数学必修二综合测试题含答案

合集下载

高二数学必修二综合测试题含答案

高二数学必修二综合测试题含答案

高二数学必修二综合测试题班级_______________ 姓名___________________ 总分:________________ 一、选择题(本大题共12小题,每小题5分,共60分) 1.下面四个命题:①分别在两个平面内的两直线是异面直线;②若两个平面平行,则其中一个平面内的任何一条直线必平行于另一个平面; ③假如一个平面内的两条直线平行于另一个平面,则这两个平面平行; ④假如一个平面内的任何一条直线都平行于另一个平面,则这两个平面平行. 其中正确的命题是( )A .①②B .②④C .①③D .②③ 2.过点(1,3)P -且垂直于直线032=+-y x 的直线方程为( ) A .012=-+y x B .052=-+y x C .052=-+y x D .072=+-y x 3.圆(x -1)2+y 2=1的圆心到直线y =33x 的间隔 是( )A .12B .32 C .1 D .34.已知21F ,F 是椭圆 的左右焦点,P 为椭圆上一个点,且2:1PF :PF 21=,则21PF F cos ∠等于( )A .12B .31C .41D .225.已知空间两条不同的直线m,n 和两个不同的平面,αβ,则下列命题中正确的是( ) A .若//,,//m n m n αα⊂则 B .若,,m m n n αβα⋂=⊥⊥则 C .若//,//,//m n m n αα则D .若//,,,//m m n m n αβαβ⊂=则6.圆x 2+y 2-2x +4y -20=0截直线5x -12y +c =0所得的弦长为8,则c 的值是( ) A .10 B .10或-68 C .5或-34D .-687.已知0,0ab bc <<,则直线ax by c +=通过( ) A .第一、二、三象限 B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限8.正方体ABCD —A 1B 1C 1D 1中,E 、F 分别是AA 1及CC 1的中点,则直线ED 及D 1F 所成角的大小是( )Q PC'B'A'CB AA .15B .13 C .12D9. 在三棱柱111ABC A B C -中,各棱长相等,侧掕垂直于底面,点D 是侧面11BB C C 的中心,则AD 及平面11BB C C 所成角的大小是 ( ) A .30 B .45 C .60 D .9010.将正方形ABCD 沿对角线BD 折成直二面角A -BD -C ,有如下四个结论:①AC ⊥BD ;②△ACD 是等边三角形;③AB 及平面BCD 成60°的角;④AB 及CD 所成的角 是60°.其中正确结论的个数是( )A. 1B. 2C. 3D. 411.如图:直三棱柱ABC —A 1B 1C 1的体积为V ,点P 、Q 分别在侧棱AA 1 和 CC 1上,AP=C 1Q ,则四棱锥B —APQC 的体积为( ) A .2V B .3V C .4V D .5V(11题) 12.如图,正方体ABCD —A 1B 1C 1D 1的棱长为1,线段B 1D 1上有两个动点 E 、F , 且EF =12,则下列结论错误的是( )A .AC ⊥BEB .EF ∥平面ABCD (12题)C .三棱锥A —BEF 的体积为定值D .△AEF 的面积及△BEF 的面积相二、填空题(本大题共4小题,每小题5分,共20分)13.一个几何体的三视图及其尺寸(单位:cm)如图所示, 则该几何体的侧面积为_ ______cm 214.两圆221x y +=和22(4)()25x y a ++-=相切, 则实数a 的值为15.已知21F ,F 是椭圆的两个焦点,过2F 的直线交椭圆于P 、Q 两点,PQ PF 1⊥且PQ PF 1=,则椭圆的离心率为16.过点A (4,0)的直线l 及圆(x -2)2+y 2=1有公共点,则直线l 斜率的取值范围为 三、解答题17.如图,在三棱柱ABC -A 1B 1C 1中,△ABC 及△A 1B 1C 1都为正三角形且AA 1⊥面ABC ,F 、F 1俯视图分别是AC ,A 1C 1的中点. 求证:(1)平面AB 1F 1∥平面C 1BF ; (2)平面AB 1F 1⊥平面ACC 1A 1.(17题)18.已知点),(y x P 在圆1)1(22=-+y x 上运动.(1)求的最大值及最小值;(2)求y x +2的最大值及最小值.19. 如图,DC ⊥平面ABC ,EB ∥DC ,AC =BC =EB =2DC =2,∠ACB =120°, P ,Q 分别为AE ,AB 的中点. (1)证明:PQ ∥平面ACD ;(2)求AD 及平面ABE 所成角的正弦值(19题)20.已知圆C 1:x 2+y 2-2x -4y +m =0, (1)务实数m 的取值范围;(2)若直线l :x +2y -4=0及圆C 相交于M 、N 两点,且OM ⊥ON ,求m 的值。

人教版A版27课标高中数学必修第二册第八章综合测试试题试卷含答案

人教版A版27课标高中数学必修第二册第八章综合测试试题试卷含答案

第八章综合测试一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知m ,n 是两条不同的直线,α,β,γ是三个不同的平面,则下列命题中正确的是( ) A.若m ∥α,n ∥α,则m n ∥ B.若⊥αγ,⊥βγ,则∥αβ C.若m ∥α,m ⊥β,则⊥αβD.若m ∥α,⊥αβ,则m ⊥β2.如图,O A B ′′′△是水平放置的OAB △的直观图,6A O =′′,2B O =′′,则OAB △的面积是( )A.6B.C.D.123.BC 是Rt ABC △的斜边,PA ABC ⊥平面,PD BC D ⊥于点,则图8-7-37中直角三角形的个数是( )A.8B.7C.6D.54.如图,在正方体1111ABCD A B C D -中,点M ,N 分别是线段1DB 和1A C 上不重合的两个动点,则下列结论正确的是( )A.1BC MN ⊥B.1B N CM ∥C.11ABN C MD 平面∥平面D.1111CDM A B C D 平面⊥平面5.已知一个多面体的内切球的半径为1,多面体的表面积为18,则此多面体的体积为( ) A.18B.12C.6D.12π6.如图8-7-39所示,在三棱柱111ABC A B C -中,侧棱垂直于底面,AB AC ==,16BB BC ==,E ,F 为侧棱1AA 上的两点,且3EF =,则多面体11BB C CEF 的体积为( ) A.30 B.18 C.15D.127.如图,一个无盖的正方体盒子的棱长为2,BC 的中点为M ,一只蚂蚁从盒外的B 点沿正方形的表面爬到盒内的M 点,则蚂蚁爬行的最短距离是( )B.1D.2+8.如图,正方体1111ABCD A B C D -的棱长为1,线段11B D 上有两个动点E ,F ,且12EF =,则下列结论中错误的是( )A.AC BE ⊥B.EF ABCD ∥平面C.三棱锥A BEF -的体积为定值D.AEF △的面积与BEF △的面积相等9.如图8-7-42,在长方体1111ABCD A B C D -中,1AD AA =,则下列结论中不正确的是( )A.111A B CD BC D ⊥平面平面B.1111A B CD P D P BC D 在平面上存在一点使得∥平面C.111A C Q D Q BC D 在直线上存在一点,使得∥平面D.111A C R D R BC D ⊥在直线上存在一点,使得平面10.如图,在长方体1111ABCD A B C D -中,12AB AA AD ==,E 是1DD 的中点,114BF C K AB ==,设过点E ,F ,K 的平面与平面ABCD 的交线为l ,则直线l 与直线11A D 所成角的正切值为( )A.1B.2C.3D.4二、填空题(本大题共4小题,每小题5分,共20分,请把正确答案填在题中的横线上) 11.如图所示,正方形ABCD 的边长为a ,沿对角线AC 将ADC △折起,若°60DAB ∠=,则二面角D AC B --的平面角的大小为________.12.在正三棱锥S ABC -中,AB =,SA =,E ,F 分别为AC ,SB 的中点.平面α过点A ,SBC ∥平面α,ABC l α= 平面,则异面直线l 和EF 所成角的余弦值为________.13.如图,一个实心六角螺帽毛坯(正六棱柱)的底边长为4,高为3,若在中间竖直钻一个圆柱形孔后,其表面积没有变化,则孔的半径为________.14.如图8-7-46,直角梯形ABCD 中,°90DAB ∠=,AB CD ∥,CE AB ⊥于点E .已知22BE AE ==,°30BCE ∠=.若将直角梯形绕直线AD 旋转一周,则图中阴影部分所得旋转体的体积为________.三、解答题(本大题共4小题,共50分.解答时写出必要的文字说明、证明过程或演算步骤)15.[12分]如图所示,一个圆锥形的空杯子(只考虑杯身部分)上放着一个直径为8 cm 的半球形冰淇淋,请你设计一种这样的圆锥形杯子(杯口直径等于半球形冰淇淋的直径,杯壁厚度忽略不计),使冰淇淋融化后不会溢出杯子,怎样设计才能使其所用材料面积最小?并求面积的最小值.16.[12分]在四面体ABCD 中,E ,H 分别是线段AB ,AD 的中点,F ,G 分别是线段CB ,CD 上的点,且12CF CG BF DG ==.求证: (1)四边形EFGH 是梯形;(2)AC ,EF ,GH 三条直线相交于同一点.17.[13分]在如图所示的多面体中,EF AEB ⊥平面,AE EB ⊥,AD EF ∥,EF BC ∥,24BC AD ==,3EF =,2AE BE ==,G 是BC 的中点。

