圆的对称性测试题1(含答案)

合集下载

第07讲 圆与对称性(5种题型)(解析版)

第07讲 圆与对称性(5种题型)(解析版)

第07讲圆与对称性(5种题型)1.在探索过程中认识圆,理解圆的本质属性;2.了解圆及其有关概念,理解弦、弧、半圆、优弧、劣弧、同心圆、等圆、等弧等与圆有关的概念,理解概念之间的区别和联系;一.圆的认识(1)圆的定义定义①:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做圆.固定的端点O叫做圆心,线段OA叫做半径.以O点为圆心的圆,记作“⊙O”,读作“圆O”.定义②:圆可以看做是所有到定点O的距离等于定长r的点的集合.(2)与圆有关的概念弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等.连接圆上任意两点的线段叫弦,经过圆心的弦叫直径,圆上任意两点间的部分叫圆弧,简称弧,圆的任意一条直径的两个端点把圆分成两条弧,每条弧都叫做半圆,大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧.(3)圆的基本性质:①轴对称性.②中心对称性.二.点与圆的位置关系(1)点与圆的位置关系有3种.设⊙O的半径为r,点P到圆心的距离OP=d,则有:①点P在圆外⇔d>r②点P在圆上⇔d=r①点P在圆内⇔d<r(2)点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.(3)符号“⇔”读作“等价于”,它表示从符号“⇔”的左端可以得到右端,从右端也可以得到左端.三.垂径定理(1)垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.(2)垂径定理的推论推论1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.推论2:弦的垂直平分线经过圆心,并且平分弦所对的两条弧.推论3:平分弦所对一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.四.垂径定理的应用垂径定理的应用很广泛,常见的有:(1)得到推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.(2)垂径定理和勾股定理相结合,构造直角三角形,可解决计算弦长、半径、弦心距等问题.这类题中一般使用列方程的方法,这种用代数方法解决几何问题即几何代数解的数学思想方法一定要掌握.五.圆心角、弧、弦的关系(1)定理:在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等.(2)推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.说明:同一条弦对应两条弧,其中一条是优弧,一条是劣弧,而在本定理和推论中的“弧”是指同为优弧或劣弧.(3)正确理解和使用圆心角、弧、弦三者的关系三者关系可理解为:在同圆或等圆中,①圆心角相等,②所对的弧相等,③所对的弦相等,三项“知一推二”,一项相等,其余二项皆相等.这源于圆的旋转不变性,即:圆绕其圆心旋转任意角度,所得图形与原图形完全重合.(4)在具体应用上述定理解决问题时,可根据需要,选择其有关部分.一.圆的认识(共3小题)1.(2022秋•邗江区校级月考)已知⊙O的半径是3cm,则⊙O中最长的弦长是()A.3cm B.6cm C.1.5cm D.cm【分析】利用圆的直径为圆中最长的弦求解.【解答】解:∵圆的直径为圆中最长的弦,∴⊙O中最长的弦长为2×3=6(cm).故选:B.【点评】本题考查了圆的认识:熟练掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).2.(2022秋•江阴市校级月考)下列说法错误的是()A.直径是圆中最长的弦B.半径相等的两个半圆是等弧C.面积相等的两个圆是等圆D.半圆是圆中最长的弧【分析】利用圆的有关定义和性质分别判断后即可确定正确的选项.【解答】解:A、直径是圆中最长的弦,说法正确,不符合题意;B、半径相等的两个半圆是等弧,说法正确,不符合题意;C、面积相等的两个圆是等圆,说法正确,不符合题意;D、由于半圆小于优弧,所以半圆是圆中最长的弧说法错误,符合题意.故选:D.【点评】考查了圆的有关概念,解题的关键是了解圆的有关定义及性质,难度不大.3.(2022秋•启东市校级月考)画圆时圆规两脚间可叉开的距离是圆的()A.直径B.半径C.周长D.面积【分析】画圆时,圆规两脚分开的距离,即圆的半径,据此解答即可.【解答】解:画圆时圆规两脚间可叉开的距离是圆的半径.故选:B.【点评】本题主要考查了圆的认识,认识平面图形,解答本题关键是抓住圆规画圆的方法.二.点与圆的位置关系(共6小题)4.(2022秋•连云港期中)已知⊙O的半径为3,点P在⊙O外,则OP的长可以是()A.1B.2C.3D.4【分析】由⊙O的半径及点P在⊙O外,可得出OP的长大于3,再对照四个选项即可得出结论.【解答】解:∵⊙O的半径为3,点P在⊙O外,∴OP的长大于3.故选:D.【点评】本题考查了点与圆的位置关系,牢记“①点P在圆外⇔d>r;②点P在圆上⇔d=r;③点P在圆内⇔d<r”是解题的关键.5.(2021秋•无锡期末)已知⊙O的半径为4,OA=5,则点A在()A.⊙O内B.⊙O上C.⊙O外D.无法确定【分析】根据点与圆的位置关系的判定方法进行判断.【解答】解:∵⊙O的半径为4,OA=5,∴OA>半径,∴点A在⊙O外.故选:C.【点评】本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.6.(2022秋•江阴市校级月考)已知⊙O的半径是4,OA=3,则点A与⊙O的位置关系是()A.点A在圆内B.点A在圆上C.点A在圆外D.无法确定【分析】根据⊙O的半径r=4,且点A到圆心O的距离d=3知d<r,据此可得答案.【解答】解:∵⊙O的半径r=4,且点A到圆心O的距离d=3,∴d<r,∴点A在⊙O内,故选:A.【点评】本题主要考查点与圆的位置关系,点与圆的位置关系有3种.设⊙O的半径为r,点P到圆心的距离OP=d,则有:①点P在圆外⇔d>r;②点P在圆上⇔d=r;③点P在圆内⇔d<r.7.(2022秋•如皋市期中)在数轴上,点A所表示的实数为4,点B所表示的实数为b,⊙A的半径为2,要使点B在⊙A内时,实数b的取值范围是()A.b>2B.b>6C.b<2或b>6D.2<b<6【分析】首先确定AB的取值范围,然后根据点A所表示的实数写出a的取值范围,即可得到正确选项.【解答】解:∵⊙A的半径为2,若点B在⊙A内,∴AB<2,∵点A所表示的实数为4,∴2<b<6,故选:D.【点评】本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.8.(2022秋•梁溪区校级期中)已知⊙O的半径是4,点P到圆心O的距离d为方程x2﹣4x﹣5=0的一个根,则点P与⊙O的位置关系为()A.点P在⊙O内B.点P在⊙O上C.点P在⊙O外D.不能确定【分析】求出方程的根,再根据点到圆心的距离与半径的大小关系判断位置关系即可.【解答】解:x2﹣4x﹣5=0的根为x1=5,x2=﹣1<0(舍去),于是点P到圆心O的距离d=5,而半径r=4,∴d>r,所以点P在⊙O的外部,故选:C.【点评】本题考查点与圆的位置关系,解一元二次方程,求出方程的根是解决问题的前提,掌握点到圆心的距离与半径的大小是判断点与圆位置关系的关键.9.(2022秋•东台市期中)如图,点A,B的坐标分别为A(3,0)、B(0,3),点C为坐标平面内的一点,且BC=2,点M为线段AC的中点,连接OM,则OM的最大值为()A.B.C.D.2【分析】作点A关于点O的对称点A'根据中位线的性质得到OM=A′C,求出A'C的最大值即可.【解答】解:如图,作点A关于点O的对称点A'(﹣3,0),则点O是AA'的中点,又∵点M是AC的中点,∴OM是△AA'C的中位线,∴OM=A′C,∴当A'C最大时,OM最大,∵点C为坐标平面内的一点,且BC=2,∴点C在以B为圆心,2为半径的⊙B上运动,∴当A'C经过圆心B时,A′C最大,即点C在图中C'位置.A'C'=AB+BC'=3+2.∴OM的最大值=+1.故选:A.【点评】本题考查了坐标和图形的性质,三角形的中位线定理等知识,确定OM为最大值时点C的位置是解题的关键.三.垂径定理(共4小题)10.(2022秋•锡山区校级月考)如图,在⊙O中,OC⊥AB于点C,若⊙O的半径为10,AB=16,则OC 的长为6.【分析】连接OA,利用垂径定理,勾股定理求解即可.【解答】解:如图,连接OA.∵OC⊥AB,∴AC=CB=AB=8,∵OA=10,∠ACO=90°,∴OC===6,故答案为:6.【点评】本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键.11.(2022秋•惠山区期中)如图,已知AB是⊙O的直径,弦CD⊥AB于H,若AB=10,CD=8,则图中阴影部分的面积为20.【分析】利用垂径定理,得出CH=DH=4,由OC=OD得出Rt△COH≌Rt△DOH,进而得出图中阴影部,即可得出答案.分的面积为S△ABD【解答】解:∵AB是⊙O的直径,弦CD⊥AB于H,CD=8,∴CH=DH=4,∵OC=OD,∴Rt△COH≌Rt△DOH(HL),=S△DOH,∴S△COH=AB•DH=×10×4=20.故图中阴影部分的面积为:S△ABD故答案为:20.是解题关键.【点评】此题主要考查了垂径定理,得出图中阴影部分的面积为:S△ABD12.(2022秋•高邮市期中)如图,已知⊙O的直径为26,弦AB=24,动点P、Q在⊙O上,弦PQ=10,若点M、N分别是弦AB、PQ的中点,则线段MN的取值范围是()A.7≤MN≤17B.14≤MN≤34C.7<MN<17D.6≤MN≤16【分析】连接OM、ON、OA、OP,由垂径定理得OM⊥AB,ON⊥PQ,AM=AB=12,PN=PQ=5,由勾股定理得OM=5,ON=12,当AB∥PQ时,M、O、N三点共线,当AB、PQ位于O的同侧时,线段MN的长度最短=ON﹣OM=7,当AB、PQ位于O的两侧时,线段EF的长度最长=OM+ON=17,便可得出结论.【解答】解:连接OM、ON、OA、OP,如图所示:∵⊙O的直径为26,∴OA=OP=13,∵点M、N分别是弦AB、PQ的中点,AB=24,PQ=10,∴OM⊥AB,ON⊥PQ,AM=AB=12,PN=PQ=5,∴OM==5,ON==12,当AB∥PQ时,M、O、N三点共线,当AB、PQ位于O的同侧时,线段MN的长度最短=ON﹣OM=12﹣5=7,当AB、PQ位于O的两侧时,线段MN的长度最长=ON+OM=12+5=17,∴线段MN的长度的取值范围是7≤MN≤17,故选:A.【点评】本题考查了垂径定理、勾股定理以及线段的最值问题,熟练掌握垂径定理和勾股定理是解题的关键.13.(2022秋•大丰区月考)如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,若BE=CD=8,则⊙O的半径的长是()A.5B.4C.3D.2【分析】连接OC,设⊙O的半径为R,则OE=8﹣R,根据垂径定理得出CE=DE=4,根据勾股定理得出OC2=CE2+OE2,代入后求出R即可.【解答】解:连接OC,设⊙O的半径为R,则OE=8﹣R,∵CD⊥AB,AB过圆心O,CD=8,∴∠OEC=90°,CE=DE=4,由勾股定理得:OC2=CE2+OE2,R2=42+(8﹣R)2,解得:R=5,即⊙O的半径长是5,故选:A.【点评】本题考查了垂径定理和勾股定理,能熟记垂直于弦的直径平分这条弦是解此题的关键.四.垂径定理的应用(共4小题)14.(2022秋•如皋市校级月考)兴隆蔬菜基地建圆弧形蔬菜大棚的剖面如图所示,已知AB=16m,半径OA=10m,高度CD为4m.【分析】根据图可知OC⊥AB,由垂径定理可知∠ADO=90°,AD=AB=8,在Rt△AOD中,利用勾股定理可求OD,进而可求CD.【解答】解:∵OC⊥AB,∴∠ADO=90°,AD=AB=8,在Rt△AOD中,OD2=OA2﹣AD2,∴OD==6,∴CD=10﹣6=4(m).故答案是4.【点评】本题考查了垂径定理、勾股定理,解题的关键是先求出OD.15.(2022秋•江宁区校级月考)如图是一个隧道的横截图,它的形状是以点O为圆心的一部分,如果M是⊙O中弦CD的中点,EM经过圆心O交⊙O于点E,若CD=4m,EM=6m,则⊙O的半径为m.【分析】因为M是⊙O弦CD的中点,根据垂径定理,EM⊥CD,则CM=DM=2,在Rt△COM中,有OC2=CM2+OM2,进而可求得半径OC.【解答】解:∵M是⊙O弦CD的中点,根据垂径定理:EM⊥CD,又CD=4则有:CM=CD=2m,设圆的半径是x米,在Rt△COM中,有OC2=CM2+OM2,即:x2=22+(6﹣x)2,解得:x=,所以圆的半径长是m.故答案为:.【点评】此题主要考查了垂径定理的应用,解决与弦有关的问题时,往往需构造以半径、弦心距和弦长的一半为三边的直角三角形,若设圆的半径为r,弦长为a,这条弦的弦心距为d,则有等式r2=d2+()2成立,知道这三个量中的任意两个,就可以求出另外一个.16.(2022•钟楼区校级模拟)筒车是我国古代发明的一种水利灌溉工具,如图1,筒车盛水桶的运行轨道是以轴心O为圆心的圆,如图2,已知圆心O在水面上方,且⊙O被水面截得弦AB长为4米,⊙O半径长为3米.若点C为运行轨道的最低点,则点C到弦AB所在直线的距离是()A.1米B.2米C.米D.米【分析】连接OC,OC交AB于D,由垂径定理得AD=BD=AB=2(米),再由勾股定理得OD=(米),然后求出CD的长即可.【解答】解:连接OC,OC交AB于D,由题意得:OA=OC=3米,OC⊥AB,∴AD=BD=AB=2(米),∠ADO=90°,∴OD===(米),∴CD=OC﹣OD=(3﹣)米,即点C到弦AB所在直线的距离是(3﹣)米,故选:C.【点评】本题考查了垂径定理的应用和勾股定理的应用,熟练掌握垂径定理和勾股定理是解题的关键.17.(2022秋•泰州月考)如图,有一座拱桥是圆弧形,它的跨度AB=60米,拱高PD=18米.(1)求圆弧所在的圆的半径r的长;(2)当洪水泛滥到跨度只有30米时,要采取紧急措施,若拱顶离水面只有4米,即PE=4米时,是否要采取紧急措施?【分析】(1)连接OA,利用r表示出OD的长,在Rt△AOD中根据勾股定理求出r的值即可;(2)连接OA′,在Rt△A′EO中,由勾股定理得出A′E的长,进而可得出A′B′的长,据此可得出结论.【解答】解:(1)连接OA,由题意得:AD=AB=30(米),OD=(r﹣18)米,在Rt△ADO中,由勾股定理得:r2=302+(r﹣18)2,解得,r=34(米);(2)连接OA′,∵OE=OP﹣PE=30米,∴在Rt△A′EO中,由勾股定理得:A′E2=A′O2﹣OE2,即:A′E2=342﹣302,解得:A′E=16(米).∴A′B′=32(米).∵A′B′=32>30,∴不需要采取紧急措施.