜率反映直线与轴的倾斜程度。

当时,。

当时,;当时,不存在。

②过两点的直线的斜率公式:注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90(2)k与p1、p2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。

高中数学一轮复习必看

高中数学一轮复习必看

高中数学一轮复习必看每一门科目都有自己的学习方法,但其实都是万变不离其中的,数学作为最烧脑的科目之一,也是要记、要背、要讲技巧的。

下面是小编给大家整理的一些高中数学一轮复习的学习资料,希望对大家有所帮助。

高三数学一轮复习重头戏:函数知识立体网络“函数”是高中数学中起联接和支撑作用的主干知识,也是进一步学习高等数学的基础。

其知识、观点、思想和方法贯穿于高中代数的全过程,同时也应用于几何问题的解决。

因此,在高考中函数是一个极其重要的部分,而对函数的复习则是高三数学第一轮复习的重头戏。

注重对概念的理解函数部分的一个鲜明特点是概念多,对概念理解的要求高。

而在实际的复习中,学生对此可能不是很重视,其实,概念能突出本质,产生解决问题的方法。

对概念不重视,题目一定也做不好。

就高考而言,直接针对函数概念的考题也不少,例如05年上海春季高考数学卷的第16题就是考察学生是否理解函数值的概念。

在高中数学的代数证明问题中,函数问题是最多最突出的一个部分,如函数的单调性、奇偶性、周期性的证明等等,而用定义法判断和证明这些性质往往是最直接有效的方法。

上海卷连续两年都考查了这方面的内容与方法,如06年文、理科的第22题,考查的是函数的单调性、值域与最值,07年的第19题,文科考察的是函数奇偶性的判断与证明,理科在此基础上还考察了函数单调性。

构建知识、方法与技能网当问到学生类似于“函数主要有哪些内容?”等问题时,学生的回答大多是一些零散的数学名词或局部的细节,这说明学生对知识还缺少整体把握。

所以复习的首要任务是立足于教材,将高中所学的函数知识进行系统梳理,用简明的图表形式把基础知识进行有机的串联,以便于找出自己的缺漏,明确复习的重点,合理安排复习计划。

就函数部分而言,大体分为三个层次的内容:1、函数的概念与基本性质,主要有函数的概念与运算、单调性、奇偶性与对称性、周期性、最值与值域、图像等。

2、一些简单函数的研究,主要是二次函数、幂、指、对函数等。

诱导公式课件-2025届高三数学一轮复习

诱导公式课件-2025届高三数学一轮复习
π
sin[− π−α ]cos[π+ −α ]
2
π
=
=
=
−tan α −sin α [−sin 2 +α ]
π
−sin π−α [−cos 2 −α ]
tan αsin α −cos α
−sin α −sin α
tan αsin αcos α

sin αsin α
= −1.
题型2 利用诱导公式求值
例2 已知sin φ =
6
11π
,则cos
11
2
【解析】∵ sin φ =
∴ cos
=
11π
2
+ φ + sin 3π − φ

的值为___.

6
,
11
π
2
π
2
+ φ = cos 6π − + φ = cos − + φ = cos
π
2
− φ = sinφ(奇变)
6
,
11
sin 3π − φ = sin 2π + π − φ = sin π − φ = sinφ(偶不变)=
A.4

1−cos θ

1+sin θ− 2
的值是(
B.−4
)
B
1
C.
4
1
D.−
4
【解析】
【学会了吗|变式题】
(2024·安徽省宣城市期末)已知tan θ
x2
− k
1
+
2
x+
k2
−3=
1