人教版高中数学必修第二册 第九章~第十章 综合测试卷 (含答案)

人教版高中数学必修第二册 第九章~第十章 综合测试卷 (含答案)

人教版高中数学必修第二册第九章~第十章综合测试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷60分,第Ⅱ卷90分,共150分,考试时间120分钟.第Ⅰ卷(选择题共60分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.现要完成下列两项抽样调查:①从10盒酸奶中抽取3盒进行食品卫生检查;②东方中学共有160名教职工,其中一般教师120名,行政人员16名,后勤人员24名.为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为20的样本.较为合理的抽样方法是()A.①抽签法,②比例分配的分层随机抽样B.①随机数法,②比例分配的分层随机抽样C.①随机数法,②抽签法D.①抽签法,②随机数法2.若A,B为对立事件,则下列式子中成立的是()A.P(A)+P(B)<1B.P(A)+P(B)>1C.P(A)+P(B)=0D.P(A)+P(B)=13.从一箱产品中随机地抽取一件,设事件A={抽到一等品},事件B={抽到二等品},事件C={抽到三等品},且已知P(A)=0.65,P(B)=0.2,P(C)=0.1,则事件“抽到的产品不是一等品”的概率为()A.0.2B.0.35C.0.3D.0.44.某宠物商店对30只宠物狗的体重(单位:千克)作了测量,并根据所得数据画出了频率分布直方图如图C6-1所示,则这30只宠物狗体重的平均值大约为()图C6-1A.15.5千克B.15.6千克C.15.7千克D.16千克5.以下数据为参加数学竞赛决赛的15人的成绩(单位:分):78,70,72,86,88,79,80,81,94,84,56,98,83,90,91,则这15人成绩的第80百分位数是()A.90分B.91.5分C.91分D.90.5分6.一组样本数据a,3,4,5,6的平均数是b,且不等式x2-6x+c<0的解集为(a,b),则这组样本数据的标准差是()A.1B.2C.3D.27.我国历史上有田忌与齐王赛马的故事:“田忌的上等马优于齐王的中等马,劣于齐王的上等马;田忌的中等马优于齐王的下等马,劣于齐王的中等马;田忌的下等马劣于齐王的下等马.”若双方各自拥有上、中、下等马各1匹,双方各随机选1匹马进行1场比赛,则齐王的马获胜的概率为()A.23B.13C.12D.568.在发生某公共卫生事件期间,有专业机构认为在一段时间内没有发生规模群体感染的标志为“连续10天,每天新增疑似病例数量不超过7”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是()A.甲地:总体的平均数为3,中位数为4B.乙地:总体的平均数为1,总体方差大于0C.丙地:中位数为2,众数为3D.丁地:总体的平均数为2,总体方差为3二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,至少有两项是符合题目要求的)9.给出下列四个说法,其中正确的说法有()A.做100次抛硬币的试验,结果有51次出现正面朝上,因此,出现正面朝上的概率是51100B.随机事件发生的频率就是这个随机事件发生的概率C.抛掷骰子100次,得点数是1的结果有18次,则出现1点的频率是950D.随机事件发生的频率不一定是这个随机事件发生的概率10.在某次高中学科竞赛中,4000名考生的参赛成绩统计如图C6-2所示,60分以下视为不及格,若同一组中的数据用该组区间的中点值为代表,则下列说法中正确的是()图C6-2A.成绩在[70,80)内的考生人数最多B.不及格的考生人数为1000C.考生竞赛成绩的平均数约为70.5分D.考生竞赛成绩的中位数为75分11.某健身房为了解运动健身减肥的效果,调查了20名肥胖者健身前(如直方图C6-3(1)所示)后(如直方图(2)所示)的体重(单位:kg)变化情况:图C6-3对比数据,关于这20名肥胖者,下面结论正确的是()A.健身后,体重在区间[90,100)内的人数较健身前增加了2B.健身后,体重原在区间[100,110)内的人员一定无变化C.健身后,20人的平均体重大约减少了8kgD.健身后,原来体重在区间(110,120]内的肥胖者体重都有减少12.从甲袋中摸出一个红球的概率是13,从乙袋中摸出一个红球的概率是12,从两袋中各摸出一个球,下列结论正确的是()A.2个球都是红球的概率为16B.2个球不都是红球的概率为13C.至少有1个红球的概率为23D.2个球中恰有1个红球的概率为12请将选择题答案填入下表:题号12345678总分答案题号9101112答案第Ⅱ卷(非选择题共90分)三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.从甲、乙两个厂家生产的同一种产品中各抽取8件产品,对其使用寿命(单位:年)跟踪调查的结果如下:甲:3,4,5,6,8,8,8,10;乙:3,3,4,7,9,10,11,12.两个厂家在广告中都称该产品的使用寿命是8年,请根据结果判断厂家在广告中分别采用了平均数、众数、中位数中的哪一个特征数:甲:,乙:.14.如图C6-4是容量为100的样本数据的频率分布直方图,则样本数据落在区间[6,18)内的频数为.图C6-415.已知甲、乙、丙3名运动员射击一次击中目标的概率分别为0.7,0.8,0.85,若这3人向目标各射击一次,则目标没有被击中的概率为.16.甲、乙两人玩猜数字游戏,先由甲在心中任想一个数字,记为a,再由乙猜甲刚才想的数字,把乙猜的数字记为b,且a,b∈{0,1,2,…,9}.若|a-b|≤1,则称甲、乙两人“心有灵犀”.现任意找两人玩这个游戏,则这两人“心有灵犀”的概率为.四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)某班选派5人,参加学校举行的数学竞赛,获奖的人数及其概率如下:获奖人数012345概率0.10.16x y0.2z(1)若获奖人数不超过2的概率为0.56,求x的值;(2)若获奖人数最多为4的概率为0.96,获奖人数最少为3的概率为0.44,求y,z的值.18.(12分)甲、乙两台机床同时加工直径为100cm的零件,为检验质量,各从中抽取6个零件测量其直径,所得数据如下.甲:99,100,98,100,100,103;乙:99,100,102,99,100,100.(1)分别计算两组数据的平均数及方差;(2)根据计算结果判断哪台机床加工零件的质量更稳定.19.(12分)某校高一年级举行了一次数学竞赛,为了了解参加本次竞赛的学生的成绩情况,从中抽取了部分学生的成绩(取正整数,单位:分)作为样本(样本量为n)进行统计,按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出频率分布直方图如图C6-5所示,已知成绩在[50,60),[90,100]内的频数分别为8,2.(1)求样本量n和频率分布直方图中的x,y的值;(2)估计参加本次竞赛的学生成绩的众数、中位数、平均数.图C6-520.(12分)生产同一种产品,甲机床的废品率为0.04,乙机床的废品率为0.05,从甲、乙机床生产的产品中各任取1件,求:(1)至少有1件废品的概率;(2)恰有1件废品的概率.21.(12分)某儿童乐园在“六一”儿童节推出了一项趣味活动.参加活动的儿童需转动如图C6-6所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设两次记录的数分别为x,y.奖励规则如下:①若xy≤3,则奖励玩具一个;②若xy≥8,则奖励水杯一个;③其余情况奖励饮料一瓶.假设转盘质地均匀,四个区域划分均匀.小亮准备参加此项活动.(1)求小亮获得玩具的概率;(2)请比较小亮获得水杯的概率与获得饮料的概率的大小,并说明理由.图C6-622.(12分)2020年新冠肺炎疫情期间,某区政府为了解本区居民对区政府防疫工作的满意度,从本区居民中随机抽取若干居民进行评分(满分100分).根据调查数据制成如下表格和如图C6-7所示的频率分布直方图.已知评分在[80,100]内的居民有600人.满意度评分[40,60)[60,80)[80,90)[90,100]满意度等级不满意基本满意满意非常满意(1)求频率分布直方图中a的值及参与评分的总人数.(2)定义满意度指数η=(满意程度的平均分)/100,若η<0.8,则防疫工作需要进行大的调整,否则不需要进行大调整.根据所学知识判断该区防疫工作是否需要进行大调整.(3)为了解部分居民不满意的原因,从不满意的居民(评分在[40,50),[50,60)内)中用比例分配的分层随机抽样的方法抽取6位居民,倾听他们的意见,并从6人中抽取2人担任防疫工作的监督员,求这2人中仅有1人对防疫工作的评分在[40,50)内的概率.图C6-7参考答案与解析1.A[解析]①总体较少,宜用抽签法;②各层间差异明显,宜用分层随机抽样.故选A.2.D[解析]若事件A与事件B是对立事件,则P(A)+P(B)=1.