【点评】本题考查的是垂径定理的应用,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键.五.圆心角、弧、弦的关系(共5小题)18.(2022秋•溧水区期中)如图,C是的中点,弦AB=8,CD⊥AB,且CD=2,则所在圆的半径为()A.4B.5C.6D.10【分析】由垂径定理,勾股定理,可以求解.【解答】解:设所在圆的圆心为点O,⊙O的半径为r,连接OD,OA,∵CD⊥AB,点C是中点,∴O,D,C三点共线,AD=BD=4,∵OA2=OD2+AD2,∴r2=(r﹣2)2+42,∴r=5,故选:B.【点评】本题考查勾股定理,垂径定理,关键是定出圆心,构造直角三角形,应用勾股定理列出关于半径的方程.19.(2022秋•淮阴区月考)如图,A、B、C、D是⊙O上四点,且AD=CB,求证:AB=CD.【分析】根据圆心角、弧、弦之间的关系得出即可.【解答】证明:∵AD=CB,∴=,∴+=+,即=,∴AB=CD.【点评】本题考查了圆心角、弧、弦之间的关系,能根据定理求出=是解此题的关键.20.(2022秋•吴江区校级月考)如图,⊙O在△ABC三边上截得的弦长相等,即DE=FG=MN,∠A=50°,则∠BOC=()A.100°B.110°C.115°D.120°【分析】过点O作OP⊥AB于点P,OQ⊥AC于点Q,OK⊥BC于点K,由于DE=FG=MN,所以弦的弦心距也相等,所以OB、OC是角平分线,可求出∠POQ,进而可求出∠BOC.【解答】解:如图,过点O作OP⊥AB于点P,OQ⊥AC于点Q,OK⊥BC于点K,∴∠APO=∠AQO=90°,∵∠A=50°,∴∠POQ=360°﹣90°﹣90°﹣50°=130°,∵DE=FG=MN,∴OP=OK=OQ,∴OB、OC平分∠ABC和∠ACB,∴∠BOC==115°.故选:C.【点评】本题主要考查垂径定理,解题关键是构造出辅助线——弦心距.21.(2022秋•玄武区期末)如图,在⊙O中,AB=AC.(1)若∠BOC=100°,则的度数为130°;(2)若AB=13,BC=10,求⊙O的半径.【分析】(1)根据圆周角、弧、弦间的关系可以得到AB=AC,结合等腰三角形的性质解答;(2)连接AO,延长AO交BC于D,则AD⊥BC,构造直角三角形,通过勾股定理求得该圆的半径即可.【解答】解:(1)∵在⊙O中,∠BOC=100°,∴∠BAC=50°,∵=,∴AB=AC,∴∠ABC=∠ACB=65°,∴=130°,故答案为:130;(2)连接AO,延长AO交BC于D,则AD⊥BC,BD=CD=BC=5,∴在直角△ABD中,由勾股定理,得AD===12;在直角△OBD中,由勾股定理,得OB2=(12﹣OB)2+52,解得OB=,即⊙O的半径是.【点评】考查了圆周角、弧、弦的关系,在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.22.(2022秋•吴江区校级月考)已知⊙O的半径为2,弦,弦,则∠BOC的度数为150°或30°.【分析】分类讨论:①当点B和点C在AO两侧时,过点O作OP⊥AB于点P,作OQ⊥AC于点Q,根据垂径定理可求出,,再根据勾股定理可求出,OQ=1,从而得出AP=OP,,即得出∠PAO=45°,∠QAO=30°,进而可求出∠BAC=75°,最后由圆周角定理即可求出∠BOC的大小;②当点B和点C在AO同侧时,过点O作OM⊥AB于点M,作ON⊥AC于点N,同理可求出∠BAC=15°,再由圆周角定理即可求出∠BOC的大小.【解答】解:分类讨论:①当点B和点C在AO两侧时,过点O作OP⊥AB于点P,作OQ⊥AC于点Q,如图,∴.∵OA=2,∴,∴AP=OP,∴∠PAO=45°.∵,OA=2,∴,∴,∴∠QAO=30°,∴∠BAC=∠PAO+∠QAO=75°∴∠BOC=2∠BAC=150°;②当点B和点C在AO同侧时,过点O作OM⊥AB于点M,作ON⊥AC于点N,如图,由①同理可得:∠MAO=45°,∠NAO=30°,∴∠BAC=∠MAO﹣∠NAO=15°,∴∠BOC=2∠BAC=30°.综上可知∠BOC的度数为150°或30°.故答案为:150°或30°.【点评】本题考查垂径定理,圆周角定理,勾股定理,等腰直角三角形的判定和性质,含30°角的直角三角形的性质.正确的作出图形和辅助线并利用分类讨论的思想是解题关键.一.选择题(共10小题)1.(2022秋•邗江区期中)已知⊙O的半径为2,则⊙O中最长的弦长()A.2B.C.4D.【分析】利用圆的直径为圆中最长的弦求解.【解答】解:∵圆的直径为圆中最长的弦,∴⊙O中最长的弦长为2×2=4.故选:C.【点评】本题考查了圆的认识:熟练掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).2.(2022秋•无锡期末)已知⊙O的半径为5cm,当线段OA=5cm时,则点A在()A.⊙O内B.⊙O上C.⊙O外D.无法确定【分析】点在圆上,则d=r;点在圆外,d>r;点在圆内,d<r(d即点到圆心的距离,r即圆的半径).【解答】解:∵⊙O的半径为5cm,OA=5cm,∴点A在⊙O上.故选:B.【点评】本题考查了点与圆的位置关系,判断点与圆的位置关系,也就是比较点与圆心的距离和半径的大小关系.3.(2023•沛县模拟)如图.AB是⊙O的直径,∠D=40°,则∠BOC=()A.80°B.100°C.120°D.140°【分析】根据圆周角定理即可求出∠BOC.【解答】解:∵∠D=40°,∴∠BOC=2∠D=80°.故选:A.【点评】本题考查圆周角定理,邻补角定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.4.(2022秋•姑苏区校级期中)已知⊙O的半径为2,点P是⊙O内一点,且OP=,过P作互相垂直的两条弦AC、BD,则四边形ABCD面积的最大值为()A.4B.5C.6D.7【分析】设出OE=x,利用勾股定理表示出AC,BD,用对角线互相垂直的四边形的面积的计算方法建立面积和OE的函数关系式,即可得出结论.【解答】解:如图:连接OA、OD,作OE⊥AC于E,OF⊥BD于F,∵AC⊥BD,∴四边形OEPF为矩形,∵OA=OD=2,OP=,设OE为x(x>0),根据勾股定理得,OF=EP==,在Rt△AOE中,AE==∴AC=2AE=2,同理得,BD=2DF=2=2,又∵任意对角线互相垂直的四边形的面积等于对角线乘积的,∴S四边形ABCD=AC×BD=×2×2=2=2当x2=即:x=时,四边形ABCD的面积最大,等于2=5.故选:B.【点评】此题是一道综合性较强的题,融合了方程思想、数形结合思想.勾股定理,对角线互相垂直的四边形的面积的计算方法,表示出AC,BD是解本题的关键.5.(2023•盐都区一模)如图,⊙O的半径为5,弦AB=8,OC⊥AB于点C,则OC的长为()A.1B.2C.3D.4【分析】由于OC⊥AB于点C,所以由垂径定理可得,在Rt△ABC中,由勾股定理即可得到答案.【解答】解:∵OC⊥AB,AB=8,∴,在Rt△ABC中,OA=5,AC=4,由勾股定理可得:.故选:C.【点评】本题考查了垂径定理,熟练运用垂径定理并结合勾股定理是解答本题的关键.6.(2022秋•亭湖区校级期末)如图是一个圆柱形的玻璃水杯,将其横放,截面是个半径为5cm的圆,杯内水面AB=8cm,则水深CD是()A.cm B.cm C.2cm D.3cm【分析】连接OA、OC,先由垂径定理可得AC长,再由勾股定理得OC长,从而求出CD长.【解答】解:如图,连接OA、OC,则OC⊥AB,∴AC=AB=4(cm),在Rt△OAC中,OC===3(cm),∴CD=5﹣3=2(cm).故选:C.【点评】本题考查了垂径定理的应用和勾股定理,熟练掌握垂径定理和勾股定理是解题的关键.7.(2022秋•海陵区校级期末)如图,AB为⊙O的直径,点D是的中点,过点D作DE⊥AB于点E,延长DE交⊙O于点F.若,AE=2,则⊙O的直径长为()A.B.8C.10D.【分析】连接OF,首先证明,设OA=OF=x,在Rt△OEF中,利用勾股定理构建方程即可解决问题.【解答】解:如图,连接OF.∵DE⊥AB,∴DE=EF,,∵点D是弧AC的中点,∴,∴,∴,∴,设OA=OF=x,在Rt△OEF中,则有,解得x=4,∴AB=2x=8.故选:B.【点评】本题考查勾股定理,垂径定理,弧,弦之间的关系等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.8.(2022秋•启东市校级月考)下列说法中,不正确的是()A.过圆心的弦是圆的直径B.等弧的长度一定相等C.周长相等的两个圆是等圆D.直径是弦,半圆不是弧【分析】对于A,直径是通过圆心且两个端点都在圆上的线段,即可进行判断;对于B,能重合的弧叫等弧,即可进行判断;对于C和D,分别根据等圆,直径,半圆的知识,也可进行判断.【解答】解:A.直径是通过圆心且两个端点都在圆上的线段,故正确;B.能重合的弧叫等弧,长度相等,故正确;C.周长相等的圆其半径也相等,为等圆,故正确.D.直径是弦,半圆是弧,故错误.故选:D.【点评】本题考查圆的认识,解题的关键是掌握弦,弧等知识,灵活运用所学知识解决问题.9.(2022秋•邳州市期末)如图,在△ABC中,∠ACB=90°,AB=5,BC=4.以点A为圆心,r为半径作圆,当点C在⊙A内且点B在⊙A外时,r的值可能是()A.3B.4C.5D.6【分析】由勾股定理求出AC的长度,再由点C在⊙A内且点B在⊙A外求解.【解答】解:在Rt△ABC中,由勾股定理得AC==3,∵点C在⊙A内且点B在⊙A外,∴3<r<5,故选:B.【点评】本题考查点与圆的位置关系,解题关键是掌握勾股定理.10.(2022秋•邗江区校级期末)已知圆O的半径为5,同一平面内有一点P,且OP=4,则点P与圆O 的关系是()A.点P在圆内B.点P在圆外C.点P在圆上D.无法确定【分析】根据题意:OP=4<r,进行判断即可.【解答】解:设圆的半径为r,由题意得:OP=4<r=5,∴点P与圆O的关系是:点P在圆内.故选:A.【点评】本题考查点与圆的位置关系.熟练掌握利用点到圆心的距离与半径的大小关系,来判断点与圆的位置关系是解题的关键.二.填空题(共8小题)11.(2022秋•兴化市期末)若⊙O的半径为5,OA=4,则点A与⊙O的位置关系是:点A在⊙O内.(填“内、上、外”)【分析】要确定点与圆的位置关系,主要确定点与圆心的距离与半径的大小关系;利用d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内判断出即可.【解答】解:∵⊙O的半径为5,OA=4,∴d<r,∴点A与⊙O的位置关系是:点A在⊙O内,故答案为:内.【点评】此题主要考查了对点与圆的位置关系的判断.关键要记住若半径为r,点到圆心的距离为d,则有:当d>r时,点在圆外;当d=r时,点在圆上,当d<r时,点在圆内.12.(2022秋•兴化市校级期末)一个圆的半径是15cm,点P在圆上,那么P点到该圆圆心的距离为15 cm.【分析】圆上点到圆心的距离等于圆的半径,由此即可求解.【解答】解:根据题意,点P在圆上,圆的半径是15cm,∴P点到该圆圆心的距离为15cm,故答案为:15.【点评】本题主要考查的点与圆的位置关系,当点在圆外,点到圆心的距离大于半径;当点在圆上,点到圆心的距离等于半径;当点在圆内,点到圆心的距离小于半径,解题的关键是看点到圆心的距离与圆半径的关系.13.(2023•邳州市一模)如图,某同学准备用一根内半径为5cm的塑料管裁一个引水槽,使槽口宽度AB 为8cm,则槽的深度CD为2cm.【分析】根据垂径定理得到,再利用勾股定理即可求出答案.【解答】解:如图,由题意可知,OA=5cm,OC⊥AB,则cm,在Rt△ADO中,由勾股定理得,OD==3(cm),∴CD=OC﹣OD=5﹣3=2(cm).故答案为2.【点评】本题考查垂径定理,勾股定理,掌握垂径定理、勾股定理是正确解答的前提.14.(2023•鼓楼区模拟)如图所示,小区内有个圆形花坛O,点C在弦AB上,AC=11,BC=21,OC=13,则这个花坛的半径为20.【分析】通过作弦心距,构造直角三角形,利用垂径定理和勾股定理进行计算即可.【解答】解:如图,连接OA,过点O作OD⊥AB,垂足为D,∵AB是弦,OD⊥AB,AC=11,BC=21,∴AD=BD=AB=16,∴CD=AD﹣AC=5,∴OD===12,∴OA===20.故答案为:20.【点评】本题考查垂径定理的应用,掌握垂径定理和勾股定理是解决问题的前提,构造直角三角形是正确解答的关键.15.(2022秋•连云港期末)如图,AB是⊙O的直径,C是BA延长线上一点,点D在⊙O上,且CD=OE,CD的延长线交⊙O于点E.若∠C=25°,则∠CEO度数为50°.【分析】根据CD=OD求出∠DOC=∠C=25°,根据三角形的外角性质求出∠EDO=∠C+∠DOC=50°,根据等腰三角形的性质求出∠E=∠EDO=50°.【解答】解:连接OD.∵CD=OE,OE=OD,∴CD=OD,∵∠C=25°,∴∠DOC=∠C=25°,∴∠EDO=∠C+∠DOC=50°,∵OD=OE,∴∠E=∠EDO=50°.故答案为:50.【点评】本题考查了等腰三角形的性质,三角形内角和定理,三角形的外角性质,圆心角、弧、弦之间的关系等知识点,能求出∠ODE的度数是解此题的关键.16.(2022秋•连云港期末)如图,在⊙O中,弦AB=4,点C在AB上移动,连接OC,过点C作CD⊥OC,交⊙O于点D,则CD长的最大值为2.【分析】根据勾股定理求出CD,利用垂线段最短得到当OC⊥AB时,OC最小,根据垂径定理计算即可.【解答】解:∵CD⊥OC,∴∠DCO=90°,∴CD==,当OC的值最小时,CD的值最大,OC⊥AB时,OC最小,此时D、B两点重合,∴CD=CB=AB=2,即CD的最大值为2,故答案为:2.【点评】本题考查的是垂径定理、勾股定理,掌握垂直于弦的直径平分这条弦,并且平分弦所对的两条弧是解题的关键.17.(2022秋•秦淮区期末)如图,在以O为圆心半径不同的两个圆中,大圆和小圆的半径分别为6和4,大圆的弦AB交小圆于点C,D.若AC=3,则CD的长为.【分析】由垂径定理得到CH=DH,由勾股定理列出关于CH的方程,求出CH长,即可求出CD的长.【解答】解:作OH⊥AB于H,连接OC,OA,设CH=x,∴CH=DH,AH=x+3,∵OH2=OC2﹣CH2=OA2﹣AH2,∴42﹣x2=62﹣(x+3)2,∴x=,∴CD=2CH=.故答案为:.【点评】本题考查垂径定理,勾股定理,关键是掌握垂径定理,勾股定理.18.(2023•南京二模)如图,CD是⊙O的直径,弦AB⊥CD,垂足为E.若AB=4,CE=6,则⊙O的半径r为.【分析】如图,作辅助线;设⊙O的半径为r,运用勾股定理列出r2=22+(6﹣r)2,求出r即可解决问题.【解答】解:如图,连接OA.设⊙O的半径为r,则OE=6﹣r.∵弦AB⊥CD,∴AE=BE=2;由勾股定理得:r2=22+(6﹣r)2,解得:r=,故答案为:.【点评】主要考查了垂径定理、勾股定理及其应用问题;解题的关键是作辅助线,灵活运用勾股定理等几何知识点来分析、判断、推理或解答.三.解答题(共8小题)。