是关于x的方程
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学一轮复习知识点第一章-集合考试内容:集合、子集、补集、交集、并集.逻辑联结词.四种命题.充分条件和必要条件. 考试要求:(1)理解集合、子集、补集、交集、并集的概念;了解空集和全集的意义;了解属于、包含、相等关系的意义;掌握有关的术语和符号,并会用它们正确表示一些简单的集合. (2)理解逻辑联结词“或”、“且”、“非”的含义理解四种命题及其相互关系;掌握充分条件、必要条件及充要条件的意义.§01. 集合与简易逻辑 知识要点一、知识结构:本章知识主要分为集合、简单不等式的解法(集合化简)、简易逻辑三部分:二、知识回顾:(一) 集合1. 基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用.2. 集合的表示法:列举法、描述法、图形表示法. 集合元素的特征:确定性、互异性、无序性. 集合的性质:①任何一个集合是它本身的子集,记为A A ⊆; ②空集是任何集合的子集,记为A ⊆φ; ③空集是任何非空集合的真子集; 如果B A ⊆,同时A B ⊆,那么A = B. 如果C A C B B A ⊆⊆⊆,那么,.[注]:①Z = {整数}(√) Z ={全体整数} (×)②已知集合S 中A 的补集是一个有限集,则集合A 也是有限集.(×)(例:S=N ; A=+N ,则C s A= {0}) ③ 空集的补集是全集.④若集合A =集合B ,则C B A = ∅, C A B = ∅ C S (C A B )= D ( 注 :C A B = ∅). 3. ①{(x ,y )|xy =0,x ∈R ,y ∈R }坐标轴上的点集. ②{(x ,y )|xy <0,x ∈R ,y ∈R}二、四象限的点集.③{(x ,y )|xy >0,x ∈R ,y ∈R } 一、三象限的点集. [注]:①对方程组解的集合应是点集. 例: ⎩⎨⎧=-=+1323y x y x 解的集合{(2,1)}.②点集与数集的交集是φ. (例:A ={(x ,y )| y =x +1} B={y |y =x 2+1} 则A ∩B =∅) 4. ①n 个元素的子集有2n个. ②n 个元素的真子集有2n-1个. ③n 个元素的非空真子集有2n-2个.5. ⑴①一个命题的否命题为真,它的逆命题一定为真. 否命题⇔逆命题. ②一个命题为真,则它的逆否命题一定为真. 原命题⇔逆否命题. 例:①若325≠≠≠+b a b a 或,则应是真命题.解:逆否:a = 2且 b = 3,则a+b = 5,成立,所以此命题为真. ②且21≠≠y x 3≠+y . 解:逆否:x + y =3x = 1或y = 2.21≠≠∴y x 且3≠+y x ,故3≠+y x 是21≠≠y x 且的既不是充分,又不是必要条件.⑵小范围推出大范围;大范围推不出小范围. 3. 例:若255 x x x 或,⇒. 4. 集合运算:交、并、补.{|,}{|}{,}A B x x A x B A B x x A x B A x U x A ⇔∈∈⇔∈∈⇔∈∉U 交:且并:或补:且C 5. 主要性质和运算律 (1) 包含关系:,,,,,;,;,.U A A A A U A U A B B C A C A B A A B B A B A A B B ⊆Φ⊆⊆⊆⊆⊆⇒⊆⊆⊆⊇⊇C(2) 等价关系:U A B A B A A B B AB U ⊆⇔=⇔=⇔=C (3) 集合的运算律:交换律:.;A B B A A B B A ==结合律:)()();()(C B A C B A C B A C B A == 分配律:.)()()();()()(C A B A C B A C A B A C B A == 0-1律:,,,A A A U A A U A U Φ=ΦΦ===等幂律:.,A A A A A A ==求补律:A ∩C U A =φ A ∪C U A =U C U U =φ C U φ=U反演律:C U (A ∩B)= (C U A )∪(C U B ) C U (A ∪B)= (C U A )∩(C U B )6. 有限集的元素个数定义:有限集A 的元素的个数叫做集合A 的基数,记为card( A)规定 card(φ) =0.基本公式:(1)()()()()(2)()()()()()()()()card A B card A card B card A B card A B C card A card B card C card A B card B C card C A card A B C =+-=++---+(3) card ( U A )= card(U)- card(A)(二)含绝对值不等式、一元二次不等式的解法及延伸 1.整式不等式的解法 根轴法(零点分段法)①将不等式化为a 0(x-x 1)(x-x 2)…(x-x m )>0(<0)形式,并将各因式x 的系数化“+”;(为了统一方便)②求根,并在数轴上表示出来;③由右上方穿线,经过数轴上表示各根的点(为什么?);④若不等式(x 的系数化“+”后)是“>0”,则找“线”在x 轴上方的区间;若不等式是“<0”,则找“线”在x 轴下方的区间.+-+-x 1x 2x 3x m-3x m-2xm-1x mx(自右向左正负相间) 则不等式)0)(0(0022110><>++++--a a x a xa x a n n n n的解可以根据各区间的符号确定.特例① 一元一次不等式ax>b 解的讨论;②一元二次不等式ax 2+box>0(a>0)解的讨论. 0>∆ 0=∆ 0<∆二次函数c bx ax y ++=2(0>a )的图象一元二次方程()的根002>=++a c bx ax有两相异实根 )(,2121x x x x <有两相等实根ab x x 221-==无实根原命题若p 则q 否命题若┐p 则┐q 逆命题若q 则p逆否命题若┐q 则┐p 互为逆否互逆否互为逆否互互逆否互2.分式不等式的解法 (1)标准化:移项通分化为)()(x g x f >0(或)()(x g x f <0);)()(x g x f ≥0(或)()(x g x f ≤0)的形式, (2)转化为整式不等式(组)⎩⎨⎧≠≥⇔≥>⇔>0)(0)()(0)()(;0)()(0)()(x g x g x f x g x f x g x f x g x f3.含绝对值不等式的解法(1)公式法:c b ax <+,与)0(>>+c c b ax 型的不等式的解法.(2)定义法:用“零点分区间法”分类讨论.(3)几何法:根据绝对值的几何意义用数形结合思想方法解题. 4.一元二次方程根的分布一元二次方程ax 2+bx+c=0(a ≠0)(1)根的“零分布”:根据判别式和韦达定理分析列式解之.(2)根的“非零分布”:作二次函数图象,用数形结合思想分析列式解之. (三)简易逻辑1、命题的定义:可以判断真假的语句叫做命题。