故选D.3.B[解析]∵事件A={抽到一等品},且P(A)=0.65,∴事件“抽到的产品不是一等品”的概率P=1-P(A)=1-0.65=0.35.4.B[解析]由频率分布直方图可以计算出各组的频率分别为0.1,0.2,0.3,0.2,0.1,0.1,故各组的频数分别为3,6,9,6,3,3,则这30只宠物狗体重的平均值为11×3+13×6+15×9+17×6+19×3+21×330=15.6(千克),故选B.5.D[解析]将这15人的成绩(单位:分)由小到大依次排列为56,70,72,78,79,80,81,83,84,86,88,90,91,94,98,因为15×80%=12,第12,13个数据分别为90分、91分,所以这15人成绩的第80百分位数是90.5分.故选D.6.B[解析]由题意得a+3+4+5+6=5b,a+b=6,解得a=2,b=4,所以样本数据的方差s2=15×[(2-4)2+(3-4)2+(4-4)2+(5-4)2+(6-4)2]=2,所以标准差s=2.故答案为B.7.A[解析]依题意,记田忌的上等马、中等马、下等马分别为a,b,c,齐王的上等马、中等马、下等马分别为A,B,C.由题意可知,样本空间Ω={aA,bA,cA,aB,bB,cB,aC,bC,cC},共有9个样本点,其中事件“田忌可以获胜”包含的样本点为aB,aC,bC,共3个,则齐王的马获胜的概率P=1-39=23.故选A.8.D[解析]由于甲地总体数据的平均数为3,中位数为4,即按从小到大排序后,中间两个数据的平均数为4,因此后面的数据可以大于7,故甲地不一定符合.乙地总体数据的平均数为1,因此这10天的新增疑似病例总数为10,又由于方差大于0,故这10天中新增疑似病例数量不可能每天都是1,可以有一天大于7,故乙地不一定符合.丙地总体数据的中位数为2,众数为3,故数据中可以出现8,故丙地不一定符合.丁地总体数据的平均数为2,方差为3,故丁地一定符合.9.CD[解析]对于A,混淆了频率与概率的区别,故A错误;对于B,混淆了频率与概率的区别,故B 错误;对于C,抛掷骰子100次,得点数是1的结果有18次,则出现1点的频率是950,符合频率定义,故C正确;对于D,频率是概率的估计值,故D正确.故选CD.10.ABC [解析]由频率分布直方图可得,成绩在[70,80)内的频率最高,考生人数最多,故A 正确;由频率分布直方图可得,成绩在[40,60)内的频率为0.25,则不及格的考生人数为4000×0.25=1000,故B 正确;由频率分布直方图可得,平均数为45×0.1+55×0.15+65×0.2+75×0.3+85×0.15+95×0.1=70.5(分),故C 正确;因为成绩在[40,70)内的频率为0.45,在[70,80)内的频率为0.3,所以中位数为70+10×0.050.3≈71.67(分),故D 错误.故选ABC .11.AD[解析]体重在区间[90,100)内的肥胖者由健身前的6人增加到健身后的8人,增加了2人,故A 正确;健身后,体重在区间[100,110)内的频率没有变,但人员组成可能改变,故B 错误;健身后,20人的平均体重大约减少了(0.3×95+0.5×105+0.2×115)-(0.1×85+0.4×95+0.5×105)=5(kg),故C 错误;因为图(2)中没有体重在区间(110,120]内的人员,所以原来体重在区间(110,120]内的肥胖者体重都有减少,故D 正确.故选AD .12.ACD[解析]设“从甲袋中摸出一个红球”为事件A 1,“从乙袋中摸出一个红球”为事件A 2,则P (A 1)=13,P (A 2)=12,且A 1,A 2独立;在A 中,“2个球都是红球”为事件A 1A 2,其概率为13×12=16,A 正确;在B中,“2个球不都是红球”是“2个球都是红球”的对立事件,其概率为56,B 错误;在C 中,“2个球中至少有1个红球”的概率为1-P ( )P ( )=1-23×12=23,C 正确;在D 中,2个球中恰有1个红球的概率为13×12+23×12=12,D 正确.故选ACD .13.众数中位数[解析]对甲厂的数据进行分析:该组数据中8年出现的次数最多,故广告中采用了众数;对乙厂的数据进行分析:该组数据最中间的是7年与9年,故中位数是7+92=8(年),故广告中采用了中位数.14.80[解析]由题图知,样本数据落在区间[6,18)内的频数为100×0.8=80.15.0.009[解析]由相互独立事件的概率计算公式知,3人向目标各射击一次,目标没有被击中的概率P=(1-0.7)×(1-0.8)×(1-0.85)=0.3×0.2×0.15=0.009.16.725[解析]从{0,1,2,…,9}中任意取两个数(可重复),该试验共有100个样本点,事件“|a-b|≤1”包含的样本点为(0,0),(1,1),(2,2),(3,3),(4,4),(5,5),(6,6),(7,7),(8,8),(9,9),(0,1),(1,0),(1,2),(2,1),(2,3),(3,2),(3,4),(4,3),(4,5),(5,4),(5,6),(6,5),(6,7),(7,6),(7,8),(8,7),(8,9),(9,8),共有28个,所以所求概率P=28100=725.17.解:记事件“在竞赛中,有k 人获奖”为A k (k ∈N,k ≤5),则事件A k 彼此互斥.(1)∵获奖人数不超过2的概率为0.56,∴P (A 0)+P (A 1)+P (A 2)=0.1+0.16+x=0.56,解得x=0.3.(2)由获奖人数最多为4的概率为0.96,得P (A 5)=1-0.96=0.04,即z=0.04.由获奖人数最少为3的概率为0.44,得P (A 3)+P (A 4)+P (A 5)=0.44,即y+0.2+0.04=0.44,解得y=0.2.18.解:(1)由题中数据可得 甲=16×(99+100+98+100+100+103)=100(cm); 乙=16×(99+100+102+99+100+100)=100(cm).甲2=16×(1+0+4+0+0+9)=73, 乙2=16×(1+0+4+1+0+0)=1.(2)由(1)知两台机床所加工零件的直径的平均数相同,又 甲2> 乙2,所以乙机床加工零件的质量更稳定.19.解:(1)由题意可知,样本量n=80.016×10=50,y=250×10=0.004,x=0.1-0.016-0.04-0.01-0.004=0.03.(2)由频率分布直方图可估计,参加本次竞赛的学生成绩的众数为75分.设样本数据的中位数为m ,因为(0.016+0.03)×10<0.5<(0.016+0.03+0.04)×10,所以m ∈[70,80),所以(0.016+0.03)×10+(m-70)×0.04=0.5,解得m=71,故估计参加本次竞赛的学生成绩的中位数为71分.由频率分布直方图可估计,参加本次竞赛的学生成绩的平均数为55×0.16+65×0.3+75×0.4+85×0.1+95×0.04=70.6(分).20.解:记从甲、乙机床生产的产品中取1件是废品分别为事件A ,B ,则事件A ,B 相互独立,且P (A )=0.04,P (B )=0.05.(1)设“至少有1件废品”为事件C ,则P (C )=1-P ( )=1-P ( )P ( )=1-(1-0.04)×(1-0.05)=0.088.(2)设“恰有1件废品”为事件D ,则P (D )=P (A )+P ( B )=0.04×(1-0.05)+(1-0.04)×0.05=0.086.21.解:(1)试验的所有样本点为(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),( 4,3),(4,4),共16个.事件“xy≤3”包含的样本点有(1,1),(1,2),(1,3),(2,1),(3,1),共5个,所以小亮获得玩具的概率为516.(2)事件“xy≥8”包含的样本点有(2,4),(3,3),(3,4),(4,2),(4,3),(4,4),共6个,所以小亮获得水杯的概率为38,小亮获得饮料的概率为1-516-38=516,所以小亮获得水杯的概率大于获得饮料的概率.22.解:(1)由频率分布直方图知(0.002+0.004+0.014+0.02+0.035+a)×10=1,即10×(0.075+a)=1,解得a=0.025,设共有n人参与评分,则600 =(0.035+0.025)×10,解得n=1000,即参与评分的总人数为1000.(2)由频率分布直方图知各组的频率分别为0.02,0.04,0.14,0.2,0.35,0.25,所以η=45×0.02+55×0.04+65×0.14+75×0.2+85×0.35+95×0.25100=0.807>0.8,所以该区防疫工作不需要进行大调整.(3)因为0.002×10×1000=20,0.004×10×1000=40,所以评分在[40,50),[50,60)内的居民人数分别为20,40,所以所抽取的评分在[40,50)内的居民人数为20×660=2,将这2人分别记为a,b,所抽取的评分在[50,60)内的居民人数为40×660=4,将这4人分别记为A,B,C,D.从这6人中抽取2人,试验的样本点有ab,aA,aB,aC,aD,bA,bB,bC,bD,AB,AC,AD,BC,BD,CD,共15个.而“仅有1人对防疫工作的评分在[40,50)内”包含的样本点有aA,aB,aC,aD,bA,bB,bC,bD,共8个,则所求事件的概率为815.。