【期末真题分类汇编】北师大版六年级上册数学第一节-圆(含答案)

【期末真题分类汇编】北师大版六年级上册数学第一节-圆(含答案)

【期末真题分类汇编】北师大版六年级上册第一节-圆(含答案)考点1:圆的周长与面积1、(圆的对称性)圆有()条对称轴,圆的()所在的直线就是圆的对称轴。

2、(圆的对称性)将两个大小不同的圆拼成一个组合图形,这个组合图形至少有()条对称轴,最多有()条对称轴。

3、(圆的对称性)将一张圆形纸片对折,量得折痕长10cm,这个圆形纸片的直径是()cm,半径是()cm。

4、(圆周率)圆的周长是它的半径的()倍。

5、(圆的半径)圆片在桌面上向前滚动时,圆心经过的路线是一条()线,人们在街头围观看演出时,会不自觉地站成圆形,这是因为同一个圆中的()都相等。

6、(圆的半径)体育课,同学们要围成一个圆圈做游戏,老师站在圆圈的中心点上,每个同学距离老师4 米,围成的圆圈的面积至少是()平方米。

7、(最大圆问题)用一张长10 厘米,宽8 厘米的长方形纸片剪出一个最大的圆,圆的周长是()厘米,剩下的纸片面积是()平方厘米。

8、(剪圆)用一块长12 米,宽8 米的长方形铁皮剪成指干个半径都是1.5 米的小圆(不能剪拼),这块铁皮最多能剪出()个。

9、(圆的切割与拼接)把一个半径10 厘米的圆平均分成32 份,拼成的图形近似于长方形(如下图),这个长方形的长是()厘米,宽是()厘米。

10、(圆的切割与拼接)把一张圆形纸片剪拼成一个近似的梯形(如右图),这个梯形的上、下底之和相当于圆的(),梯形的高相当于圆的(),由此得到梯形的面积=()。

11、(圆周率)圆周率π的值()3.14。

A.大于B.等于C.小于D.大于或等于12、(画圆)将圆规两脚的距离定为3 厘米,所画圆的周长是()厘米。

A.6B.9.42C.18.84D.28.2613、(倍数关系)一个圆的半径扩大到原来的3 倍,那么这个圆的面积扩大到原来的()。

A.3 倍B.6 倍C.9 倍D.9.42 倍14、(倍数关系)如图,大圆和小圆的面积比是()。

A.2:1B.3:1C.4:1D.9:115、(面积/周长的比较)周长都是40 厘米的圆形、正方形、长方形和平行四边形,其中面积最大的是()。

(好题)初中数学九年级数学下册第三单元《圆》检测题(含答案解析)(1)

(好题)初中数学九年级数学下册第三单元《圆》检测题(含答案解析)(1)

