概率论与数理统计(慕课版)第5章 统计量及其分布

合集下载

数理统计第五章总结

数理统计第五章总结

x1 ,, xn .
(2).主要类型

(1).性质:二重性

随机性 确定性
完全样本 分组样本
第五章 知识点总结
x1 ,, xn ~ F ( x ), (3).简单随机样本:
(4).样本的联合分布函数: F ( x1 ,, xn )
0, k (5). 经验分布函数: Fn ( x ) , n 1, x x( 1 )
n 2 n ![ F ( z ) F ( y )] p( y ) p( z ) p1n ( y, z ) . (n 2)!
( y z)
第五章 知识点总结
(3). 次序统计量的函数及其分布
①. 样本中位数:
n 2k 1, x( n21 ), x n x n (2) ( 2 1) , n 2k . 2
i 1 j i 1 n j n ![ F ( y )] [ F ( z ) F ( y )] [ 1 F ( z )] p( y ) p( z ) pij ( y, z ) . (i 1)!( j i 1)!(n j )!
( y z)

次序统计量 ( x(1) , x(n) ) 的联合密度函数为
若 X ~ 2 (n), 则 E ( X ) n, Var( X ) 2n. 若 X ~ 2 (m ), Y ~ 2 (n), 且 X 与 Y 独立, 则
X Y ~ 2 (m n).
2 2. 分布的分位数: P( 2 1 (n)) 1 .
第五章 知识点总结
第20页
6. 对来自总体N(2,4) 的样本 y1 , y2 ,, y25 , S 2 是样本方差, 若 2 b s 2 ~ 2 (24), 则b = ( ).

《概率论与数理统计》统计量及其分布

《概率论与数理统计》统计量及其分布
律性的数学学科.
但数理统计以概率论为基础,更着重于根据试验得
到的数据来对研究对象的客观规律作出种种合理的估
计和判断.
4
第5章
统计量及其分布

描述统计学

对随机现象进行观测、试验, 以取得有代表

性的观测值.


推断统计学

对已取得的观测值进行整理、分析, 作出推

断、决策,从而找出所研究的对象的规律性.
O
5
n 10
10
15
20
x
32
01
抽样分布
2. t 分布
2
X
~
N
(0,1)

Y
~
x
(n),且X与Y 独立,则
设随机变量
X
T
Y /n
服从自由度为n的t分布,记为t(n).
性质 密度f(t)是偶函数,且t分布的极限分布是标准正
态分布.
33
01
抽样分布
t分布的密度函数
n 1
n 1


那么如何来利用样本呢?
列表?
画图?
统计量!
样本来自于总体,含有总体性质的信息,但较为分
散. 为了进行统计推断,需要把分散的信息进行整理,
针对不同的研究目的,构造不同的样本函数,这种函
数在统计学中称为统计量.
18
本讲内容
01
总体与个体
02
样本
03
统计量
03
统计量
3.统计量
统计量——不含有未知参数的样本函数


f ( x)
n1
n2
x

第5章 概率分布与统计量抽样分布优秀课件

第5章 概率分布与统计量抽样分布优秀课件
b
P(a X b) a f (x)dx F(b) F(a)
分布函数与密度函数的图示
1. 密度函数曲线下的面积等于1 2. 分布函数是曲线下小于 x0 的面积
f(x)
F ( x0 )
x0
x
连续型随机变量的期望和方差
1. 连续型随机变量的数学期望为
E(X ) xf (x)dx
2. 方差为
第5章 概率分布与 统计量抽样分布
随机变量的概念
随机变量
(random variables)
1. 一次试验的结果的数值性描述 2. 一般用 X、Y、Z 来表示 3. 例如: 投掷两枚硬币出现正面的数量 4. 根据取值情况的不同分为离散型随机变
量和连续型随机变量
离散型随机变量
(discrete random variables)
n
E( X ) xi pi i 1
( X取有限个值)
E( X ) xi pi i 1
( X取无穷个值)
离散型随机变量的方差
(variance)
1. 随机变量X的每一个取值与期望值的离差平 方和的数学期望,记为D(X)
2. 描述离散型随机变量取值的分散程度 3. 计算公式为
D( X ) E[ X E( X )]2 若X是离散型随机变量,则
概率是曲线下的面积
b
P(a X b) a f (x)dx
f(x)
ab
x
分布函数
(distribution function)
1. 连续型随机变量的概率可以用分布函数F(x) 来表示
2. 分布函数定义为
x
F(x) P(X x) f (t)dt ( x )
3. 根据分布函数,P(a<X<b)可以写为

第五章 统计量及其分布

第五章 统计量及其分布

For personal use only in study and research;not for commercial use第五章 统计量及其分布§ 5.1 总体与样本内容概要1 总体 在一个统计问题中,研究对象的全体称为总体,构成总体的每个成员称为个体若关心的是总体中每个个体的一个数量指标,则该总体称为一维分布。