必修二数学试题及答案

必修二数学试题及答案

必修二数学试题及答案一、选择题(本题共10小题,每小题3分,共30分)1. 若函数f(x) = 2x + 3,则f(-1)的值为:A. -1B. 1C. 5D. 72. 已知集合A = {1, 2, 3},集合B = {2, 3, 4},则A∩B为:A. {1}B. {2, 3}C. {1, 2, 3}D. {2, 3, 4}3. 计算下列极限:lim(x→0) [sin(x)/x]的值为:A. 0B. 1C. 2D. 34. 已知等差数列的首项为3,公差为2,求第5项的值:A. 13B. 15C. 17D. 195. 若复数z = 3 + 4i,则|z|的值为:A. 5B. √7C. √25D. √416. 已知函数y = x^2 - 6x + 8,求其顶点坐标:A. (3, -1)B. (3, 1)C. (-3, 1)D. (-3, -1)7. 计算二项式(2x + 1)^3的展开式中含x^2的项:A. 4x^2B. 8x^2C. 12x^2D. 16x^28. 已知圆的方程为x^2 + y^2 - 6x - 8y + 24 = 0,求圆心坐标:A. (3, 4)B. (-3, -4)C. (3, -4)D. (-3, 4)9. 已知函数f(x) = 2x^3 - 3x^2 + 4x - 1,求f'(x):A. 6x^2 - 6x + 4B. 6x^2 - 6x - 4C. 6x^2 + 6x + 4D. 6x^2 + 6x - 410. 计算定积分∫(0 to 1) x^2 dx的值为:A. 1/3B. 1/2C. 1D. 2二、填空题(本题共5小题,每小题4分,共20分)1. 已知函数f(x) = x^3 - 6x^2 + 11x - 6,求f'(x) = ________。

2. 已知向量a = (2, 3),向量b = (-1, 2),则向量a·向量b = ________。

人教版A版(2019)高中数学必修第二册:第九章 统计 综合测试(附答案与解析)

人教版A版(2019)高中数学必修第二册:第九章 统计 综合测试(附答案与解析)