一、选择题1.如图,点A 、B 、C 在⊙O 上,点D 是AB 延长线上一点,若∠CBD =65°,则∠AOC 的度数为( )A .115°B .125°C .130°D .135°2.如图平面直角坐标系中,点A ,B 均在函数y =k x(k >0,x >0)的图像上,⊙A 与x 轴相切,⊙B 与y 轴相切,若点B (1,8),⊙A 的半径是⊙B 半径的2倍,则点A 的坐标为( )A .(2,2)B .(2,4)C .(3,4)D .(4,2) 3.如图,ABC 是O 的内接三角形,BD 为O 的直径.若10BD =,2ABD C ∠=∠,则AB 的长度为( )A .4B .5C .5.5D .64.下列命题:①任意三点确定一个圆;②平分弦(不是直径)的直径垂直于弦;③相等的圆心角所对的弦相等;④长度相等的弧是等弧.其中真命题的有( )A .0个B .1个C .2个D .3个5.如图,已知E 是ABC 的外心,P ,Q 分别是AB ,AC 的中点,连接EP ,EQ ,分别交BC 于点F ,D .若10BF =,6DF =,8CD =,则ABC 的面积为( )A .72B .96C .120D .1446.如图,在半径为1的⊙O 中,将劣弧AB 沿弦AB 翻折,使折叠后的AB 恰好与OB 、OA 相切,则劣弧AB 的长为( )A .12πB .13π C .14π D .16π 7.已知△ABC 是半径为2的圆内接三角形,若BC =23,则∠A 的度数( ) A .30° B .60° C .120° D .60°或120° 8.如图.PA ,PB 是⊙O 的两条切线,切点分别为A ,B ,连接OA ,OB ,OP ,AB .若 OA =1,∠APB =60°,则△PAB 的周长为( )A .23B .4C .33D .23+2 9.“圆材埋壁”是我国古代数学名著《章算术》中的一个问题:“今有圆材埋在壁中,不知大小以锯锯之,深一寸,锯道长一尺问:径几何?”转化为数学语言:如图,CD 为O的直径,弦AB CD ⊥,垂足为E ,1CE =寸,10AB =寸,直径CD 的长是( )A .13寸B .26寸C .28寸D .30寸 10.如图,AB 是O 的直径,,C D 是ACB 上的三等分点,且1sin 2ABC ∠=,则A D ∠+∠等于 ( )A .120°B .95°C .105°D .150°11.如图,半径为10的扇形AOB 中,90AOB ∠=︒,C 为弧AB 上一点,CD OA ⊥,CE OB ⊥,垂足分别为D ,E .若图中阴影部分的面积为10π,则CDE ∠=( )A .30B .36︒C .54︒D .45︒12.4.如图,AD 是ABC ∆的外接圆O 的直径,若50BCA ︒∠=,则BAD ∠=( )A .30︒B .40︒C .50︒D .60︒二、填空题13.如图,四边形OABC 是菱形,点B ,C 在以点O 为圆心的弧EF 上,且∠1=∠2,若菱形边OA=3,则扇形OEF 的面积为___________14.如图,是由一个大圆和四个相同的小圆组成的图案,若大圆的半径为2,则阴影部分的面积为______.15.圆锥的表面展开图由一个扇形和一个圆组成,已知扇形的半径为9,圆心角为120°,则圆锥的底面圆的半径为__________.16.如图所示的是边长为4的正方形镖盘ABCD ,分别以正方形镖盘ABCD 的三边为直径在正方形内部作半圆,三个半圆交于点O ,乐乐随机地将一枚飞镖投掷到该镖盘上,飞镖落在阴影区域的概率为________.17.如图,在平面直角坐标系中,过点()11,0A 作x 轴的垂线交直线y x =于点B ,以О为圆心,1OB 为半径作弧,交x 轴于点2A ;过点2A 作x 轴的垂线交直线y x =于点2B ,以O 为圆心,2OB 为半径作弧,交x 轴于点3A ;过点3A 作x 轴的垂线交直线y x =于点3B ,以О为圆心,3OB 为半径作弧,交x 轴于点4A ,……,按此做法进行下去,设由11A B ,12A A ,弧21A B 围成的图形面积记为1S ,由22A B ,23A A ,弧32A B 围成的图形面积记为2S ,由33A B ,34A A ,弧43A B 围成的图形面积记为3S ,……,那么2020S 为_______:18.如图,正方形ABCD 的边长为8,M 是AB 的中点,一动点P 从点B C D --运动,连接PM ,以点P 为圆心,PM 的长为半径作P ,当P 与正方形ABCD 的边相切时,BP 的长为_________.19.如图,正方形ABCD 的边长为4,以点A 为圆心,AD 为半径,画圆弧DE 得到扇形ADE (阴影部分,点E 在对角线AC 上).若扇形ADE 正好是一个圆锥的侧面展开图,则该圆锥的底面圆的半径是________.20.写出命题“圆内接四边形的对角互补”的逆命题:____________.三、解答题21.已知O 及O 外一点P ,在O 上找一点,M 使得PM OM ⊥,求作点M .要求:尺规作图,保留作图痕迹.22.如图,在Rt △ABC 中,∠ACB =90°,以AC 为直径的⊙O 与AB 边交于点D ,E 为BC 的中点,连接DE .(1)求证:DE 是⊙O 的切线;(2)若AC =BC ,判断四边形OCED 的形状,并说明理由.23.如图,已知90MON ∠=︒,OT 是MON ∠的平分线,A 是射线OM 上一点,8cm OA =.动点P 从点A 出发,以1cm/s 的速度沿AO 水平向左作匀速运动,与此同时,动点Q 从点O 出发,也以1cm/s 的速度沿ON 竖直向上作匀速运动.连接PQ ,交OT 于点B .经过O ,P ,Q 三点作圆,交OT 于点C ,连接PC ,QC .设运动时间为()t s ,其中08t <<.(1)求OP OQ +的值;(2)是否存在实数t ,使得线段OB 的长度最大?若存在,求出t 的值;若不存在,说明理由.(3)在点P ,Q 运动过程中(08t <<),四边形OPCQ 的面积是否变化.如果面积变化,请说出四边形OPCQ 面积变化的趋势;如果四边形OPCQ 面积不变化,请求出它的面积.24.下面是小东设计的“过圆外一点作这个圆的两条切线”的尺规作图过程.已知:⊙O 及⊙O 外一点P .求作:直线PA 和直线PB ,使PA 切⊙O 于点,A PB 切⊙O 于点B .作法:如图,①连接OP ,分别以点О和点P 为圆心,大于12OP 的同样长为半径作弧,两弧分别交于点,M N ;②连接MN ,交OP 于点Q ,再以点Q 为圆心,OQ 的长为半径作弧,交⊙O 于点A 和点B ;③作直线PA 和直线PB .所以直线PA 和PB 就是所求作的直线.根据小东设计的尺规作图过程, ()1使用直尺和圆规,补全图形;(保留作图痕迹)﹔()2完成证明过程.证明:25.如图,在平面直角坐标系xOy 中,方格纸的每个小方格都是边长为1个单位的正方形,Rt ABC △的顶点均在格点(小正方形的顶点)上.(1)将ABC 绕着点A 顺时针旋转90︒得到11AB C △,试在图上画出11AB C △; (2)并求出点C 到点1C 所经过的路径的长;(3)ABC 的外心坐标为__________;(4)ABC 的内切圆半径为_______________.(直接写出答案)26.已知,如图,在ABC 中,90C ∠=︒,D 为BC 边中点.(1)尺规作图:以AC 为直径作O ,交AB 于点E (保留作图痕迹,不需写作法); (2)连接DE ,求证:DE 为O 的切线.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】求出∠ABC ,再求出它所对的弧对的圆心角,即可求∠AOC .【详解】解:∵∠CBD=65°,∴∠ABC=180°-65°=115°,优弧AC所对的圆心角的度数为:115°×2=230°,∠AOC=360°-230°=130°,故选:C.【点睛】本题考查了圆周角的性质,解题关键是求出圆周角,根据同弧所对的圆周角和圆心角的关系求角.2.D解析:D【分析】把B的坐标为(1,8)代入反比例函数解析式,根据⊙B与y轴相切,即可求得⊙B的半径,则⊙A的半径即可求得,即得到B的纵坐标,代入函数解析式即可求得横坐标.【详解】解:把B的坐标为(1,8)代入反比例函数解析式得:k=8,则函数的解析式是:y=8x,∵B的坐标为(1,8),⊙B与y轴相切,∴⊙B的半径是1,则⊙A的半径是2,把y=2代入y=8x得:x=4,则A的坐标是(4,2).故选:D.【点睛】本题考查了反比例函数图象上点的坐标特征以及切线的性质,根据点B的坐标利用反比例函数图象上点的坐标特征求出k值是解题的关键.3.B解析:B【分析】连接OA,首先求出∠ACB=30°得∠AOB=60°,从而证得△AOB是等边三角形,进一步得出结论.【详解】解:∵BD是圆O的直径,且BD=10∴OB=5连接OA,如图,∵BD 是圆O 的直径,∴90ACB ABD ∠+∠=︒又2ABD C ∠=∠∴3∠C=90°,即∠C=30°,∴∠AOB=60°∴△AOB 是等边三角形,∴AB=OB=5故选:B .【点睛】此题主要考查了圆周角定理,熟练掌握圆周角定理是解答此题的关键.4.B解析:B【分析】依次判断真假命题即可,可以通过找到相应的反例,去论证命题的正确性.【详解】解:①假命题,当三点在同一条直线上时,就不能确定一个圆了,故此项错误; ②真命题,平分弦(不是直径)的直径垂直于弦,故此项正确;③假命题,在同圆或等圆中,相等的圆心角所对的弦相等,故此项错误;④假命题,在同圆或等圆中,长度相等的弧是等弧,故此项错误;综上所述,②正确.故选:B .【点睛】本题主要考查了确定圆的条件,垂径定理及圆周角定理等圆的一些基本的知识,解答此题的关键掌握理解圆的定义及性质.5.B解析:B【分析】连接AF ,AD ,AE ,BE ,CE ,根据三角形外心的定义,可得PE 垂直平分AB ,QE 垂直平分AC ,进而求得AF ,DF ,AD 的长度,可知△ADF 是直角三角形,即可求出△ABC 的面积.【详解】如图,连接AF ,AD ,AE ,BE ,CE ,∵点E 是△ABC 的外心,∴AE=BE=CE ,∴△ABE ,△ACE 是等腰三角形,∵点P 、Q 分别是AB 、AC 的中点,∴PE ⊥AB ,QE ⊥AC ,∴PE 垂直平分AB ,QE 垂直平分AC ,∴AF=BF=10, AD=CD=8,在△ADF 中,∵2222286=100=AD DF AF +=+,∴△ADF 是直角三角形,∠ADF=90°,∴S △ABC = ()()1122=1068896BF DF CD AD ⨯++⨯++=, 故选:B .【点睛】本题考查三角形外心的定义,勾股定理逆定理等知识点,解题的关键是得到△ADF 是直角三角形.6.A解析:A【分析】如图画出折叠后AB 所在的⊙O ',连O 'B ,O 'A ,根据题意可得O 'B ⊥OB 、O 'A ⊥OA ,且OB=OA=O 'B=O 'A,得到四边形O 'BOA 是正方形,即∠O=90°,最后根据弧长公式计算即可.【详解】解:如图:画出折叠后AB 所在的⊙O ',连O 'B ,O 'A∵AB 恰好与OA 、OB 相切∴O 'B ⊥OB 、O 'A ⊥OA∵OB=OA=O 'B=O 'A,∴四边形O 'BOA 是正方形∴∠O=90°∴劣弧AB 的长为9011801802n r πππ︒⨯⨯==︒.故选择:A.【点睛】本题考查了折叠的性质、正方形的判定与性质、弧长公式等知识点,其中掌握弧长公式和折叠的性质是解答本题的关键.7.D解析:D【分析】首先根据题意画出图形,然后由圆周角定理与含30°角的直角三角形的性质,求得答案.【详解】解:如图,作直径BD,连接CD,则∠BCD=90°,∵△ABC是半径为2的圆内接三角形,BC=23∴BD=4,∴22,BD BC∴CD=1BD,2∴∠CBD=30°,∴∠A=∠D=60°,∴∠A′=180°-∠A=120°,∴∠A的度数为:60°或120°.故选:D.【点睛】此题考查了圆周角定理与含30°角的直角三角形的性质.此题难度适中,注意掌握数形结合思想的应用.8.C解析:C【分析】根据切线的性质和切线长定理证明△PAB是等边三角形,PA⊥AO,根据直角三角形性质求出PA ,问题得解.【详解】解:∵PA ,PB 是⊙O 的两条切线,∠APB =60°,∴PA =PB ,∠APO =12∠APB =30°,PA ⊥AO , ∴△PAB 是等边三角形,∵PA ⊥AO ,∠APO ==30°,∴OP =2OA =2, ∴223PA PO AO =-=,∴△PAB 的周长为33.故选:C【点睛】 本题考查了切线长定理,切线的性质,等边三角形的判定,含30°角直角三角形性质,勾股定理等知识,考查知识点较多,熟知相关定理并能熟练运用是解题关键.9.B解析:B【分析】连接OA .设圆的半径是x 寸,在直角△OAE 中,OA =x 寸,OE =x−1,在直角△OAE 中利用勾股定理即可列方程求得半径,进而求得直径CD 的长.【详解】解:如图,连接OA .设圆的半径是x 寸,在直角△OAE 中,OA =x 寸,OE =(x−1)寸,∵222OA OE AE =+,∵AB=10,且AB CD ⊥∴AE=12AB=5 则()22125x x =-+,解得:x =13.则CD =2×13=26(寸).故选:B .【点睛】本题考查了垂径定理和勾股定理,正确作出辅助线是关键.10.A解析:A【分析】由圆心角、弦、弧的关系及圆周角定理可得∠ACB=90°,∠BOD=60°,∠A=60°,通过证明△OBD为等边三角形,即可求∠D=60°,进而可求解;【详解】∵ C、D是ACB上的三等分点,∴AC CD BD==,∵ AB是圆的直径,∴∠ACB=90°,∠BOD=60°,∠A=60°,∵OB=OD,∴△OBD为等边三角形,∴∠D=60°,∴∠A+∠D=120°,故选:A.【点睛】本题主要考查了圆心角、弦、弧的关系,等边三角形的判定与性质,圆周角定理等知识点的综合运用;11.B解析:B【分析】连接OC,易得四边形CDOE是矩形,△DOE≌△CEO,根据扇形的面积公式得∠COE=36°,进而即可求解.【详解】解:连接OC,∵∠AOB=90°,CD⊥OA,CE⊥OB,∴四边形CDOE是矩形,∴CD∥OE,∴∠DEO=∠CDE,由矩形CDOE易得到△DOE≌△CEO,∴图中阴影部分的面积=扇形OBC的面积,∵S 扇形OBC =210360n π⨯=10π,解得:n=36, ∴CDE ∠=∠DEO=∠COE=36°.故选B .【点睛】本题考查了扇形面积的计算,矩形的判定与性质,全等三角形的判定和性质,利用扇形OBC 的面积等于阴影的面积是解题的关键.12.B解析:B【分析】根据圆周角定理即可得到结论.【详解】解:∵AD 是△ABC 的外接圆⊙O 的直径,∴∠ABD=90°,∵∠BCA=50°,∴∠ADB=∠BCA=50°,∴BAD ∠=90°-50°=40°故选:B .【点睛】本题考查了三角形的外接圆与外心,圆周角定理,熟练掌握圆周角定理是解题的关键.二、填空题13.3π【分析】算出扇形OEF 的圆心角即可得到解答【详解】解:如图连结OB 由题意可知:OC=OB=BC ∴∠COB=60°∠COA=120°∵∠1=∠2∴∠FOE=∠COE+∠1=∠COE+∠2=∠COA解析:3π【分析】算出扇形OEF 的圆心角,即可得到解答.【详解】解:如图,连结OB ,由题意可知:OC=OB=BC ,∴∠COB=60°,∠COA=120°,∵∠1=∠2,∴∠FOE=∠COE+∠1=∠COE+∠2=∠COA=120°,∴扇形OEF 的面积=2212012033360360OA πππ⨯⨯⨯⨯==, 故答案为3π .【点睛】本题考查扇形与菱形的综合应用,熟练掌握菱形的性质及扇形面积的计算是解题关键. 14.【分析】如图由圆的对称性及割补法可得阴影部分的面积为大圆的面积减去正方形的面积再由勾股定理可得:从而可得答案【详解】解:如图由圆的对称性及割补法可得阴影部分的面积为大圆的面积减去正方形的面积大圆的半 解析:48π-【分析】如图,由圆的对称性及割补法可得阴影部分的面积为大圆的面积减去正方形的面积,再由勾股定理可得:28,AC =从而可得答案.【详解】解:如图,由圆的对称性及割补法可得阴影部分的面积为大圆的面积减去正方形的面积,大圆的半径为2,90,,ACB AC BC ∠=︒=∴ 4,AB =2216,AC BC +=28,AC ∴=22248.S AC ππ∴=⨯-=-故答案为:48.π-【点睛】本题考查的是阴影部分面积的求解,勾股定理的应用,圆的对称性与正方形的性质,扇形面积与弓形面积的理解,正多边形与圆,掌握以上知识是解题的关键.15.3【分析】根据弧长公式求出扇形的弧长圆锥侧面展开扇形的弧长等于圆锥底面圆的周长再利用圆周长的公式求解即可【详解】扇形的半径为9圆心角为120°扇形的弧长圆锥侧面展开扇形的弧长等于圆锥底面圆的周长设圆 解析:3【分析】根据弧长公式求出扇形的弧长,圆锥侧面展开扇形的弧长等于圆锥底面圆的周长,再利用圆周长的公式求解即可【详解】扇形的半径为9,圆心角为120°∴扇形的弧长12096180180n r l πππ⨯=== 圆锥侧面展开扇形的弧长等于圆锥底面圆的周长设圆锥底面圆的半径为r26r ππ∴=3r ∴=故答案为:3.【点睛】本题考查了圆锥侧面展开图与底面圆之间的关系,弧长的计算,解题关键是熟知圆锥侧面展开扇形的弧长等于圆锥底面圆的周长.16.【分析】先判断出两半圆交点为正方形的中心连接OAOD 则可得出所产生的四个小弓形的面积相等先得出2个小弓形的面积即可求阴影部分面积根据即可求得概率【详解】解:由题意易知两半圆的交点即为正方形的中心设此解析:12【分析】先判断出两半圆交点为正方形的中心,连接OA ,OD ,则可得出所产生的四个小弓形的面积相等,先得出2个小弓形的面积,即可求阴影部分面积,根据ABCD S S 阴影正方形即可求得概率.【详解】解:由题意,易知两半圆的交点即为正方形的中心,设此点为O ,连接AO ,DO ,则图中的四个小弓形的面积相等,∵两个小弓形面积=14AOD AOD AOD ABCD S S S S --△半圆半圆正方形=,又∵正方形ABCD 的边长为4,∴各半圆的半径为2,∴两个小弓形面积=2112-44=2-424ππ⨯⨯⨯⨯, ∴=2S S ⨯阴影半圆-4个小弓形的面积=()22-22-4=8ππ⨯,∴飞镖落在阴影部分的概率为:81==162ABCD S S 阴影正方形, 故答案为:12. 【点睛】 本题考查扇形的面积、正方形的性质、几何概率,解题的关键是求出小弓形的面积. 17.【分析】根据点A 的取法罗列出部分点A 的横坐标由此可发现规律即的横坐标为:再结合已知即可得到答案【详解】观察发现规律:的横坐标为:的横坐标为:的横坐标为:的横坐标为:的横坐标为:故答案为:【点睛】本题 解析:2017201822π-【分析】根据点A 的取法,罗列出部分点A 的横坐标,由此可发现规律,即n A的横坐标为:1n -,再结合已知即可得到答案.【详解】观察,发现规律:1A 的横坐标为:1,2A3A的横坐标为:2,⋯,∴n A的横坐标为:1n - n B ∴的横坐标为:1n -404020192019201720182020451223602S ππ⨯⨯∴=-⨯⨯=⋅-故答案为:2017201822π⋅-.【点睛】本题考查了一次函数图像上点的坐标特征以及规律型中的点的变换,解题关键是找出n A 的横坐标为:1n -这一规律.18.3或或【分析】由线段中点的性质解得当与正方形的边相切时分别作出相应的图形分三种情况讨论:①当与正方形的边相切切点为点时设在中利用勾股定理解得的值即可解出的长;②当与正方形的边相切切点为点时可证明四边 解析:3或【分析】由线段中点的性质解得4BM =,当P 与正方形ABCD 的边相切时,分别作出相应的图形,分三种情况讨论:①当P 与正方形ABCD 的边CD 相切,切点为点C 时, 设PC PM x ==,在Rt PBM △中,利用勾股定理解得x 的值,即可解出BP 的长;②当P 与正方形ABCD 的边AD 相切,切点为点K 时,可证明四边形PKDC 是矩形,由矩形对边相等的性质结合圆的半径相等,解得2PM PK DC BM ===,再在Rt PBM △中,利用勾股定理解题;③当P 与正方形ABCD 的边AB 相切,切点为点M 时,在Rt PMB 中,利用勾股定理解题即可.【详解】解:M 是AB 的中点, 118422BM AB ∴==⨯= 分三种情况讨论:①如图,当P 与正方形ABCD 的边CD 相切,切点为点C 时,设PC PM x ==,在Rt PBM △中,222PM BM BP =+2224(8)x x ∴=+-22246416x x x ∴=+-+5x ∴=5,3PC BP BC PC ∴==-=;②如图,当P 与正方形ABCD 的边AD 相切,切点为点K 时,连接PK ,则PK AD ⊥,四边形PKDC 是矩形,2PM PK DC BM ∴===48BM PM ∴==,在Rt PBM △中,228443PB =-=③如图,当P与正方形ABCD的边AB相切,切点为点M时,,8,4PM AB PM BC BM⊥===在Rt PMB中,228445BP=+=,综上所述,当P与正方形ABCD的边相切时,BP的长为:3或435故答案为:3或4345【点睛】本题考查切线的性质、勾股定理等知识,是重要考点,难度一般,掌握相关知识是解题关键.19.【分析】根据圆锥的底面周长与展开后所得扇形的弧长相等列式计算即可【详解】解:设圆锥的底面圆的半径为r根据题意可得:AD=AE=4∠DAE=45°∵底面圆的周长等于弧长即解得:∴该圆锥的底面圆的半径是解析:1 2【分析】根据圆锥的底面周长与展开后所得扇形的弧长相等列式计算即可.【详解】解:设圆锥的底面圆的半径为r,根据题意可得:AD=AE=4,∠DAE=45°,∵底面圆的周长等于弧长,即454 2180rππ︒⨯⨯=︒解得:12r=,∴该圆锥的底面圆的半径是12,故答案为12.【点睛】本题考查圆锥的计算,解题的关键是熟练掌握圆锥的底面周长与展开后所得扇形的弧长相等.20.对角互补的四边形是圆内接四边形;【分析】根据逆命题的概念解答即可【详解】圆内接四边形的对角互补的逆命题是:对角互补的四边形是圆内接四边形故答案为:对角互补的四边形是圆内接四边形【点睛】本题主要考查了解析:对角互补的四边形是圆内接四边形;【分析】根据逆命题的概念解答即可.【详解】“圆内接四边形的对角互补”的逆命题是:对角互补的四边形是圆内接四边形,故答案为:对角互补的四边形是圆内接四边形.【点睛】本题主要考查了命题与定理,正确把握相关性质是解题的关键.三、解答题21.如图所示,M点有两个,分别为M1,M2【分析】根据圆周角定理:直径所对的圆周角是直角,以OP为直径作圆,根据尺规作图画出OP的垂直平分线,A点即为OP中点,画出圆即可得出OP⊥OM【详解】如图所示,连接OP,分别以O、P为半径,大于12OP为半径作圆弧,连接两个交点,与OP交于A点,A点即为OP的中点,以A点为圆心,OA为半径作圆,与O的交点即为M点【点睛】本题考察尺规作图,熟练掌握圆周角定理:直径所对的圆周角是直角,以及垂直平分线的作法是解题的关键22.(1)见解析;(2)正方形,理由见解析【分析】(1)连接OD、CD,结合AC为直径可得到∠CDB=90°,E为中点,可得到ED=CE,再利用角的和差可求得∠ODE=90°,可得DE为切线;(2)由条件可得∠ODA=∠A=45°,可求得∠COD=∠ODE=∠ACB=90°,且OC=OD,可知四边形ODEC为正方形.【详解】(1)证明:如图,连接OD、CD,∵OC=OD,∴∠OCD=∠ODC,∵AC为⊙O的直径,∴∠CDB=90°,∵E为BC的中点,∴DE=CE,∴∠ECD=∠EDC,∴∠OCD+∠ECD=∠ODC+∠EDC=90°,∴∠ODE=∠ACB=90°,即OD⊥DE,又∵D在圆O上,∴DE与圆O相切;(2)若AC=BC,四边形ODEC为正方形,理由:∵AC=BC,∠ACB=90°,∴∠A=45°,∵OA =OD ,∴∠ODA =∠A =45°,∴∠COD =∠A +∠ODA =90°,∵四边形ODEC 中,∠COD =∠ODE =∠ACB =90°,且OC =OD ,∴四边形ODEC 为正方形.【点睛】本题考查了切线的判定、正方形的判定、圆的性质、三角形的外角、直角三角形的性质等知识,解答本题的关键是熟练运用以上知识证明OD ⊥DE 以及∠COD =∠ODE =∠ACB =90°,OC =OD .23.(1)8cm ;(2)存在,t=4;(3)不变化,16cm 2.【分析】(1)由题意得出OP=8-t ,OQ=t ,则可得出答案;(2)如图,过点B 作BD ⊥OP ,垂足为D ,则BD ∥OQ .设线段BD 的长为x ,则BD=OD=x ,OB=2BD=2x ,PD=8-t-x ,得出PD BD OP OQ =,则 88t x x t t--=-,解出288t t x -=.由二次函数的性质可得出答案; (3)证明△PCQ 是等腰直角三角形.则21122122224PCQ S PC QC PQ PQ PQ ∆=⋅=⨯⋅=.在Rt △POQ 中,PQ 2=OP 2+OQ 2=(8-t )2+t 2.由四边形OPCQ 的面积S=S △POQ +S △PCQ 可得出答案.【详解】解:(1)由题意可得,OP=8-t ,OQ=t ,∴OP+OQ=8-t+t=8(cm ).(2)当t=4时,线段OB 的长度最大.如图,过点B 作BD ⊥OP ,垂足为D ,则BD ∥OQ .∵OT 平分∠MON ,∴∠BOD=∠OBD=45°,∴BD=OD ,2BD .设线段BD 的长为x ,则BD=OD=x ,22x ,PD=8-t-x ,∵BD ∥OQ ,∴PD BD OP OQ =, ∴88t x x t t--=-, ∴288t t x -=.∴2284)88t t OB t -==--+. ∵二次项系数小于0.∴当t=4时,线段OB 的长度最大,最大为cm .(3)∵∠POQ=90°,∴PQ 是圆的直径.∴∠PCQ=90°.∵∠PQC=∠POC=45°,∴△PCQ 是等腰直角三角形.∴2111224PCQ S PC QC PQ PQ PQ ∆=⋅==. 在Rt △POQ 中,PQ 2=OP 2+OQ 2=(8-t )2+t 2.∴四边形OPCQ 的面积21124POQ PCQ S S S OP OQ PQ ∆∆=+=⋅+ 2211(8)(8)24t t t t ⎡⎤=-+-+⎣⎦ 221141641622t t t t =-++-=. ∴四边形OPCQ 的面积不变化,为16cm 2.【点睛】本题是圆的综合题,考查了圆周角定理,等腰直角三角形的性质,平行线分线段成比例定理,三角形的面积,二次函数的性质等知识,熟练掌握圆的性质定理是解题的关键. 24.(1)见解析;(2)见解析.【分析】(1)按照尺规作图中的线段的垂直平分线步骤进行即可;(2)根据切线的判定证明即可.【详解】(1)补图如下:;(2)如图,连接PA,PB,OA,OB,∵PO是⊙Q的直径,∴∠OAP=90°,∴OA⊥AP,∴PA是⊙O的切线;同理可证,PB是⊙O的切线.【点睛】本题考查了圆外一点作定圆的切线,熟练作线段PO的垂直平分线,熟记切线的判定是解题的关键.25.(1)见解析;(2)52π;(3)()34,2-;(4)1【分析】(1)根据网格结构找出点B、C绕着点A顺时针旋转90°得到B1、C1的位置,然后顺次连接即可;(2)利用勾股定理列式求出AC,然后根据弧长公式列式计算即可得解;(3)根据直角三角形的外心是斜边的中点,并由图象可得点A的坐标是(-6,0),C的坐标是(-2,3),利用中点坐标公式即可求解;(4)利用等面积法即可列出关于内切圆半径的等式,计算后即可得出结果.【详解】解:(1)如图所示,△AB1C1即为所求作的图形;(2)∵AB=4,BC=3,∴AC22345=+=,∴点C 到点1C 所经过的路径的长为:90551802l ππ⨯==; (3)∵直角三角形的外心是斜边的中点,且点A 的坐标是(-6,0),C 的坐标是(-2,3), ∴12×(-6-2)=-4,12×(0+3)=32, ∴△ABC 的外心坐标为()34,2-; 故答案为:()34,2-;(4)设Rt △ABC 的内切圆半径为r ,∵S △ABC =12×3×4=6, ∴12×3r+12×4r+12×5r=6, 解得r=1,∴△ABC 的内切圆半径为1.故答案为:1.【点睛】此题考查了旋转变换、弧长的计算、三角形的外接圆与内切圆等知识,掌握旋转变换的性质、弧长的计算、三角形外接圆与内切圆的相关知识是解题的关键.26.(1)作图见解析;(2)见解析.【分析】(1)先作AC 的中垂线,找到AC 的中点O ,然后以AC 为直径作圆,与AB 的交点即为所求;(2)由题意可知DE 为Rt BEC △斜边BC 上的中线,从而得到CD=DE ,即=∠∠ECD DEC ,由OC=OE 得到OEC OCE ∠=∠,再由90ACB ∠=︒即可得到OE ⊥DE ,即可得证.【详解】(1)作图如图所示.(2)证明:如上图,连结OE ,CE , AC 为直径,90AEC ∴∠=︒, D 为BC 边中点,DE ∴为Rt BEC △斜边BC 上的中线,12DE DC DB BC ∴===, ECD DEC ∴∠=∠,OC OE =,OEC OCE ∴∠=∠,90OED OEC CED OCE DCE ACB ∴∠=∠+∠=∠+∠=∠=︒ OD DE ∴⊥,DE ∴为O 的切线.【点睛】本题考查了尺规作图以及切线的判定,正确找到垂直条件是判断切线的关键.。