2、逻辑联结词、简单命题与复合命题:“或”、“且”、“非”这些词叫做逻辑联结词;不含有逻辑联结词的命题是简单命题;由简单命题和逻辑联结词“或”、“且”、“非”构成的命题是复合命题。

构成复合命题的形式:p 或q(记作“p ∨q ” );p 且q(记作“p ∧q ” );非p(记作“┑q ” ) 。

3、“或”、 “且”、 “非”的真值判断(1)“非p ”形式复合命题的真假与F 的真假相反; (2)“p 且q ”形式复合命题当P 与q 同为真时为真,其他情况时为假; (3)“p 或q ”形式复合命题当p 与q 同为假时为假,其他情况时为真.4、四种命题的形式:原命题:若P 则q ; 逆命题:若q 则p ;否命题:若┑P 则┑q ;逆否命题:若┑q 则┑p 。

(1)交换原命题的条件和结论,所得的命题是逆命题; (2)同时否定原命题的条件和结论,所得的命题是否命题;(3)交换原命题的条件和结论,并且同时否定,所得的命题是逆否命题.5、四种命题之间的相互关系:一个命题的真假与其他三个命题的真假有如下三条关系:(原命题⇔逆否命题) ①、原命题为真,它的逆命题不一定为真。

②、原命题为真,它的否命题不一定为真。

③、原命题为真,它的逆否命题一定为真。

6、如果已知p ⇒q 那么我们说,p 是q 的充分条件,q 是p 的必要条件。

若p ⇒q 且q ⇒p,则称p 是q 的充要条件,记为p ⇔q.7、反证法:从命题结论的反面出发(假设),引出(与已知、公理、定理…)矛盾,从而否定假设证明原命题成立,这样的证明方法叫做反证法。

高中数学第二章-函数考试内容:映射、函数、函数的单调性、奇偶性. 反函数.互为反函数的函数图像间的关系.指数概念的扩充.有理指数幂的运算性质.指数函数. 对数.对数的运算性质.对数函数. 函数的应用. 考试要求:(1)了解映射的概念,理解函数的概念.(2)了解函数单调性、奇偶性的概念,掌握判断一些简单函数的单调性、奇偶性的方法. (3)了解反函数的概念及互为反函数的函数图像间的关系,会求一些简单函数的反函数. (4)理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图像 和性质.(5)理解对数的概念,掌握对数的运算性质;掌握对数函数的概念、图像和性质. (6)能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题.§02. 函数 知识要点一、本章知识网络结构:F:A →B对数函数指数函数二次函数二、知识回顾:(一) 映射与函数 1. 映射与一一映射2.函数函数三要素是定义域,对应法则和值域,而定义域和对应法则是起决定作用的要素,因为这二者确定后,值域也就相应得到确定,因此只有定义域和对应法则二者完全相同的函数才是同一函数. 3.反函数反函数的定义设函数))((A x x f y ∈=的值域是C ,根据这个函数中x,y 的关系,用y 把x 表示出,得到x=ϕ(y). 若对于y 在C 中的任何一个值,通过x=ϕ(y),x 在A 中都有唯一的值和它对应,那么,x=ϕ(y)就表示y 是自变量,x 是自变量y 的函数,这样的函数x=ϕ(y) (y ∈C)叫做函数))((A x x f y ∈=的反函数,记作)(1y f x -=,习惯上改写成)(1x f y -=(二)函数的性质 ⒈函数的单调性定义:对于函数f(x)的定义域I 内某个区间上的任意两个自变量的值x 1,x 2, ⑴若当x 1<x 2时,都有f(x 1)<f(x 2),则说f(x)在这个区间上是增函数; ⑵若当x 1<x 2时,都有f(x 1)>f(x 2),则说f(x) 在这个区间上是减函数.若函数y=f(x)在某个区间是增函数或减函数,则就说函数y=f(x)在这一区间具有(严格的)单调性,这一区间叫做函数y=f(x)的单调区间.此时也说函数是这一区间上的单调函数.2.函数的奇偶性正确理解奇、偶函数的定义。

相关文档
最新文档