第九章综合测试一、单项选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.某公司从代理的,,,A B C D 四种产品中,按分层随机抽样的方法抽取容量为110的样本,已知,,,A B C D 四种产品的数量比是2:3:2:4,则该样本中D 类产品的数量为( ) A .22件 B .33件 C .40件 D .55件2.已知总体容量为106,若用随机数法抽取一个容量为10的样本,下面对总体的编号最方便的是( ) A .1,2,…,106 B .0,1,2,…,105 C .00,01,…,105 D .000,001,…,1053.一个容量为200的样本,其数据的分组与各组的频数如下表:则样本数据落在[20,60)内的频率为( ) A .0.11 B .0.5 C .0.45 D .0.554.如图为某个容量为100的样本的频率分布直方图,分组为[96,98),[98,100),100,[102),102,[104),104,[106],则在区间[98,100)内的频数为( )A .10B .30C .20D .405.图甲和图乙分别表示某地区中小学生人数和近视情况.为了了解该地区中小学生的近视形成原因,用分层随机抽样的方法抽取了2%的学生进行调查,则样本量和抽取的高中生近视人数分别为( )图甲图乙A .100,10B .100,20C .200,10D .200,206.某学校高一年级有1 802人,高二年级有1 600人,高三年级有1 499人,现采用分层随机抽样的方法从中抽取98名学生参加全国中学生禁毒知识竞赛,则在高一、高二、高三三个年级中抽取的人数分别为( ) A .33,33,30 B .36,32,30C .36,33,29D .35,32,31 7.若数据12,,,n x x x 的平均数为x ,方差为2s ,则1235,35,,35n x x x +++的平均数和标准差分别为( )A . ,x sB .35,x s +C .35,3x s +D .3x +8.如图所示,样本A 和B 分别取自两个不同的总体,它们的样本平均数分别为A x 和B x ,样本标准差分别为A s 和B s 则( )ABA .,AB A B x x s s >>B .,A B A B x x s s <>C .A ,B A B x x s s ><D .,A B A B x x s s <<9.某校为了对初三学生的体重进行摸底调查,随机抽取了50名学生称其体重(单位:kg ),将所得数据整理后,画出了频率分布直方图如图所示,体重在[45,50)内适合跑步训练,体重在[50,55)内适合跳远训练,体重在[55,60]内适合投掷训练,估计该校初三学生适合参加跑步、跳远、投掷三项训练的人数之比为( )A .4:3:1B .5:3:1C .5:3:2D .3:2:110.为了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图如图所示.由于不慎将部分数据丢失,但知道前4组的频数为1234,,,x x x x ,且满足324123x x x x x x ==,后6组的频数123456,,,,,y y y y y y ,且后6组各频数之间差值相同,设最大频率为a ,视力在4.6到5.0之间的学生数为b ,则,a b 的值分别为( )A .0.27,78B .0.27,83C .2.7,78D .2.7,83二、多项选择题(本大题共2小题,每小题5分,共10分.在每小题给出的四个选项中,有多个选项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得2分)11.在某次高中学科竞赛中,4000名考生的参赛成绩统计如图所示,60分以下视为不及格,若同一组中的数据用该组区间中点值为代表,则下列说法中正确的是( )A .成绩在[70,80)分的考生人数最多B .不及格的考生人数为1 000C .考生竞赛成绩的平均分约为70.5分D .考生竞赛成绩的中位数为75分12.在某地区某高传染性病毒流行期间,为了建立指标来显示疫情已受控制,以便向该地区居民显示可以过正常生活,有公共卫生专家建议的指标是“连续7天每天新增感染人数不超过5人”,根据连续7天的新增病例数计算,下列各选项中,一定符合上述指标的是( ) A .平均数3x ≤B .平均数3x ≤且标准差2s ≤C .平均数3x ≤且极差小于或等于2D .众数等于1且极差小于或等于4三、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中横线上)13.从甲、乙两个厂家生产的同一种产品中各抽取8件产品,对其使用寿命(单位:年)跟踪调查结果如下: 甲:3,4,5,6,8,8,8,10; 乙:3,3,4,7,9,10,11,12.两个厂家在广告中都称该产品的使用寿命是8年,请根据结果判断厂家在广告中分别运用了平均数、众数、中位数中的哪一种集中趋势的特征数:甲:________,乙:________.(本题第一空2分,第二空3分)14.1895年,在英国伦敦有106块男性头盖骨被挖掘出土.经考证,这些头盖骨的主人死于1665~1666年的大瘟疫.人类学家分别测量了这些头盖骨的宽度(单位:mm ),数据如下:146 141 139 140 145 141 142 131 142 140 144 140 138 139 147 139 141 137 141 132 140 140 141 143 134 146 134 142 133 149 140 140 143 143 149 136 141 143 143 141 138 136 138 144 136 145 143 137 142 146 140 148 140 140 139 139 144 138 146 153 158 135 132 148 142 145 145 121 129 143 148 138 148 152 143 140 141 145 148 139 136 141 140 139 149 146 141 142 144 137 153 148 144 138 150 148 138 145 145 142 143 143 148 141 145 141则95%分位数是________mm.15.某学校三个兴趣小组的学生人数分布如下表(每名同学只参加一个小组,单位:人):16.从一堆苹果中任取20个称其重量,它们的质量(单位:克)数据分布如下:则这堆苹果中,质量不少于120克的苹果数约占苹果总数的________%.四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)某市化工厂三个车间共有工人1000名,各车间男、女工人数如下表:已知在全厂工人中随机抽取1名,抽到第二车间男工人的可能性是0.15.(1)求x的值;(2)现用分层随机抽样的方法在全厂抽取50名工人,则应在第三车间抽取多少名工人?18.(本小题满分12分)从高三学生中抽出50名学生参加数学竞赛,根据竞赛成绩得到如图所示的频率分布直方图.试利用频率分布直方图估算:(结果保留小数点后一位)(1)这50名学生成绩的众数与中位数;(2)这50名学生的平均成绩.19.(本小题满分12分)有关部门要了解甲型H1N1流感预防知识在学校的普及情况,特制了一份有10道题的问卷到各学校进行问卷调查.某中学,A B两个班各被随机抽取了5名学生接受问卷调查,A班5名学生得分分别为5,8,9,9,9;B班5名学生得分分别为6,7,8,9,10(单位:分).请你估计A,B两个班中哪个班的预防知识的问卷得分要稳定一些。

高中数学必修第二册第十章综合测试03含答案解析

高中数学必修第二册第十章综合测试03含答案解析

加油!有志者事竟成答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!第十章综合测试一、选择题(本题共12小题,每小题5分,共60分)1.袋中装有除颜色外完全相同的3个红球、2个白球、l 个黑球,从中随机摸出2个球,则与事件“至少有1个白球”互斥但不对立的事件是( ) A .没有白球B .有2个白球C .红、黑球各1个D .至少有1个红球2.甲、乙、丙三位同学站成一排照相,则甲、丙相邻的概率为( ) A .16B .15C .23D .133.若事件A 和B 是互斥事件,且()0.1P A =,则()P B 的取值范围是( ) A .[]0,0.9B .[]0.1,0.9C .[)0,0.9D .[]0,14.从装有除颜色外完全相同的2个红球和2个白球的口袋中任取2个球,则下列每对事件中,互斥事件的对数是( )①“至少有1个白球”与“都是白球”; ②“至少有1个白球”与“至少有1个红球”; ③“至少有1个白球”与“恰有2个白球”; ④“至少有1个白球”与“都是红球”。