3.2 圆的对称性(练习)(解析版)

3.2 圆的对称性(练习)(解析版)

第三章圆第二节圆的对称性精选练习一、单选题1.(2021·全国九年级课时练习)下列说法中,正确的是()A.等弦所对的弧相等B.等弧所对的弦相等C.圆心角相等,所对的弦相等D.弦相等所对的圆心角相等【答案】B【分析】根据圆心角,弦,弧之间的关系判断,注意条件.【详解】A中,等弦所对应的弧可以相等也可以互补构成新圆;B中,等弧所对应的弦相等,故选BC中,圆心角相等所对应的弦可能互补;D中,弦相等,圆心角可能互补;故选B【点睛】本题考查了圆心角,弧,弦之间的观,此类试题属于难度较大的试题,其中,弦和圆心角等一些基本知识容易混淆,从而很难把握.2.(2021·全国九年级课时练习)下列说法中,不正确的是()A.圆是轴对称图形B.圆的任意一条直径所在的直线都是圆的对称轴C.圆的任意一条直径都是圆的对称轴D.经过圆心的任意直线都是圆的对称轴【答案】C【分析】根据轴对称图形的概念并结合圆的特点判断各选项,然后求解即可.【详解】A 、圆是轴对称图形,正确;B 、圆的任意一条直径所在得直线都是圆的对称轴,正确;C 、圆的任一直径所在的直线都是圆的对称轴,错误;D 、经过圆心的任意直线都是圆的对称轴,正确,故选:C .【点睛】本题主要是考查圆的特征、轴对称图形的特征,注意,语言要严密,不能说成圆的直径就是圆的对称轴,因为对称轴是一条直线,直径是线段.3.(2021·全国九年级课时练习)下列说法:①直径是弦;②长度相等的两条弧是等弧;③圆是中心对称图形;④任何一条直径都是圆的对称轴,其中说法正确的有( )个A .1个B .2个C .3个D .4个【答案】B【分析】根据圆的性质依次判断即可得到答案.【详解】①直径是圆中最长的弦,故正确;②在同圆或等圆中,能够完全重合的两条弧是等弧,故②错误;③圆是中心对称图形,故正确;④任何一条直径所在的直线都是圆的对称轴,故④错误,正确的有2个,故选:B.【点睛】此题考查圆的性质,正确掌握弦、等弧的定义,圆的对称性是解题的关键.4.(2020·杭州市建兰中学九年级月考)如图,AB 是圆O 的直径,点C 是半圆O 上不同于,A B 的一点,点D 为弧AC 的中点,连结,,OD BD AC ,设,CAB BDO b a Ð=Ð=,则( ).A .a b=B .290a b °+=C .290a b °+=D .45a b °+=【答案】C利用等腰三角形边角关系表示出∠AOD ,再根据同圆中平分弧平分弦垂直弦求出关系即可.【详解】解析 如图,设AC 与DO 交点为E ,连接BC ,OD OB = ,OBD BDO a \Ð=Ð=,2DOA OBD BDO a \Ð=Ð+Ð=,又D Q 为 AC 中点,AB 为O e 直径,,OD AC BC AC \^^,90AED ACB °\Ð=Ð=,90EAO EOA °\Ð+Ð=,即:290a b °+=.故选C .【点睛】此题考查了垂径定理中同圆中平分弧平分弦垂直弦,等边对等角等有关知识点,难度一般.5.(2020·西安益新中学九年级期末)如图,AB 是O e 的直径,弧BC 、弧CD 与弧DE 相等,36COD Ð=°,则AOE Ð的度数是( )A .30°B .36°C .54°D .72°【答案】D【分析】由弧BC 、弧CD 与弧DE 相等,得36COB COD EOD Ð=Ð=Ð=°,即可求AOE Ð.解:∵弧BC 、弧CD 与弧DE 相等,∴36COB COD EOD Ð=Ð=Ð=°,18036372AOE Ð=°-°´=°,故选:D .【点睛】本题考查了圆心角和弧的关系,解题关键是熟知在同圆和等圆中,相等的弧所对的圆心角相等.6.(2021·全国九年级课时练习)如图,已知:AB 是O e 的直径,C 、D 是 BE上的三等分点,60AOE Ð=o ,则COE Ð是( )A .40oB .60oC .80oD .120o【答案】C【分析】先求出∠BOE=120°,再运用“等弧对等角”即可解.【详解】∵∠AOE=60°,∴∠BOE=180°-∠AOE=120°,∴»BE的度数是120°,∵C 、D 是»BE上的三等分点,∴弧CD 与弧ED 的度数都是40度,∴∠COE=80°,故选C.【点睛】本题主要考查圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.熟练掌握圆周角定理是解题关键.7.(2021·全国九年级课时练习)如图,⊙O 中,弦AB ⊥CD ,垂足为E ,F 为 CBD的中点,连接AF 、BF 、AC ,A F 交CD 于M ,过F 作FH ⊥AC ,垂足为G ,以下结论:① CFDF =;②HC =BF :③MF =FC :④ DF AH BF AF +=+,其中成立的个数是( )A.1个B.2个C.3个D.4个【答案】C【分析】根据弧,弦,圆心角之间的关系,圆周角定理以及三角形内角和定理一一判断即可.【详解】解:∵F为CBD的中点,∴CF DF=,故①正确,∴∠FCM=∠FAC,∵∠FCG=∠ACM+∠FCM,∠AME=∠FMC=∠ACM+∠FAC,∴∠AME=∠FMC=∠FCG>∠FCM,∴FC>FM,故③错误,∵AB⊥CD,FH⊥AC,∴∠AEM=∠CGF=90°,∴∠CFH+∠FCG=90°,∠BAF+∠AME=90°,∴∠CFH=∠BAF,∴=,CF BF∴HC=BF,故②正确,∵∠AGF=90°,∴∠CAF+∠AFH=90°,∴+=180°,AH CF∴+=180°,CH AF∴+=+=+=+,故④正确,AH CF AH DF CH AF AF BF故选:C.【点评】本题考查圆心角,弧,弦之间的关系,三角形内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考选择题中的压轴题.8.(2019·武汉市梅苑学校九年级月考)如图AB 为⊙O 的定直径,过圆上一点C 作弦CD AB ^,OCD Ð的平分线交⊙O 于点P ,当点C (不包括A ,B 两点)在⊙O 上移动时,点P ( )A .到CD 的距离保持不变B .位置不变C .等分弧DBD .随C 点移动而移动【答案】B【分析】连OP ,由CP 平分∠OCD ,得到∠1=∠2,而∠1=∠3,可得2=3,ÐÐ所以有//OP CD ,则OP ⊥AB ,即可得到OP 平分半圆APB .从而可得答案.【详解】解:连OP ,如图,∵CP 平分∠OCD ,∴∠1=∠2,OC=OP ,\ ∠1=∠3,∴∠2=∠3,∴//OP CD ,又∵弦CD ⊥AB ,∴OP ⊥AB ,∴OP 平分半圆APB ,即点P 是半圆的中点.故选:B .【点睛】本题考查了角平分线的定义,平行线的判定,等腰三角形的性质,圆的对称性,掌握以上知识是解题的关键.二、填空题9.(2021·全国九年级课时练习)半径为5的⊙O是锐角三角形ABC的外接圆,AB=BC,连结OB、OC,延长CO 交弦AB于D,若△OBD是直角三角形,则弦BC的长为______________.【答案】【分析】如图1,当∠DOB=90°时,推出△BOC是等腰直角三角形,于是得到=;如图2,当∠ODB=90°时,推出△ABC是等边三角形,解直角三角形得到BC=AB=.【详解】如图1,当∠DOB =90°时,∴∠BOC=90°∴△BOC是等腰直角三角形∴=^如图2,当∠ODB=90°时,即CD AB∴ AD=BD∴ AC=BC∵ AB=BC∴△ABC是等边三角形∴∠DBO=30°∵ OB=5∴BD==∴ BC=AB=.综上所述:若△OBD是直角三角形,则弦BC的长为.故答案为:.【点睛】本题考查了三角形的外接圆与外心,等边三角形的判定和性质,等腰直角三角形的性质,正确的作出图形是解题的关键.10.(2021·全国九年级课时练习)如图,AB是⊙O的直径,AD DE=,AB=5,BD=4,则cos∠ECB=__.【答案】3 5【分析】连接AD,BE,根据直径所对的圆周角是直角,构建两个直角三角形,再利用等弧所对的圆周角相等得:∠ABD=∠CBE,根据等角的余角相等得:∠ECB=∠DAB,最后利用等角的三角函数得出结论.【详解】解:连接AD, BE,AD DE=,∴EBC DBAÐ=Ð,∵AB是⊙O的直径,∴∠AEB=∠ADB=90°,∴∠ECB+∠EBC=90°,∠DBA+∠DAB=90°,∴∠ECB =∠DAB .AB =5,BD =4 ,3AD \==, ∴3cos cos 5ECB DAB Ð=Ð=.【点睛】本题考查了圆周角定理,解直角三角形,余角的性质,以及勾股定理等知识.掌握圆周角的两个定理:①在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.②半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.这两个性质在圆的证明题中经常运用,要熟练掌握.11.(2021·全国九年级课时练习)如图,A 、D 是⊙O 上的两点,BC 是直径,若∠D =32°,则∠OAC =_______度.【答案】58【分析】根据∠D 的度数,可以得到∠ABC 的度数,然后根据BC 是直径,从而可以得到∠BAC 的度数,然后可以得到∠OCA 的度数,再根据OA=OC ,从而可以得到∠OAC 的度数.【详解】解:∵∠D=32°,∠D=∠ABC∴∠ABC=32°∵BC 是直径∴∠BAC=90°∴∠BCA=90°-∠ABC=90°-32°=58°∴∠OCA=58°∵OA=OC∴∠OAC=∠OCA∴∠OAC=58°故答案为58.【点睛】本题考查了圆周角定理,圆心角、弧、弦的关系.解题的关键是明确题意,利用数形结合的思想解答.12.(2021·上海九年级专题练习)一根横截面为圆形的下水管的直径为1米,管内污水的水面宽为0.8米,那么管内污水深度为__________米.【答案】0.8或0.2.【分析】构造垂径定理,分两种情形求得弦心距,从而得到水深.【详解】如图所示,作AB 的垂直平分线,垂足为E ,根据题意,得 AO=0.5,AE=0.4,根据勾股定理,得,∴水深ED=OD-OE=0.5-03=0.2(米)或水深ED=OD+OE=0.5+03=0.8(米),∴水深为0.2米或0.8米.故答案为:0.2米或0.8.【点睛】本题考查了垂径定理,勾股定理,解答时,构造垂径定理,活用分类思想是解题的关键.三、解答题13.(2021·全国九年级课时练习)如图,⊙O的弦AB、CD的延长线相交于点P,且PA=PC.求证:AB CD=.【答案】证明见解析【分析】连接AC、OA、OB、OC、OD,根据等腰三角形的性质得到∠PAC=∠PCA,根据圆周角定理得到∠BOC=∠AOD,根据圆心角、弧、弦的关系定理证明结论.【详解】证明:连接AC、OA、OB、OC、OD,∵PA=PC,∴∠PAC=∠PCA,∵∠PAC12=∠BOC,∠PCA12=∠AOD,∴∠BOC=∠AOD,∴AD BC=n n,∴AD BD BC BD-=-,即AB CD=.【点睛】本题考查的是圆心角、弧、弦的关系定理、圆周角定理,在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.14.(2021·全国九年级课时练习)如图,在⊙O中,弦AD与BC交于点E,且AD=BC,连接AB、CD.求证:(1)AB=CD;(2)AE =CE .【答案】(1)证明见解析;(2)证明见解析.【分析】(1)欲证明AB=CD ,只需证得 AB = CD ;(2)连接AC ,由 AB = CD得出∠ACB=∠CAD ,再由等角对等边即可证的AE =CE.【详解】证明:(1)∵AD =BC∴ AD = BC∴ AD -AC = BC - AC 即 AB = CD∴AB =CD(2)连接AC∵ AB = CD∴∠ACB =∠DAC∴AE =CE【点睛】本题考查了圆周角、弧、弦间的关系,注意(2)中辅助线的作法是求解(2)的关键.15.(2020·江苏苏州市·苏州草桥中学九年级期中)如图,在O e 中, AC CB=,CD OA ^于点D ,CE OB ^于点E .(1)求证:CD CE =;(2)若120AOB Ð=°,2OA =,求四边形DOEC 的面积.【答案】(1)证明见解析;(2【分析】(1)如图,连接OC ,先证明,AOC BOC Ð=Ð再证明:,CDO CEO V V ≌从而可得结论;(2)由120AOB Ð=°,2OA =,求解60AOC Ð=°,再利用三角函数求解,OD CD , 利用,CDO CEO V V ≌从而可得四边形的面积.【详解】(1)证明:如图,连接OC ,AC BC= , ,AOC BOC \Ð=Ð,,CD OA CE OB ^^90CDO CEO \Ð=Ð=°,,OC OC =(),CDO CEO AAS \V V ≌.CD CE \=(2)120,AOB Ð=60AOC BOC \Ð=Ð=°,2OA OC == ,1cos 6021,sin 6022OD OC CD OC \=°=´==°==g g ,CDO CEO V V ≌12212CDO CDOE S S \==´´=V 四边形【点睛】本题考查的是三角形全等的判定与性质,圆的基本性质,两条弧,两个圆心角,两条弦之间的关系定理,解直角三角形的应用,四边形的面积,掌握以上知识是解题的关键.。

2021-2022学年北师大版九年级数学下册《3-2圆的对称性》同步达标测试题(附答案)

2021-2022学年北师大版九年级数学下册《3-2圆的对称性》同步达标测试题(附答案)