若关心的是总体中的每个个体的两个数量指标,则该总体称为二维总体,二维总体就是一个二维分布,余此类推。

2 有限总体与无限总体 若总体中的个数是有限的,此总体称为有限总体。

若总体中的个数是无限的,此总体称为无限总体。

实际中总体的个体数大多是有限的。

当个体数充分大时,将有限总体看作无限总体是一种合理的抽象。

3 样本 从总体中随机抽取的部分个体组成的集合称为样本,样本的个体称为样本,样本个数称为样本容量或样本量。

样本常用n 个指标值1x ,2x , ,n x 表示.它可看作n 维随机变量,又可看作其观察值,这由上下文加以区别。

4 分组样本 只知样本观测值所在区间,而不知具体值的样本称为分组样本。

缺点:与完全样本相比损失部分信息。

优点:在样本量较大时,用分组样本即简明扼要,又能帮助人们更好的认识总体。

5 简单随机样本 若样本 1x ,2x , ,n x 是n 个相互独立的具有同一分布(总体分布)的随机变量,册称该样本为简单随机样本,仍简称样本。

若总体的分布函数为F(x),则其样本的(联合)分布函数为()∏=ni ix F 1;若总体的密度函数为P(x),则其样本的(联合)密度函数为∏=ni x p 1)(;若总体的分布列为{p(x i )},则其样本的(联合)分布列为∏=ni x p 1)(;习题与解答5.11. 某地电视台想了解某电视栏目(如:每晚九点至九点半的体育节目)在该 地区的收视率情况,于是委托一家市场咨询公司进行一次电话访查。

(1)该项研究的总体是什么? (2)该项研究的样本是什么?解:(1)该项研究的总体是该地区全体电视观众;(2)该项研究的样本上一该地区被电话访查的电视观众。

第5章 统计量及其分布

第5章 统计量及其分布

第5章
5.1 总体与样本
例5.1.2 考察全国正在使用某种型号灯泡的寿命 所形成的总体,由于可能观察值的个数很多,可以认 为是无限总体。 总体中的每一个个体是随机试验的一个观察值, 因此它是某一随机变量X的值,这样,一个总体对应 于一个随机变量X。我们对总体的研究就是对一个随 机变量X的一研究,X的分布函数和数字特征就称为 总体的分布函数和数字特征。以后将不区分总体与相 应的随机变量,笼统的称为总体。
552
寿命范围 元件数 寿命范围 元件数 寿命范围 元件数
4 8 6
(192 216] (216 240] (240 264] (264 288] (288 312] (312 336] (336 360] (360 384]
4 4 1
5
3 4
5
5 3
2
2 3
5
4
5
1
2
13
第5章
5.1 总体与样本
第5章
统计量及其分布
前四章的研究属于概率论的范畴。随机变量及其概 率分布全面地描述了随机现象的统计规律性,在概率论 的许多问题中,概率分布通常是假定为已知的,而一切 计算和推理均基于这个已知的分布进行,在实际问题中 情况往往并非如此。 随后讲述的是数理统计,它以概率论为理论基础, 所研究的随机变量分布未知,人们通过进行大量重复独 立的试验或观察得到的数据,对其进行分析,从而对所 研究的随机变量的分布(客观规律性)作出合理的估计和 判断。 数理统计学:方法和应用研究
F ( x1 , x2 , , xn ) F ( xi )
i 1 n
第5章
5.1 总体与样本
超链接一张随机数表
获取简单样本的方法:抽签法和随机数表法。 •抽签法:抽签法是利用抽签原理进行的一种方 法。具体做法是:先把总体中每个个体编上号,并对 应地写在签上,然后将签充分混合,从中随机抽取n 个签,与被抽到的签号相应的个体作为样本的分量。 •随机数表法:随机数表法是借助于随机数表进 行抽样的一种方法。随机数是由0~9这十个数字随机 排列而成的,第一张随机数表由铁皮特(Tippet)在 1927年给出的。利用随机数表进行抽样是现代最简单 最有效的方法。

(概率论与数理统计 茆诗松) 第5章 统计量及其分布(5.4)

(概率论与数理统计 茆诗松) 第5章 统计量及其分布(5.4)

当随机变量 2 2(n) 时,对给定 (01), 称满足 P(2 12(n)) 的 12(n) 是自由度为 n1的卡方分布的 1 分位数. 分位数 12(n) 可以从附表3 中查到。
P{ X
2 1
(n)} ,
该密度函 数的图像 是一只取 非负值的 偏态分布
特别,若12 =22 ,则
F=sx2/sy2 F(m1,n1)
推论5.4.2 设 x1, x2,…, xn 是来自N(, 2) 的 样本,则有
n(x ) t ~ t (n 1) s
习题5.4:Q5
推论5.4.3
在推论5.4.1的记号下,设 12 =22 = 2 ,
前缀“p”
正态分布:pnorm(x,mean,sd)
t 分布: pt(x,df) 卡方分布:pchisq(x,df) F分布: pf(x,df1,df2)
Q13
Q5
R软件: 转换概率为分位数, 即:找到x值,使得P(X≤x)=p 前缀“q” 正态分布:qnorm(p,mean,sd)
5.4.4 一些重要结论
正态总体的抽样分布定理 设 x1, x2,…, xn 是来自N(, 2) 的样本
定理5.4.1 设 x1, x2,…, xn 是来自N(, 2) 的 样本,其样本均值和样本方差分别为 x = xi/n 和 s2= (xix)2/(n1) 则有 (1) x 与 s2 相互独立; (2) x N(, 2/n) ;
(3) (n1) s2/2 2(n1)。
习题5.4:Q1~Q3
推论5.4.1 设 x1, x2,…, xn 是来自N(1, 12) 的 样本,y1, y2,…, yn 是来自N(2, 22) 的样本, 且此两样本相互独立,则有