数学必修二第二章经典测试题含答案

数学必修二第二章经典测试题含答案

必修二第二章综合检测题一、选择题1.假设直线a与b没有公共点,那么a及b的位置关系是( ) A.相交B.平行C.异面D.平行或异面2.平行六面体-A1B1C1D1中,既及共面也及1共面的棱的条数为( )A.3 B.4 C.5 D.63.平面α与直线l,那么α内至少有一条直线及l( )A.平行B.相交C.垂直D.异面4.长方体-A1B1C1D1中,异面直线,A1D1所成的角等于( ) A.30°B.45°C.60°D.90°5.对两条不相交的空间直线a及b,必存在平面α,使得( ) A.a⊂α,b⊂αB.a⊂α,b∥αC.a⊥α,b⊥αD.a⊂α,b⊥α6.下面四个命题:其中真命题的个数为( )①假设直线a,b异面,b,c异面,那么a,c异面;②假设直线a,b相交,b,c相交,那么a,c相交;③假设a∥b,那么a,b及c所成的角相等;④假设a⊥b,b⊥c,那么a∥c.A.4 B.3 C.2 D.17.在正方体-A1B1C1D1中,E,F分别是线段A1B1,B1C1上的不及端点重合的动点,如果A1E=B1F,有下面四个结论:①⊥1;②∥;③及异面;④∥平面.其中一定正确的有( )A.①②B.②③C.②④D.①④8.设a,b为两条不重合的直线,α,β为两个不重合的平面,以下命题中为真命题的是( )A.假设a,b及α所成的角相等,那么a∥bB.假设a∥α,b∥β,α∥β,那么a∥bC.假设a⊂α,b⊂β,a∥b,那么α∥βD.假设a⊥α,b⊥β,α⊥β,那么a⊥b9.平面α⊥平面β,α∩β=l,点A∈α,A∉l,直线∥l,直线⊥l,直线m∥α,n∥β,那么以下四种位置关系中,不一定成立的是( )A.∥m B.⊥m C.∥βD.⊥β10.正方体-A1B1C1D1中,E、F分别为1、1的中点,那么直线及D1F所成角的余弦值为( )A.- B D.-11.三棱锥D-的三个侧面及底面全等,且==,=2,那么以为棱,以面及面为面的二面角的余弦值为( )C.0 D.-12.如下图,点P在正方形所在平面外,⊥平面,=,那么及所成的角是( )A.90°B.60°C.45°D.30°二、填空题三、13.以下图形可用符号表示为.14.正方体-A1B1C1D1中,二面角C1--C的平面角等于.15.设平面α∥平面β,A,C∈α,B,D∈β,直线及交于点S,且点S位于平面α,β之间,=8,=6,=12,那么=.16.将正方形沿对角线折成直二面角A--C,有如下四个结论:②△是等边三角形;③及平面成60°的角;④及所成的角是60°.其中正确结论的序号是.三、解答题(解容许写出文字说明,证明过程或演算步骤)17.如以下图,在三棱柱-A1B1C1中,△及△A1B1C1都为正三角形且1⊥面,F、F1分别是,A1C1的中点.求证:(1)平面1F1∥平面C1;(2)平面1F1⊥平面1A118.如下图,在四棱锥P-中,⊥平面,=4,=3,=5,∠=∠=90°,E是的中点.(1)证明:⊥平面;(2)假设直线及平面所成的角与及平面所成的角相等,求四棱锥P -的体积.19.如下图,边长为2的等边△所在的平面垂直于矩形所在的平面,=2,M为的中点.(1)证明:⊥;(2)求二面角P--D的大小.20.如图,棱柱-A1B1C1的侧面1B1是菱形,B1C⊥A1B.(1)证明:平面1C⊥平面A11;(2)设D是A1C1上的点,且A1B∥平面B1,求A1D1的值.21.如图,△中,==,是边长为1的正方形,平面⊥底面,假设G,F分别是,的中点.(1)求证:∥底面;(2)求证:⊥平面;(3)求几何体的体积V.22.如以下图所示,在直三棱柱-A1B1C1中,=3,=4,=5,=4,点D是的中点.1(1)求证:⊥1;(2)求证:1∥平面1;(3)求异面直线1及B1C所成角的余弦值.必修二第二章综合检测题1 D2 C 及1为异面直线,故棱中不存在同时及两者平行的直线,因此只有两类:第一类及平行及1相交的有:、C1D1及1平行且及相交的有:1、1,第二类及两者都相交的只有,故共有5条.3 C 当直线l及平面α斜交时,在平面α内不存在及l平行的直线,∴A错;当l⊂α时,在α内不存在直线及l异面,∴D错;当l∥α时,在α内不存在直线及l相交.无论哪种情形在平面α内都有无数条直线及l垂直.4 D 由于∥A1D1,那么∠是异面直线,A1D1所成的角,很明显∠=90°.5 B 对于选项A,当a及b是异面直线时,A错误;对于选项B,假设a,b不相交,那么a及b平行或异面,都存在α,使a ⊂α,b∥α,B正确;对于选项C,a⊥α,b⊥α,一定有a∥b,C 错误;对于选项D,a⊂α,b⊥α,一定有a⊥b,D错误.6 D 异面、相交关系在空间中不能传递,故①②错;根据等角定理,可知③正确;对于④,在平面内,a∥c,而在空间中,a及c可以平行,可以相交,也可以异面,故④错误.7 D 如下图.