2021-2022学年北师大版九年级数学下册《3-2圆的对称性》同步达标测试题(附答案)一.选择题(共10小题,满分50分)1.下列说法正确的是()A.等弧所对的弦相等B.平分弦的直径垂直弦并平分弦所对的弧C.相等的弦所对的圆心角相等D.相等的圆心角所对的弧相等2.下列命题是真命题的是()A.相等的弦所对的弧相等B.圆心角相等,其所对的弦相等C.在同圆或等圆中,圆心角不等,所对的弦不相等D.弦相等,它所对的圆心角相等3.如图,AB,CD是⊙O的直径,=,若∠AOE=32°,则∠COE的度数是()A.32°B.60°C.68°D.64°4.如图,AB是⊙O的直径,四边形ABCD内接于⊙O,若BC=CD=DA=4cm,则⊙O的周长为()A.5πcm B.6πcm C.9πcm D.8πcm5.如图,四边形ABCD内接于⊙O,AC平分∠BAD,则下列结论正确的是()A.AB=AD B.BC=CD C.D.∠BCA=∠DCA6.如图,AB是圆O的直径,BC、CD、DA是圆O的弦,且BC=CD=DA,则∠BCD等于()A.100°B.110°C.120°D.135°7.如图,AB是⊙O的弦(AB不是直径),以点A为圆心,以AB长为半径画弧交⊙O于点C,连接AC、BC、OB、OC.若∠ABC=65°,则∠BOC的度数是()A.50°B.65°C.100°D.130°8.如图,AB是⊙O的直径,==,∠COD=34°,则∠AEO的度数是()A.51°B.56°C.68°D.78°9.如图,四边形ABCD内接于半圆O,AB为直径,AB=4,AD=DC=1,则弦BC的长为()A.3.5B.2C.D.10.如图D、A、C、B为⊙O上的点,DC=AB,则AD与BC的大小关系是()A.AD>BC B.AD=BC C.AD<BC D.不能确定二.填空题(共5小题,满分30分)11.如图所示,四边形AB∥CD,AD=DC=DB=p,BC=q,则AC=(用p、q表示).12.弦AB分圆为1:3两部分,则劣弧所对圆心角为.13.一条弦把圆分成1:3两部分,则弦所对的圆心角为度.14.如图,在⊙O中,,∠A=40°,则∠B=度.15.在半径为9cm的圆中,60°的圆心角所对的弦长为cm.三.解答题(共5小题,满分40分)16.已知锐角∠POQ,如图,在射线OP上取一点A,以点O为圆心,OA长为半径作,交射线OQ于点B,连接AB,分别以点A,B为圆心,AB长为半径作弧,交于点E,F,连接OE,EF.(1)证明:∠EAO=∠BAO;(2)若OE=EF.求∠POQ的度数.17.如图,MB,MD是⊙O的两条弦,点A,C分别在,上,且AB=CD,M是的中点.(1)求证:MB=MD;(2)过O作OE⊥MB于点E,当OE=1,MD=4时,求⊙O的半径.18.已知:如图,C,D是以AB为直径的⊙O上的两点,且OD∥BC.求证:AD=DC.19.如图所示,⊙O的直径AB和弦CD相交于点E,且点B是劣弧DF的中点.(1)求证:△EBD≌△EBF;(2)已知AE=1,EB=5,∠DEB=30°,求CD的长.20.如图,已知AB、CD为⊙O的两条弦,,求证:AB=CD.参考答案一.选择题(共10小题,满分50分)1.解:A、正确.本选项符合题意.B、错误.应该是平分弦(此弦非直径)的直径垂直弦并平分弦所对的弧,本选项不符合题意.C、错误,必须在同圆或等圆中,本选项不符合题意.D、错误.必须在同圆或等圆中,本选项不符合题意.故选:A.2.解:A、B、D结论若成立,都必须以“在同圆或等圆中”为前提条件,所以A、B、D 错误;故选:C.3.解:∵=,∴∠BOD=∠AOE=32°,∵∠BOD=∠AOC,∴∠AOC=32°∴∠COE=32°+32°=64°.故选:D.4.解:如图,连接OD、OC.∵AB是⊙O的直径,四边形ABCD内接于⊙O,若BC=CD=DA=4cm,∴==,∴∠AOD=∠DOC=∠BOC=60°.又OA=OD,∴△AOD是等边三角形,∴OA=AD=4cm,∴⊙O的周长=2×4π=8π(cm).故选:D.5.解:A、∵∠ACB与∠ACD的大小关系不确定,∴AB与AD不一定相等,故本选项错误;B、∵AC平分∠BAD,∴∠BAC=∠DAC,∴=,∴BC=CD,故本选项正确;C、∵∠ACB与∠ACD的大小关系不确定,∴与不一定相等,故本选项错误;D、∠BCA与∠DCA的大小关系不确定,故本选项错误.故选:B.6.解:连接OC、OD,∵BC=CD=DA,∴∠COB=∠COD=∠DOA,∵∠COB+∠COD+∠DOA=180°,∴∠COB=∠COD=∠DOA=60°,∴∠BCD=×2(180°﹣60°)=120°.故选:C.7.解:由题意可得:AB=AC,∵∠ABC=65°,∴∠ACB=65°,∴∠A=50°,∴∠BOC=100°,故选:C.8.解:如图,∵==,∠COD=34°,∴∠BOC=∠EOD=∠COD=34°,∴∠AOE=180°﹣∠EOD﹣∠COD﹣∠BOC=78°.又∵OA=OE,∴∠AEO=∠OAE,∴∠AEO=×(180°﹣78°)=51°.故选:A.9.解:如图,连AC、BD,过D作DE⊥AC于E.∴∠ADB=∠ACB=90°,∠ABD=∠CAD.∵BD==.∵AD=DC=1,∴∠DAC=∠DCA,∵∠DCA=∠ABD,cos∠CAD=cos∠ABD==.∴AE=AD•cos∠CAD=,∴AC=2AE=,∴BC==.故选:A.10.解:∵DC=AB,∴=,∴=,∴AD=BD.故选:B.二.填空题(共5小题,满分30分)11.解:延长CD交半径为p的⊙D于E点,连接AE.显然A、B、C在⊙D上.∵AB∥CD∴=,∴BC=AE=q.在△ACE中,∠CAE=90°,CE=2p,AE=q,故AC==.故答案为:.12.解:设弦AB分圆的两部分别为x,3x,∴x+3x=360°,解得:x=90,则劣弧所对圆心角为90°.故答案为:90°13.解:∵一条弦把圆分成1:3两部分,∴整个圆分为四等分,则劣弧的度数为360°÷4=90°,∴弦所对的圆心角为90°.14.解:∵,∴AB=AC,∵∠A=40°,∴∠B=∠C=(180°﹣∠A)÷2=70°.15.解:由题意知,设圆心为O,60°的圆心角的两边与圆的交点分别为A,B,则△AOB 是等边三角形,∴AO=AB=OB=9cm.三.解答题(共5小题,满分40分)16.(1)证明:连接AE、OE、OF,如图所示,由题意得:OB=OE=OA,AE=AB,∴∠EAO=∠AEO,∠BAO=∠ABO,,∴∠AOE=∠AOB,∴∠EAO=∠BAO;(2)解:∵OE=OF,OE=EF,∴OE=OF=EF,∴∠EOF=60°,∵AE=BF=AB,∴,∴∠AOE=∠BOF=∠AOB,∴∠POQ=∠EOF=20°.17.(1)证明:∵AB=CD,∴=,∵M是的中点,∴=,∴=,∴BM=DM.(2)解:如图,连接OM.∵DM=BM=4,OE⊥BM,∴EM=BE=2,∵OE=1,∠OEM=90°,∴OM===,∴⊙O的半径为.18.证明:连接OC,如图,∵OD∥BC,∴∠1=∠B,∠2=∠3,又∵OB=OC,∴∠B=∠3,∴∠1=∠2,∴AD=DC.19.解:(1)连接OD、OF,∵B是劣弧DF的中点.∴,∴,∴BD=BF,∠DBE=∠EBF,在△EBD和△EBF中,∵,∴△EBD≌△EBF(SAS);(2)∵AE=1,EB=5,∴AB=6,∵AB是⊙O的直径,∴OD=OA=3,OE=3﹣1=2,过O作OG⊥CD于G,则CD=2DG,∵∠DEB=30°,∠EGO=90°,∴OG=OE=1,由勾股定理得:DG===2,∴CD=2DG=4.20.解:∵,∴,即:,∴AB=CD.。

六年级上册圆单元测试卷【含答案】

六年级上册圆单元测试卷【含答案】

六年级上册圆单元测试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个图形是圆?A. 正方形B. 长方形C. 三角形D. 所有点到圆心距离相等的图形2. 圆的周长公式是?A. C = πdB. C = 2πrC. C = πr^2D. C = 2r3. 圆的面积公式是?A. A = πdB. A = 2πrC. A = πr^2D. A = 2r4. 半径为5厘米的圆,其直径是多少厘米?A. 10厘米B. 15厘米C. 20厘米D. 25厘米5. 下列哪个图形不是圆的对称轴?A. 水平线B. 垂直线C. 斜线D. 圆的直径二、判断题(每题1分,共5分)1. 圆的周长与直径成正比。

()2. 圆的面积与半径成正比。

()3. 圆的直径是圆周上任意两点间的距离。

()4. 圆的半径是圆心到圆周上任意一点的距离。

()5. 所有点到圆心距离相等的图形一定是圆。

()三、填空题(每题1分,共5分)1. 圆的周长公式是 C = _______。

2. 圆的面积公式是 A = _______。

3. 半径为 r 的圆,其直径是 _______。

4. 直径为 d 的圆,其周长是 _______。

5. 面积为 A 的圆,其半径是 _______。

四、简答题(每题2分,共10分)1. 请简要说明圆的周长公式。

2. 请简要说明圆的面积公式。

3. 请简要说明圆的直径与半径的关系。

4. 请简要说明圆的对称性质。

5. 请简要说明圆的周长与面积的关系。

五、应用题(每题2分,共10分)1. 已知一个圆的直径为10厘米,求其周长。

2. 已知一个圆的半径为5厘米,求其面积。

3. 已知一个圆的周长为31.4厘米,求其半径。

4. 已知一个圆的面积为78.5平方厘米,求其半径。

5. 已知一个圆的直径增加了2厘米,求其周长增加的长度。

六、分析题(每题5分,共10分)1. 分析圆的周长与半径的关系,并给出证明。

2. 分析圆的面积与半径的关系,并给出证明。

北师大版(2012)九年级下册数学随堂小练:3.2圆的对称性(有答案)

北师大版(2012)九年级下册数学随堂小练:3.2圆的对称性(有答案)

数学随堂小练北师大版(2012)九年级下册:3.2圆的对称性一、单选题1.如图是一个旋转对称图形,以O为旋转中心,以下列哪一个角为旋转角旋转,能使旋转后的图形与原图形重合( )A.60°B.90°C.120°D.180°2.下列说法正确的是()A.每一条直径都是圆的对称轴B.圆的对称轴是唯一的C.圆的对称轴一定经过圆心D.圆的对称轴与对称中心重合3.下列说法正确的是( )A.直径是圆的对称轴B.经过圆心的直线是圆的对称轴C.与圆相交的直线是圆的对称轴D.与半径垂直的直线是圆的对称轴4.下列说法中,错误的是()A.半圆是弧B.半径相等的圆是等圆C.过圆心的线段是直径D.直径是弦5.下列说法:①圆心相同的圆是同圆;②圆心不同,半径相等的圆是等圆;③长度相等的弧是等弧;④在同圆或等圆中,长度相等的弧是等弧;⑤大于半圆的弧叫做优弧;⑥小于半圆的弧叫做劣弧.其中正确的有( )A.1个B.2个C.3个D.4个6.已知,如图,AOB COD ∠=∠,下列结论不一定成立的是( )A.AB CD =B. AB CD =C.AOB COD ≅△△D.,AOB COD △△都是等边三角形7.如图,A B C D ,,,是O 上的点,则图中与A ∠相等的角是( )A.B ∠B.C ∠C.DEB ∠D.D ∠8.如图,,AB CD 是O 的直径,AE BD =,若32AOE ∠=︒,则COE ∠的度数是()A.32︒B.60︒C.68︒D.64︒9.如图所示,在O 中,AB CD =,则在①AB CD =;②AB CD =;③AOC BOD ∠=∠;④AB CD =中,正确的个数是( )A.1B.2C.3D.4 二、填空题 10.如图,AB CD EF ,,都是O 的直径,且123∠=∠=∠,则O 的弦AC BE DF ,,的大小关系是 .11.如图,在O 中,30AB AC A =∠=︒,,则B ∠= .12.如图,AB 是半圆O 的直径,E 是半圆上一点,且OE AB ⊥,点C 为BE 的中点,则A ∠= °.13.如图,AB 是O 的直径,BC CD DE ==,32COD ∠=︒,则AEO ∠的度数为 .三、解答题14.如图,,,A B C 为O 上的三等分点.(1)求BOC ∠的度数;(2)若3AB =,求O 的半径长及ABC S △.参考答案1.答案:C由题意可知ABC △为正三角形,O 为圆心,连接圆心和三角形的三个顶点,即可得到120AOB BOC AOC ∠=∠=∠=°,所以旋转120°后,能使旋转后的图形与原图形重合.故选C.2.答案:C对称轴是直线,不是线段,故A 不正确;圆的对称轴有无数条,故B 不正确;不能说点和线重合,故D 不正确.只有C 正确,故选C.3.答案:B利用直径所在的直线是圆的对称轴对各选项进行判断,故选B.4.答案:C过圆心的弦为直径.所以C 选项的说法错误;选项A 、B 、D 说法都正确.故选C.5.答案:D能够重合的两个圆叫做等圆.与此意思相同的是“圆心不同,半径相等的圆是等圆”,故①错误,②正确;等弧不仅考虑长度要相等,还要考虑是否能够互相重合,即必须是“在同圆或等圆中,能够互相重合的弧叫做等弧”,与此意思相同的是“在同圆或等圆中,长度相等的弧是等弧”故③错误,④正确;⑤⑥是优弧、劣弧的定义,正确.所以正确的共有4个.6.答案:DAOB COD ∠=∠,AB CD ∴=,AB CD =.OA OB OC OD ===,OB COD ∴≅△△,∴选项A 、B 、C 成立;只有当60AOB COD ∠=∠=︒时,,AOB COD △△才是等边三角形,所以选项D 不一定成立故选D7.答案:DD ∠与A ∠都是BC 所对的圆周角,D A ∴∠=∠.8.答案:DAE BD =,32BOD AOE ∴∠=∠=︒,BOD AOC ∠=∠,32AOC ∴∠=︒,COE AOE AOC ∴∠=∠+∠323264=︒+︒=︒ .9.答案:D 在O 中,AB CD AB CD AB BC CD BC =∴=-=-,,,AC BD AC BD AOC BOD ∴=∴=∠=∠,,,∴①②③④都正确10.答案:AC BE DF == 123123AOC BOE DOF ∠=∠∠=∠∠=∠∠=∠=∠,,,且, AOC BOE DOF AC BE DF ∴∠=∠=∠∴==.11.答案:75在O 中,AB AC =,AB AC ∴=,ABC ∴△是等腰三角形,B C ∴∠=∠12.答案:22.5如图,连接OC . ,90.OE AB EOB ⊥∴∠=°∵点C 为BE 的中点,45BOC ∴∠=°.114522.522A BOC ∴∠=∠=⨯=°° .13.答案:48°BC CD DE ==,32COD ∠=︒,32BOC EOD COD ∴∠=∠=∠=︒,18084AOE EOD COD BOC ∠=︒-∠-∠-∠=︒. 又OA OE =,AEO OAE ∴∠=∠,118(08)4482AEO ∴∠=⨯︒-︒=︒14.答案:(1),,A B C 为O 上的三等分点AB BC AC ∴== BOC ∴∠的度数为:13601203⨯︒=︒. (2)过点O 作OD AB ⊥于点D,,A B C 为O 上的三等分点3AB AC BC ∴===即ABC △是等边三角形,且30BAO OBA ∠=∠=︒则32AD =,3cos302AO =÷︒=故DO =132ABC S DO AB =⨯⨯⨯=△。