(概率论与数理统计茆诗松)第5章统计量及其分布

(概率论与数理统计茆诗松)第5章统计量及其分布

统计量用于评估和 预测经济趋势例如 GDP、CPI等。
统计量用于研究经济 现象之间的相关性例 如通过回归分析探究 收入与消费的关系。
统计量用于风险评估 和决策制定例如在投 资组合优化中应用统 计量来降低风险。
统计量用于市场调研和 消费者行为分析例如通 过调查数据了解消费者 的购买意愿和偏好。
统计量用于描述大量粒子系统的宏观性质如温度、压强等。 在高能物理实验中统计量用于分析粒子碰撞数据以发现新粒子或研究基本粒子的相互作用。 在天体物理中统计量用于研究星系分布、宇宙射线等以揭示宇宙的演化历史和结构。 在凝聚态物理中统计量用于描述量子多体系统的性质如超导、量子相变等。
单击此处添加标题
性质:二项分布具有可加性即如果有两个独立的二项分布的随机变量X和Y那么 X+Y仍然服从二项分布。
单击此处添加标题
应用:二项分布在统计学、生物学、医学等领域有广泛的应用例如在遗传学中 研究基因的遗传规律在可靠性工程中研究设备的寿命等。
定义:泊松分布是一种离散概率分布描述了在单位时间内(或单位面积内)随机事件发生的次数。
适用范围:非参数检验适用于总体分布未知或已知分布不满足参数检验条件的情况能够更加灵活地处理 各种数据类型和分布。
添加标题
常见方法:常见的非参数检验方法包括符号检验、秩次检验、中位数检验等这些方法都是基于样本数据 本身的特性进行统计推断不需要对总体参数进行假设检验。
添加标题
优点与局限性:非参数检验具有适用范围广、灵活性高等优点但也存在一定的局限性如对于小样本数据 可能不太稳定等。因此在选择统计检验方法时需要根据具体情况进行综合考虑。

构造方法:利 用样本数据和 适当的数学方 法来构造有效
估计
应用:在统计 学、经济学、 社会学等领域

概率论与数理统计第五章知识点

概率论与数理统计第五章知识点

概率论与数理统计第五章知识点第五章的概率论与数理统计的知识点主要涉及到概率函数、统计推断、分布函数和多元正态分布等内容,这其中包括了多项式概率分布、超几何分布、二项分布、线性回归、假设检验、多重切线回归、卡方检验、小抽样检验、检验均值和协方差等内容。

首先,多项式概率分布是一种特殊的概率分布,它建立了在有限次试验中某个事件出现次数的概率,它由定义性的概率空间和一组完备的事件集合组成,并可以使用不同的统计技术来计算它们。

其次,超几何分布是一种分布,用于计算取样观测中某种特征发生次数的概率,它与多项式分布有着很大的不同,它建立了一个独立的取样模型,它是一种独立取样模型,它利用概率论中的概率空间来分析一个独立取样实验中观测到一个特征发生次数的概率。

再次,二项分布也是一种概率分布,它用来计算一系列试验中出现某种特征的次数的概率。

它是一种特殊的多项式分布,可以使用概率论的工具来应用二项式分布,以确定两个不同事件之间的概率。

此外,线性回归也是第五章概率论与数理统计中一个重要的概念,它是一种统计方法,用来预测一个变量的变化可能会导致另一个变量的变化。

线性回归的基本原理是拟合两个变量的关系,使回归线能够最佳地拟合所有数据,以找到其中的趋势。

另外,假设检验是一种重要的统计技术,在假设检验中,需要使用概率空间,以便计算假设检验中备择假设的概率,并判断假设是否成立。

另外,多重切线回归也是一种重要的统计方法,它是以多元关系作为因变量和因变量之间的关系来拟合数据,以确定多元回归线的最佳拟合方式,让其效果最好。

此外,卡方检验、小抽样检验和检验均值和协方差等也是第五章概率论与数理统计的重要内容。

其中,卡方检验是一种特殊的假设检验,用来判断一组数据的差异是否大于预期,以确定数据的分布情况。

而小抽样检验是一种统计方法,用于给出总体参数的精确估计,以帮助确定相关的总体统计量,用来估计总体参数。

最后,检验均值和协方差也是一种重要的统计方法,它可以帮助分析两个变量之间的关系,以确定两个变量之间的相关程度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档