由于1⊥平面A1B1C1D1,⊂平面A1B1C1D1,那么⊥1,所以①正确;当E,F分别是线段A1B1,B1C1的中点时,∥A1C1,又∥A1C1,那么∥,所以③不正确;当E,F分别不是线段A1B1,B1C1的中点时,及异面,所以②不正确;由于平面A1B1C1D1∥平面,⊂平面A1B1C1D1,所以∥平面,所以④正确.8 D选项A中,a,b还可能相交或异面,所以A是假命题;选项B中,a,b还可能相交或异面,所以B是假命题;选项C中,α,β还可能相交,所以C是假命题;选项D中,由于a⊥α,α⊥β,那么a∥β或a⊂β,那么β内存在直线l∥a,又b⊥β,那么b⊥l,所以a⊥b.9 C如下图:∥l∥m;⊥l,m∥l⇒⊥m;∥l⇒∥β.10、11 C 取中点E,连、,可证⊥,⊥,∴∠为二面角A--D 的平面角又==,=2,∴∠=90°,应选C.12 B 将其复原成正方体-,显见∥,△为正三角形,∴∠=60°.13 α∩β=14 45°如下图,正方体-A1B1C1D1中,由于⊥,1⊥,那么∠C1是二面角C1--C的平面角.又△1是等腰直角三角形,那么∠C1=45°.15、9如以下图所示,连接,,那么直线,确定一个平面.∵α∥β,∴∥,那么=,∴=,解得=9.16 ①②④如下图,①取中点,E连接,,那么⊥,⊥,而∩=E,∴⊥平面,⊂平面,故⊥,故①正确.②设正方形的边长为a,那么==a.由①知∠=90°是直二面角A--C的平面角,且∠=90°,∴=a,∴△是等边三角形,故②正确.③由题意及①知,⊥平面,故∠是及平面所成的角,而∠=45°,所以③不正确.④分别取,的中点为M,N,连接,,.那么∥,且==a,∥,且==a,∴∠是异面直线,所成的角.在△中,==a,=a,∴==a.∴△是正三角形,∴∠=60°,故④正确.17 (1)在正三棱柱-A1B1C1中,∵F、F1分别是、A1C1的中点,∴B1F1∥,1∥C1F.又∵B1F1∩1=F1,C1F∩=F ∴平面1F1∥平面C1.(2)在三棱柱-A1B1C1中,1⊥平面A1B1C1,∴B1F1⊥1.又B1F1⊥A1C1,A1C1∩1=A1 ∴B1F1⊥平面1A1,而B1F1⊂平面1F1 ∴平面1F1⊥平面1A1.18(1)如下图,连接,由=4,=3,∠=90°,得=5.又=5,E是的中点,所以⊥.∵⊥平面,⊂平面,所以⊥.而,是平面内的两条相交直线,所以⊥平面.(2)过点B作∥,分别及,相交于F,G,连接.由(1)⊥平面知,⊥∠为直线及平面所成的角,且⊥.由⊥平面知,∠为直线及平面所成的角.=4,=2,⊥,由题意,知∠=∠,因为∠=,∠=,所以=.由∠=∠=90°知,∥,又∥,所以四边形是平行四边形,故==3.于是=2.在△中,=4,=2,⊥,所以==2,===.于是==.又梯形的面积为S=×(5+3)×4=16,所以四棱锥P-的体积为V=×S×=×16×=.19[解析] (1)证明:如下图,取的中点E,连接,,,∵△为正三角形,∴⊥,=∠=260°=.∵平面⊥平面,∴⊥平面,而⊂平面,∴⊥.∵四边形是矩形,∴△,△,△均为直角三角形,由勾股定理可求得=,=,=3 ∴2+2=2.∴⊥.又∩=E,∴⊥平面,∴⊥.(2)解:由(1)可知⊥,⊥,∴∠是二面角P--D的平面角.∴∠===1,∴∠=45°.∴二面角P--D的大小为45°20(1)因为侧面1B1是菱形,所以B1C⊥1,又B1C⊥A1B,且A1B∩1=B,所以B1C⊥平面A11,又B1C⊂平面1C所以平面1C⊥平面A11 .(2)设1交B1C于点E,连接,那么是平面A11及平面B1的交线.因为A1B∥平面B1,A1B⊂平面A11,平面A11∩平面B1=,所以A1B∥.又E是1的中点,所以D为A1C1的中点.即A1D1=1.21[解] (1)证明:连接,如以下图所示.∵为正方形∴∩=F,且F是的中点,又G是的中点∴∥,又⊂平面,⊄平面,∴∥平面.(2)证明:∵为正方形,∴⊥,又∵平面⊥平面,平面∩平面=,⊂平面,∴⊥平面,∴⊥.又∵==,∴2+2=2,∴⊥.又∵∩=B,∴⊥平面.(3)取的中点H,连,∵===,∴⊥,且=,又平面⊥平面∴⊥平面,∴V=×1×=.22[解析] (1)证明:在直三棱柱-A1B1C1中,底面三边长=3,=4,=5,∴⊥.又∵C1C⊥.∴⊥平面1B1∵1⊂平面1B,∴⊥1.(2)证明:设1及C1B的交点为E,连接,又四边形1B1为正方形.∵D是的中点,E是1的中点,∴∥1.∵⊂平面1,1⊄平面1,∴1∥平面1.(3)解:∵∥1,∴∠为1及B1C所成的角.在△中,=1=,==,=1=2,∴∠==.∴异面直线1及B1C所成角的余弦值为.。