九年级数学苏科版上册随堂测试第2单元《 2.2 圆的对称性》 练习试题试卷 含答案

九年级数学苏科版上册随堂测试第2单元《 2.2 圆的对称性》 练习试题试卷 含答案

随堂测试2.2圆的对称性1.筒车是我国古代发明的一种水利灌溉工具,明朝科学家徐光启在《农政全书》中用图画描绘了筒车的工作原理,如图1.筒车盛水桶的运行轨道是以轴心O为圆心的圆,如图2.已知圆心O在水面上方,且⊙O被水面截得的弦AB长为6米,⊙O半径长为4米.若点C 为运行轨道的最低点,则点C到弦AB所在直线的距离是()A.1米B.(4﹣)米C.2米D.(4+)米2.有下列说法:①直径是圆中最长的弦;②等弧所对的弦相等;③圆中90°的角所对的弦是直径;④相等的圆心角对的弧相等.其中正确的有()A.1个B.2个C.3个D.4个3.如图,已知⊙O的半径为5cm,弦AB的长为8cm,P是AB的延长线上一点,BP=2cm,则OP等于()A.cm B.3cm C.cm D.cm4.如图,AB是半圆O的直径,AC为弦,OD⊥AC于D,过点O作OE∥AC交半圆O于点E,过点E作EF⊥AB于F.若AC=2,则OF的长为()A.B.C.1D.25.如图,拱桥可以近似地看作直径为250m的圆弧,桥拱和路面之间用数根钢索垂直相连,其正下方的路面AB长度为150m,那么这些钢索中最长的一根的长度为()A.50m B.40m C.30m D.25m6.已知⊙O的直径CD=100cm,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=96cm,则AC的长为()A.36cm或64cm B.60cm或80cm C.80cm D.60cm7.如图是某个球放进盒子内的截面图,球的一部分露出盒子外,已知⊙O交矩形ABCD的边AD于点E,F,已知AB=EF=2,则球的半径长为()A.B.C.D.8.往直径为26cm的圆柱形容器内装入一些水以后,截面如图所示.若水面宽AB=24cm,则水的最大深度为()A.4cm B.5cm C.8cm D.10cm9.一条排水管的截面如图所示,已知排水管的半径OA=2m,水面宽AB=2.4m,某天下雨后,水管水面上升了0.4m,则此时排水管水面宽CD等于m.10.如图,已知AB、CD是⊙O中的两条直径,且∠AOC=50°,过点A作AE∥CD交⊙O 于点E,则的度数为.11.如图,点A,B,C在⊙O上,∠A=40度,∠C=20度,则∠B=度.12.如图,直径为1000mm的圆柱形水管有积水(阴影部分),水面的宽度AB为800mm,则水的最大深度CD是mm.13.如图,⊙O的半径OA垂直于弦BC,垂足是D,OA=5,AD:OD=1:4,则BC的长为.14.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则BD的长为.15.如图,已知圆O的直径AB垂直于弦CD于点E,连接CO并延长交AD于点F,且CF ⊥AD.(1)证明:点E是OB的中点;(2)若AE=8,求CD的长.16.如图,MN是⊙O的直径,MN=2,点A是半圆上一个三等分点,点B为的中点,点P是直径MN上的一个动点,求P A+PB的最小值.17.如图,在圆O中,弦AB=8,点C在圆O上(C与A,B不重合),连接CA、CB,过点O分别作OD⊥AC,OE⊥BC,垂足分别是点D、E.(1)求线段DE的长;(2)点O到AB的距离为3,求圆O的半径.18.如图,点A、B、C在⊙O上,=.(1)若D、E分别是半径OA、OB的中点,如图1,求证:CD=CE.(2)如图2,⊙O的半径为4,∠AOB=90°,点P是线段OA上的一个动点(与点A、O 不重合),将射线CP绕点C逆时针旋转90°,与OB相交于点Q,连接PQ,求出PQ的最小值.19.如图1,点P表示我国古代水车的一个盛水筒.如图2,当水车工作时,盛水筒的运行路径是以轴心O为圆心,5m为半径的圆.若⊙O被水面截得的弦AB长为8m,求水车工作时,盛水筒在水面以下的最大深度.20.某地有一座圆弧形拱桥,所在圆的圆心为点O,桥下水面宽度AB为7.2m,过点O作OC⊥AB于点D,交圆弧于点C,CD=2.4m(如图).现有一艘宽3m、船舱顶部高出水面AB2m的货船要经过这座拱桥,此货船能否顺利通过这座拱桥?参考答案1.B.2.B.3.D.4.C.5.D.6.B.7.C.8.C.9.3.2.10.80°.11.60.12.200.13.6.14..15.(1)证明:连接AC,如图,∵直径AB垂直于弦CD于点E,∴=,∴AC=AD,∵过圆心O的线段CF⊥AD,∴AF=DF,即CF是AD的中垂线,∴AC=CD,∴AC=AD=CD.即△ACD是等边三角形,∴∠FCD=30°,在Rt△COE中,OE=OC,∴OE=OB,∴点E为OB的中点;(2)解:∵△ACD是等边三角形,AB⊥CD,∴∠CAE=30°,∴CE=,∵直径AB垂直于弦CD于点E,∴CD=2CE=.16.解:作B点关于MN的对称点B′,连接OB、OB′、AB′,AB′交MN于P′,如图,∵点A是半圆上一个三等分点,点B为的中点,∴∠AON=60°,∠BON=30°,∵B点和B′关于MN的对称,∴∠B′ON=30°,∴∠AOB′=90°,∴△OAB′为等腰直角三角形,∴AB′=OA=,∵P A+PB=P A+PB′≥AB′(点A、P、B′共线时取等号),∴P A+PB的最小值=AB′,即P A+PB的最小值为.17.解:(1)∵OD经过圆心O,OD⊥AC,∴AD=DC,同理:CE=EB,∴DE是△ABC的中位线,∴DE=AB,∵AB=8,∴DE=4.(2)过点O作OH⊥AB,垂足为点H,OH=3,连接OA,∵OH经过圆心O,∴AH=BH=AB,∵AB=8,∴AH=4,在Rt△AHO中,AH2+OH2=AO2,∴AO=5,即圆O的半径为5.18.解:(1)连接CO.∵═,∴∠AOC=∠BOC,∵D、E分别是半径OA、OB的中点,∴,,∴OD=OE,在△ODC和△OEC中,∵OD=OE,∠AOC=∠BOC,OC=OC,∴△ODC≌△OEC(SAS)∴CD=CE;(2)当CP⊥OA时,∵∠AOB=90°,∠PCQ=90°,∴∠CQO=90°,即CQ⊥OB.∵∠AOC=∠BOC,∴CP=CQ,当CP与OA不垂直时,如图,过点C作CM⊥OA,CN⊥OB,M、N为垂足.∵∠AOC=∠BOC,∴CM=CN,又∵∠AOB=90°,∴∠MCN=90°,∴四边形CMON是正方形,∵∠PCQ=90°,∴∠PCM=∠QCN,∴△PCM≌△QCN(AAS)∴CP=CQ,∴,∴当CP取得最小值即CM的长时,PQ有最小值,∴,PQ的最小值为4.19.解:过O点作半径OD⊥AB于E,∴,在Rt△AEO中,,∴ED=OD﹣OE=5﹣3=2.答:水车工作时,盛水桶在水面以下的最大深度为2m.20.解:如图,连接ON,OB.∵OC⊥AB,∴D为AB中点,∵AB=7.2m,∴BD=AB=3.6m.又∵CD=2.4m,设OB=OC=ON=rm,则OD=(r﹣2.4)m.在Rt△BOD中,根据勾股定理得:r2=(r﹣2.4)2+3.62,解得r=3.9.∵CD=2.4m,船舱顶部为正方形并高出水面AB2m,∴CE=2.4﹣2=0.4m,∴OE=r﹣CE=3.9﹣0.4=3.5m,在Rt△OEN中,EN2=ON2﹣OE2=3.92﹣3.52=2.96(m2),∴EN=2.96(m).∴MN=2EN=2×≈3.44m>3m.∴此货船能顺利通过这座拱桥。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆的对称性测试题1(含答案)27.1.2圆的对称性1农安县合隆中学徐亚惠一.选择题(共8小题) 1.在同圆或等圆中,下列说法错误的是() A.相等弦所对的弧相等 B.相等弦所对的圆心角相等 C.相等圆心角所对的弧相等 D.相等圆心角所对的弦相等 2.如图,已知⊙O的半径为13,弦AB长为24,则点O到AB的距离是() A.6 B.5 C.4 D.3 3.已知⊙O的直径CD=10cm,AB是⊙O的弦,AB=8cm,且A B⊥CD,垂足为M,则AC的长为()A. cm B. cm C. cm或 cm D. cm或 cm 4.如图,⊙O的直径CD 垂直弦AB于点E,且CE=2,DE=8,则AB的长为() A.2 B.4 C.6 D.8 5.如图,CD是⊙O的直径,弦AB⊥CD于E,连接BC、BD,下列结论中不一定正确的是() A.AE=BE B. = C.OE=DE D.∠DBC=90° 6.如图,在平面直角坐标系中,⊙P的圆心坐标是(3,a)(a>3),半径为3,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是() A.4 B. C. D.7.已知⊙O的面积为2π,则其内接正三角形的面积为() A.3 B.3 C. D. 8.如图,半径为3的⊙O内有一点A,OA= ,点P在⊙O上,当∠OPA最大时,PA的长等于() A. B. C.3 D.2 二.填空题(共6小题) 9.如图,已知直线AB与⊙O相交于A、B 两点,∠OAB=30°,半径OA=2,那么弦AB= _________ . 10.如图,⊙O的半径是5,AB是⊙O的直径,弦CD⊥AB,垂足为P,若CD=8,则△ACD的面积是_________ .11.如图,AB、CD是半径为5的⊙O的两条弦,AB=8,CD=6,MN是直径,AB⊥MN于点E,CD⊥MN于点F,P为EF上的任意一点,则PA+PC 的最小值为_________ . 12.如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,连接BC,若AB=2 cm,∠BCD=22°30′,则⊙O 的半径为_________ cm.13.如图,⊙O的半径是2,直线l与⊙O相交于A、B两点,M、N 是⊙O上的两个动点,且在直线l的异侧,若∠AMB=45°,则四边形MANB面积的最大值是_________ . 14.如图,AB是⊙O的直径,BC是弦,点E是的中点,OE交BC于点D.连接AC,若BC=6,DE=1,则AC的长为_________ .三.解答题(共7小题) 15.如图,AB是⊙O的弦,点C、D在弦AB上,且AD=BC,联结OC、OD.求证:△OCD是等腰三角形.16.已知在以点O为圆心的两个同心圆中,大圆的弦AB交小圆于点C,D(如图).(1)求证:AC=BD;(2)若大圆的半径R=10,小圆的半径r=8,且圆O到直线AB的距离为6,求AC的长.17.如图,AB是⊙O的直径,弦CD⊥AB于点E,点M在⊙O上,MD恰好经过圆心O,连接MB.(1)若CD=16,BE=4,求⊙O的直径;(2)若∠M=∠D,求∠D的度数.18.如图,⊙O的直径为10cm,弦AB=8cm,P是弦AB上的一个动点,求OP的长度范围.19.如图,AB是⊙O的直径,弦CD⊥AB于点E,点P在⊙O上,PB与CD交于点F,∠PBC=∠C.(1)求证:CB∥PD;(2)若∠PBC=22.5°,⊙O的半径R=2,求劣弧AC的长度.20.如图,CD为⊙O的直径,CD⊥AB,垂足为点F,AO⊥BC,垂足为E,,(1)求AB的长;(2)求⊙O的半径.21.已知:如图,∠PAQ=30°,在边AP上顺次截取AB=3cm,BC=10cm,以BC为直径作⊙O交射线AQ于E、F两点,求:(1)圆心O到AQ 的距离;(2)线段EF的长.27.1.2圆的对称性1 参考答案与试题解析一.选择题(共8小题) 1.在同圆或等圆中,下列说法错误的是()A.相等弦所对的弧相等 B.相等弦所对的圆心角相等 C.相等圆心角所对的弧相等 D.相等圆心角所对的弦相等考点:圆心角、弧、弦的关系.分析:利用在同圆和等圆中,相等的弦所对的圆心角相等,相等的圆心角所对的弧相等,所对的弦也相等,判断出B、C、D三选项都正确;而同圆或等圆中,同一条弦对应两条弧,其中一条是优弧,一条是劣弧,所以可判断出A选项错误.解答:解:A、相等弦所对的弧不一定相等,故本选项错误; B、相等弦所对的圆心角相等,故本选项正确; C、相等圆心角所对的弧相等,故本选项正确; D、相等圆心角所对的弦相等,故本选项正确.故选A.点评:此题考查了圆心角、弧、弦的关系定理的推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.注意:同一条弦对应两条弧,其中一条是优弧,一条是劣弧,而在本推论中的“弧”是指同为优弧或劣弧.2.如图,已知⊙O的半径为13,弦AB长为24,则点O到AB的距离是() A. 6 B.5 C.4 D. 3考点:垂径定理;勾股定理.分析:过O作OC⊥AB于C,根据垂径定理求出AC,根据勾股定理求出OC即可.解答:解:过O作OC⊥AB 于C,∵OC过O,∴AC=BC= AB=12,在Rt△AOC中,由勾股定理得:OC= =5.故选:B.点评:本题考查了垂径定理和勾股定理的应用,关键是求出OC的长.3.已知⊙O的直径CD=10cm,AB是⊙O的弦,AB=8cm,且AB⊥CD,垂足为M,则AC的长为() A. cm B. cm C. cm或 cm D. cm 或 cm考点:垂径定理;勾股定理.专题:分类讨论.分析:先根据题意画出图形,由于点C的位置不能确定,故应分两种情况进行讨论.解答:解:连接AC,AO,∵⊙O的直径CD=10cm,AB⊥CD,AB=8cm,∴AM= AB= ×8=4cm,OD=OC=5cm,当C点位置如图1所示时,∵OA=5cm,AM=4cm,CD⊥AB,∴OM= ==3cm,∴CM=OC+OM=5+3=8cm,∴AC= = =4 cm;当C点位置如图2所示时,同理可得OM=3cm,∵OC=5cm,∴MC=5�3=2cm,在Rt△AMC中,AC= = =2 cm.故选:C.点评:本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.4.如图,⊙O的直径CD垂直弦AB于点E,且CE=2,DE=8,则AB的长为() A. 2 B.4 C.6 D. 8考点:垂径定理;勾股定理.专题:计算题.分析:根据CE=2,DE=8,得出半径为5,在直角三角形OBE中,由勾股定理得BE,根据垂径定理得出AB的长.解答:解:∵CE=2,DE=8,∴OB=5,∴OE=3,∵AB⊥CD,∴在△OBE中,得BE=4,∴AB=2BE=8.故选:D.点评:本题考查了勾股定理以及垂径定理,是基础知识要熟练掌握.5.如图,CD是⊙O的直径,弦AB⊥CD于E,连接BC、BD,下列结论中不一定正确的是() A. AE=BE B. = C.OE=DE D.∠DB C=90°考点:垂径定理;圆周角定理.专题:几何图形问题.分析:由于CD⊥AB,根据垂径定理有AE=BE,弧AD=弧BD,不能得出OE=DE,直径所对的圆周角等于90°.解答:解:∵CD⊥AB,∴AE=BE, = ,∵CD是⊙O的直径,∴∠DBC=90°,不能得出OE=DE.故选:C.点评:本题考查了垂径定理.解题的关键是熟练掌握垂径定理的内容.6.如图,在平面直角坐标系中,⊙P的圆心坐标是(3,a)(a>3),半径为3,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是() A. 4 B. C. D.考点:垂径定理;一次函数图象上点的坐标特征;勾股定理.专题:计算题;压轴题.分析:PC⊥x轴于C,交AB于D,作PE⊥AB于E,连结PB,由于OC=3,PC=a,易得D点坐标为(3,3),则△OCD为等腰直角三角形,△PED也为等腰直角三角形.由PE⊥AB,根据垂径定理得AE=BE= AB=2 ,在Rt△PBE中,利用勾股定理可计算出PE=1,则PD= PE= ,所以a=3+ .解答:解:作PC⊥x轴于C,交AB于D,作PE⊥AB于E,连结PB,如图,∵⊙P的圆心坐标是(3,a),∴OC=3,PC=a,把x=3代入y=x得y=3,∴D点坐标为(3,3),∴CD=3,∴△OCD为等腰直角三角形,∴△PED也为等腰直角三角形,∵PE⊥AB,∴AE=BE= AB= ×4 =2 ,在Rt△PBE中,PB=3,∴PE= ,∴PD= PE= ,∴a=3+ .故选:B.点评:本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理和等腰直角三角形的性质.7.已知⊙O的面积为2π,则其内接正三角形的面积为() A. 3 B.3 C. D.考点:垂径定理;等边三角形的性质.专题:几何图形问题.分析:先求出正三角形的外接圆的半径,再求出正三角形的边长,最后求其面积即可.解答:解:如图所示,连接OB、OC,过O作OD⊥BC 于D,∵⊙O的面积为2π ∴⊙O的半径为∵△ABC为正三角形,∴∠BOC= =120°,∠BOD= ∠BOC=60°,OB= ,∴BD=OB•sin∠BOD= = ,∴BC=2BD= ,∴OD=OB•cos∠BOD= •cos60°= ,∴△BOC的面积= •BC•OD= × × = ,∴△ABC的面积=3S△BOC=3× =.故选:C.点评:本题考查的是三角形的外接圆与外心,根据题意画出图形,利用数形结合求解是解答此题的关键.8.如图,半径为3的⊙O内有一点A,OA= ,点P在⊙O上,当∠OPA 最大时,PA的长等于() A. B. C.3 D. 2考点:垂径定理;圆周角定理.分析:当PA⊥OA时,PA取最小值,∠OPA取得最大值,然后在直角三角形OPA中利用勾股定理求PA 的值即可.解答:解:∵OA、OP是定值,∴在△OPA中,当∠OPA 取最大值时,PA取最小值,∴PA⊥OA时,PA取最小值;在直角三角形OPA中,OA= ,OP=3,∴PA= = .故选B.点评:本题考查了解直角三角形.解答此题的关键是找出“当PA⊥OA时,PA取最小值”即“PA⊥OA时,∠OPA取最大值”这一隐含条件.二.填空题(共6小题) 9.如图,已知直线AB与⊙O相交于A、B 两点,∠OAB=30°,半径OA=2,那么弦AB= 2 .考点:垂径定理;含30度角的直角三角形;勾股定理.分析:过O作OC⊥AB于C,根据垂直和垂径定理求出AB=2AC,∠OCA=90°,根据含30度角的直角三角形性质求出OC=1,根据勾股定理求出AC,即可得出答案.解答:解:过O作OC⊥AB于C,则AB=2AC,∠OCA=90°,∵OA=2,∠OAB=30°,∴OC=1,由勾股定理得:AC= = ,∴AB=2AC=2 ,故答案为:2 .点评:本题考查了垂径定理,含30度角的直角三角形性质,勾股定理的应用,解此题的关键是正确作出辅助线后求出AC的长和得出AB=2AC,注意:垂直于弦的直径平分这条弦.10.如图,⊙O的半径是5,AB是⊙O的直径,弦CD⊥AB,垂足为P,若CD=8,则△ACD的面积是32 .考点:垂径定理;勾股定理.分析:连接OD,先根据垂径定理得出PD= CD=4,再根据勾股定理求出OP的长,根据三角形的面积公式即可得出结论.解答:解:连接OD,∵⊙O的半径是5,AB是⊙O 的直径,弦CD⊥AB,CD=8,∴PD= CD=4,∴OP= = =3,∴AP=OA+OP=5+3=8,∴S△ACD= CD•AP= ×8×8=32.故答案为:32.点评:本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.11.如图,AB、CD是半径为5的⊙O的两条弦,AB=8,CD=6,MN是直径,AB⊥MN于点E,CD⊥MN于点F,P为EF上的任意一点,则PA+PC 的最小值为.考点:垂径定理;轴对称的性质.分析: A、B两点关于MN对称,因而PA+PC=PB+PC,即当B、C、P在一条直线上时,PA+PC的最小,即BC的值就是PA+PC的最小值解答:解:连接OA,OB,OC,作CH 垂直于AB于H.根据垂径定理,得到BE= AB=4,CF= CD=3,∴OE= = =3, OF= = =4,∴CH=OE +OF=3+4=7, BH=BE+EH=BE+CF=4+3=7,在直角△BCH中根据勾股定理得到BC=7 ,则PA+PC的最小值为.故答案为:点评:正确理解BC的长是PA+PC的最小值,是解决本题的关键.12.如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,连接BC,若AB=2 cm,∠BCD=22°30′,则⊙O的半径为 2 cm.考点:垂径定理;等腰直角三角形;圆周角定理.专题:计算题.分析:先根据圆周角定理得到∠BOD=2∠BCD=45°,再根据垂径定理得到BE= AB= ,且△BOE为等腰直角三角形,然后根据等腰直角三角形的性质求解.解答:解:连结OB,如图,∵∠BCD=22°30′,∴∠BOD=2∠BCD=45°,∵AB⊥CD,∴BE=AE= AB= ×2 = ,△BOE 为等腰直角三角形,∴OB= BE=2(cm).故答案为:2.点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了等腰直角三角形的性质和圆周角定理.13.如图,⊙O的半径是2,直线l与⊙O相交于A、B两点,M、N是⊙O上的两个动点,且在直线l的异侧,若∠AMB=45°,则四边形MANB 面积的最大值是 4 .考点:垂径定理;圆周角定理.专题:计算题.分析:过点O 作OC⊥AB于C,交⊙O于D、E两点,连结OA、OB、DA、DB、EA、EB,根据圆周角定理得∠AOB=2∠AMB=90°,则△OAB为等腰直角三角形,所以AB= OA=2 ,由于S四边形MANB=S△MAB+S△NAB,而当M点到AB的距离最大,△MAB的面积最大;当N点到AB的距离最大时,△NAB 的面积最大,即M点运动到D点,N点运动到E点,所以四边形MANB 面积的最大值=S四边形DAEB=S△DAB+S△EAB= AB•CD+ AB•CE= AB(CD+CE)= AB•DE= ×2 ×4=4 .解答:解:过点O作OC⊥AB于C,交⊙O于D、E两点,连结OA、OB、DA、DB、EA、EB,如图,∵∠AMB=45°,∴∠AOB=2∠AMB=90°,∴△OAB为等腰直角三角形,∴AB= OA=2 ,∵S四边形MANB=S△MAB+S△NAB,∴当M点到AB的距离最大,△MAB 的面积最大;当N点到AB的距离最大时,△NAB的面积最大,即M 点运动到D点,N点运动到E点,此时四边形MANB面积的最大值=S 四边形DAEB=S△DAB+S△EAB= AB•CD+ AB•CE= AB(CD+CE)= AB•DE= ×2 ×4=4 .故答案为:4 .点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了圆周角定理.14.如图,AB是⊙O的直径,BC是弦,点E是的中点,OE交BC于点D.连接AC,若BC=6,DE=1,则AC的长为8 .考点:垂径定理;勾股定理;三角形中位线定理.专题:计算题.分析:连接OC,根据圆心角与弧之间的关系可得∠BOE=∠COE,由于OB=OC,根据等腰三角形的性质可得OD⊥BC,BD=CD.在直角三角形BDO中,根据勾股定理可求出OB,进而求出OD长,再根据三角形中位线定理可得AC的长.解答:解:连接OC,如图所示.∵点E是的中点,∴∠BOE=∠COE.∵OB=OC,∴OD⊥BC,BD=DC.∵BC=6,∴BD=3.设⊙O的半径为r,则OB=OE=r.∵DE=1,∴OD=r�1.∵OD⊥BC即∠BDO=90°,∴OB2=BD2+OD2.∵OB=r,OD=r �1,BD=3,∴r2=32+(r�1)2.解得:r=5.∴O D=4.∵AO=BO,BD=CD,∴OD= AC.∴AC=8.点评:本题考查了在同圆或等圆中等弧所对的圆心角相等、等腰三角形的性质、勾股定理、三角形中位线定理等知识,有一定的综合性.三.解答题(共7小题) 15.如图,AB是⊙O的弦,点C、D在弦AB上,且AD=BC,联结OC、OD.求证:△OCD是等腰三角形.考点:垂径定理;等腰三角形的判定.专题:证明题.分析:过O作OE⊥AB于E,根据垂径定理求出AE=BE,求出CE=DE,根据线段垂直平分线性质求出OD=OC,即可得出答案.解答:证明:过O作OE⊥AB于E,则AE=BE,∵AD=BC,∴AD�DC=BC�DC,∴AC=DE,∴CE=DE,∵OE⊥CD,∴OC=OD,即△OCD是等腰三角形.点评:本题考查了垂径定理,等腰三角形的判定,线段垂直平分线性质的应用,解此题的关键是正确作出辅助线后求出CE=DE.16.已知在以点O为圆心的两个同心圆中,大圆的弦AB交小圆于点C,D(如图).(1)求证:AC=BD;(2)若大圆的半径R=10,小圆的半径r=8,且圆O到直线AB的距离为6,求AC的长.考点:垂径定理;勾股定理.专题:几何综合题.分析:(1)过O作OE⊥AB,根据垂径定理得到AE=BE,CE=DE,从而得到AC=BD;(2)由(1)可知,OE⊥AB且OE⊥CD,连接OC,OA,再根据勾股定理求出CE及AE的长,根据AC=AE�CE即可得出结论.解答:(1)证明:过O作OE⊥AB于点E,则CE=DE,AE=BE,∴BE�DE=AE�CE,即AC=BD;(2)解:由(1)可知,OE⊥AB且OE⊥CD,连接OC,OA,∴OE=6,∴CE= = =2 ,AE= = =8,∴AC=AE�CE=8�2 .点评:本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.17.如图,AB是⊙O的直径,弦CD⊥AB于点E,点M在⊙O上,MD恰好经过圆心O,连接MB.(1)若CD=16,BE=4,求⊙O的直径;(2)若∠M=∠D,求∠D的度数.考点:垂径定理;勾股定理;圆周角定理.专题:几何综合题.分析:(1)先根据CD=16,BE=4,得出OE的长,进而得出OB的长,进而得出结论;(2)由∠M=∠D,∠DOB=2∠D,结合直角三角形可以求得结果;解答:解:(1)∵AB⊥CD,CD=16,∴CE=DE=8,设OB=x,又∵BE=4,∴x2=(x�4)2+82,解得:x=10,∴⊙O的直径是20.(2)∵∠M= ∠BOD,∠M=∠D,∴∠D= ∠BOD,∵AB⊥CD,∴∠D=30°.点评:本题考查了圆的综合题:在同圆或等圆中,相等的弧所对的圆周角相等,直径所对的圆周角为直角;垂直于弦的直径平分弦,并且平分弦所对的弧;18.如图,⊙O的直径为10cm,弦AB=8cm,P是弦AB上的一个动点,求OP的长度范围.考点:垂径定理;勾股定理.专题:几何图形问题.分析:过点O作OE⊥AB于点E,连接OB,由垂径定理可知AE=BE= AB,再根据勾股定理求出OE的长,由此可得出结论.解答:解:过点O作OE⊥AB于点E,连接OB,∵AB=8cm,∴AE=BE= AB= ×8=4cm,∵⊙O 的直径为10cm,∴OB= ×10=5cm,∴OE= = =3cm,∵垂线段最短,半径最长,∴3cm≤OP≤5cm.点评:本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.19.如图,AB是⊙O的直径,弦CD⊥AB于点E,点P在⊙O上,PB与CD交于点F,∠PBC=∠C.(1)求证:CB∥PD;(2)若∠PBC=22.5°,⊙O的半径R=2,求劣弧AC的长度.考点:垂径定理;圆周角定理;弧长的计算.专题:几何图形问题.分析:(1)先根据同弧所对的圆周角相等得出∠PBC=∠D,再由等量代换得出∠C=∠D,然后根据内错角相等两直线平行即可证明CB∥PD;(2)先由垂径定理及圆周角定理得出∠BOC=2∠PBC=45°,再根据邻补角定义求出∠AOC=135°,然后根据弧长的计算公式即可得出劣弧AC的长度.解答:解:(1)∵∠PBC=∠D,∠PBC=∠C,∴∠C=∠D,∴CB∥PD;(2)连结OC,OD.∵AB是⊙O的直径,弦CD⊥AB于点E,∴ = ,∵∠PBC=∠C=22.5°,∴∠BOC=∠BOD=2∠C=45°,∴∠AOC=180°�∠BOC=135°,∴劣弧AC的长为: = .点评:本题考查了圆周角定理,平行线的判定,垂径定理,弧长的计算,难度适中.(2)中求出∠AOC=135°是解题的关键.2 0.如图,CD为⊙O的直径,CD⊥AB,垂足为点F,AO⊥BC,垂足为E,,(1)求AB的长;(2)求⊙O的半径.考点:垂径定理;等边三角形的判定与性质.分析:(1)先根据CD为⊙O的直径,CD⊥AB得出 = ,故可得出∠C= ∠AOD,由对顶角相等得出∠AOD=∠COE,故可得出∠C= ∠COE,再根据AO⊥BC可知∠AEC=90°,故∠C=30°,再由直角三角形的性质可得出BF的长,进而得出结论;(2)在Rt△OCE中根据∠C=30°即可得出OC的长.解答:解:(1)∵CD为⊙O的直径,CD⊥AB,∴ = ,AF=BF,∴∠C= ∠AOD,∵∠AOD=∠COE,∴∠C= ∠COE,∵AO⊥BC,∴∠AEC=90°,∴∠C=30°,∵BC=2 ,∴BF= BC= ,∴AB=2BF=2 ;(2)∵AO⊥BC,BC=2 ,∴CE=BE= BC= ,∵∠C=30°,∴OC= = =2,即⊙O的半径是2.点评:本题考查的是垂径定理,熟知“平分弦的直径平分这条弦,并且平分弦所对的两条弧”是解答此题的关键.21.已知:如图,∠PAQ=30°,在边AP上顺次截取AB=3cm,BC=10cm,以BC为直径作⊙O交射线AQ于E、F两点,求:(1)圆心O到AQ 的距离;(2)线段EF的长.考点:垂径定理;含30度角的直角三角形;勾股定理.分析:(1)过点O作OH⊥EF,垂足为点H,求出AO,根据含30度角的直角三角形性质求出即可;(2)连接OE,根据勾股定理求出EH,根据垂径定理得出即可.解答:解:(1)过点O作OH⊥EF,垂足为点H,∵OH⊥EF,∴∠AHO=90°,在Rt△AOH中,∵∠AHO=90°,∠PAQ=30°,∴OH= AO,∵BC=10cm,∴BO=5cm.∵AO=AB+BO,AB=3cm,∴AO=3+5=8cm,∴OH=4cm,即圆心O到AQ的距离为4cm.(2)连接OE,在Rt△EOH中,∵∠EHO=90°,∴EH2+HO2=EO2,∵EO=5cm,OH=4cm,∴EH= = =3cm,∵OH过圆心O,OH⊥EF,∴EF=2EH=6cm.点评:本题考查了含30度角的直角三角形性质,勾股定理,垂径定理的应用,题目是一道比较典型的题目,难度适中.。

相关文档
最新文档