新课标高中数学必修二综合试题及答案

新课标高中数学必修二综合试题及答案

高中新课标数学必修②测试卷(4)班别 _____ 姓名 ____________ 座号 ____ 分数______一. 选择题 (每小题4分,共48分)1. 直线0x a ++=(a 为实常数)的倾斜角的大小是( D ).A.030 B. 060 C. 0120 D. 0150 2. 到直线3410x y --=的距离为2的直线方程是( B ).A. 34110x y --=B. 34110x y --=或3490x y -+=C. 3490x y -+=D. 34110x y -+= 或 3490x y --= 3. 下列说法正确的是( C ).A. 经过定点0P (0x ,0y )的直线都可以用方程00()y y k x x -=-表示.B. 经过不同两点1P (1x ,1y ),2P (2x ,2y )的直线都可以用方程112121y y x x y y x x --=--表示.C. 经过定点0P (0,b )且斜率存在的直线都可以用方程y kx b =+表示.D. 不过原点的直线都可以用方程1x ya b+=表示. 4. 无论m 为何值,直线1(2)y m x +=-总过一个定点,其中m R ∈,该定点坐标为( D ). A.(1,2-) B.(1-,2) C.(2-,1-) D.(2,1-) 5. 若直线1l :()34350m x y m +++-=与2l :()2580x m y ++-=平行,则m 的值为( A ).A. 7-B. 17--或C. 6-D. 133-6. 一条直线与一个平面内的( D )都垂直,则该直线与此平面垂直.A. 无数条直线B. 两条直线C. 两条平行直线D.两条相交直线 7. 下列四个命题中错误的个数是( B ). ① 垂直于同一条直线的两条直线相互平行 ② 垂直于同一个平面的两条直线相互平行③ 垂直于同一条直线的两个平面相互平行 ④ 垂直于同一个平面的两个平面相互垂直A. 1B. 2C. 3D. 48. 半径为R 的球内接一个正方体,则该正方体的体积是( C ).A. 3B.343R π3D. 39R 9. 下列命题中错误的是( B ). A. 若//,,m n n m βα⊥⊂,则αβ⊥B. 若α⊥β,a ⊂α,则a ⊥βC. 若α⊥γ,β⊥γ,l αβ=,则l ⊥γD. 若α⊥β,aβ=AB ,a //α,a⊥AB ,则a ⊥β10. P 为ABC 所在平面外一点,PB PC =,P 在平面ABC 上的射影必在ABC 的( A ).A. BC 边的垂直平分线上B. BC 边的高线上C. BC 边的中线上D. BAC ∠的角平分线上11. 圆1C :222880x y x y +++-=与圆2C 224420x y x y +-+-=的位置关系是( A ). A. 相交 B. 外切 C. 内切 D. 相离 12. 直线()110a x y +++=与圆2220x y x +-=相切,则a 的值为( C ).A. 1,1-B. 2-C. 1-D. 1 二. 填空题(每小题4分,共20分)1. 圆224460x y x y +-++=截直线50x y --=所得的弦长为, 2. 过点(1,2)且与直线210x y +-=平行的直线的方程是 250x y +-= 3. 过点A (0,1),B (2,0)的直线的方程为 220x y +-= .4. 已知各面均为等边三角形的四面体的棱长 为2,则它的表面积是5. 如图,在正方体111ABCD A B C D -中,异面 直线1A D 与1D C 所成的角为 060 度;直线1A D 与平面11AB C D 所成的角为 030 度.三. 解答题(第1、2题各9分,第3题14分,共1. 求经过两条直线1l :3420x y +-=与2l :220x y ++=的交点P ,且垂直于直线3l :210x y --=直线l 的方程.1解:由3420220x y x y +-=⎧⎨++=⎩ 解得22x y =-⎧⎨=⎩∴ 点P 的坐标是(2-,2) ∵ 所求直线l 与3l 垂直,∴ 设直线l 的方程为 20x y C ++= 把点P 的坐标代入得 ()2220C ⨯-++= ,得2C =∴ 所求直线l 的方程为 220x y ++= 2. 已知圆心为C 的圆经过点A (0,6-),B (1,5-),且圆心在直线l :10x y -+=上,求圆心为C的圆的标准方程. 解:因为A (0,6-),B (1,5-),所以线段AB 的中点D 的坐标为111,22⎛⎫- ⎪⎝⎭,直线AB 的斜率 ()56110AB k ---==-,因此线段AB 的垂直平分线'l 的方程是11122y x ⎛⎫+=-- ⎪⎝⎭, 即 50x y ++=圆心C 的坐标是方程组 5010x y x y ++=⎧⎨-+=⎩,的解.解此方程组,得 32x y =-⎧⎨=-⎩,所以圆心C 的坐标是(3-,2-). 圆心为C 的圆的半径长所以,圆心为C 的圆的标准方程是3. 如图:在三棱锥S ABC -中,已知点D 、E 、F 分别为棱AC 、SA 、SC 的中点. ①求证:EF ∥平面ABC .②若SA SC =,BA BC =,求证:平面SBD ⊥平面ABC . 解:①证明:∵EF 是SAC 的中位线,∴EF ∥AC ,B又∵EF ⊄平面ABC ,AC ⊂平面ABC ,∴EF ∥平面ABC .②证明:∵SA SC =,AD DC = ∴SD ⊥AC , ∵BA BC =,AD DC = ∴BD ⊥AC ,又∵SD ⊂平面SBD ,BD ⊂平面SBD ,SD DB D =,∴AC ⊥平面SBD , 又∵AC ⊂平面ABC , ∴平面SBD ⊥平面ABC .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学必修二综合测试题一.选择题*1.下列叙述中,正确的是( ) (A )因为,P Q αα∈∈,所以PQ ∈α(B )因为P α∈,Q β∈,所以αβ⋂=PQ (C )因为AB α⊂,C ∈AB ,D ∈AB ,所以CD ∈α (D )因为AB α⊂,AB β⊂,所以()A αβ∈⋂且()B αβ∈⋂*2.已知直线l 的方程为1y x =+,则该直线l 的倾斜角为( ).(A)30 (B)45 (C)60 (D)135*3.已知点(,1,2)A x B 和点(2,3,4),且AB =,则实数x 的值是( ). (A)-3或4 (B)–6或2 (C)3或-4 (D)6或-2*4.长方体的三个面的面积分别是632、、,则长方体的体积是( ).A .23B .32C .6D .6*5.棱长为a 的正方体内切一球,该球的表面积为 ( ) A 、2a π B 、22a π C 、32a π D 、a π24*6.若直线a 与平面α不垂直,那么在平面α内与直线a 垂直的直线( )(A )只有一条 (B )无数条 (C )是平面α内的所有直线 (D )不存在**7.已知直线l 、m 、n 与平面α、β,给出下列四个命题:①若m ∥l ,n ∥l ,则m ∥n ②若m ⊥? ,m ∥?, 则? ⊥?③若m ∥? ,n ∥? ,则m ∥n ④若m ⊥? ,? ⊥? ,则m ∥? 或m ? 其中假命题...是( ). (A) ① (B) ② (C) ③ (D) ④**8.在同一直角坐标系中,表示直线y ax =与y x a =+正确的是( ). **9.如图,一个空间几何体的主视图和左视图都是边长为1的正方形, 俯视图是一个圆,那么这个几何体的侧面积...为( * ). (A)4π(B) 54π(C) π(D) 32π**10.直线3y 2x =--与圆9)3y ()2x (22=++-交于E 、F 两点,则∆EOF (O 是原点)的面积为( ).A .52B .43C .23D .556**11.已知点)3,2(-A 、)2,3(--B 直线l 过点)1,1(P ,且与线段AB 相交,则直线l 的斜率的取值k 范围是 ( )A 、34k ≥或4k ≤- B 、34k ≥或14k ≤-C 、434≤≤-k D 、443≤≤k ***12.若直线k 24kx y ++=与曲线2x 4y -=有两个交点,则k 的取值范围是( ).A .[)∞+,1 B . )43,1[-- C . ]1,43( D .]1,(--∞二.填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上.**13.如果对任何实数k ,直线(3+k)x +(1-2k)y +1+5k=0都过一个定点A ,那么点A 的坐标是 .**14.空间四个点P 、A 、B 、C 在同一球面上,PA 、PB 、PC 两两垂直,且PA=PB=PC=a ,那么这个球面的面积是 . **15.已知222212:1:349O x y O x y +=+=圆与圆(-)(+),则12O O 圆与圆的位置关系为 . ***16.如图①,一个圆锥形容器的高为a ,内装一定量的水.如果将容器倒置,这时所形成的圆锥的高恰为2a(如图②),则图①中的水面高度为 . 三.解答题:**17.(本小题满分12分)如图,在OABC 中,点C (1,3). (1)求OC 所在直线的斜率; (2)过点C 做CD ⊥AB 于点D ,求CD 所在直线的方程. **18.(本小题满分12分)如图,已知正四棱锥V -ABCD 中,AC BD M VM 与交于点,是棱锥的高,若6cm AC =,5cm VC =,求正四棱锥V -ABCD 的体积.***19.(本小题满分12分)如图,在正方体ABCD -A 1B 1C 1D 1中,E 、F 为棱AD 、AB 的中点. (1)求证:EF ∥平面CB 1D 1;(2)求证:平面CAA 1C 1⊥平面CB 1D 1.***20. (本小题满分12分)已知直线1l :mx-y=0 ,2l :x+my-m-2=0(Ⅰ)求证:对m ∈R ,1l 与 2l 的交点P 在一个定圆上;(Ⅱ)若1l 与定圆的另一个交点为1P ,2l 与定圆的另一交点为2P ,求当m 在实数范围内取值时,⊿21P PP 面积的最大值及对应的m .***21. (本小题满分12分)如图,在棱长为a 的正方体ABCD D C B A -1111中,(1)作出面11A BC 与面ABCD 的交线l ,判断l 与线11A C 位置关系,并给出证明; (2)证明1B D ⊥面11A BC ;(3)求线AC 到面11A BC 的距离; (4)若以D 为坐标原点,分别以1,,DA DC DD 所在的直线为x 轴、y 轴、z 轴,建立空间① ②aDB C AO1 xyDAB 1C 1D 1EBD VM直角坐标系,试写出1,B B 两点的坐标. ****22.(本小题满分14分)已知圆O :221x y +=和定点A (2,1),由圆O 外一点(,)P a b 向圆O 引切线PQ ,切点为Q ,且满足PQ PA =.(1) 求实数a 、b 间满足的等量关系; (2) 求线段PQ 长的最小值;(3) 若以P 为圆心所作的圆P 与圆O 有公共点,试求半径取最小值时圆P 的方程.参考答案一.选择题 DBACA BDCCD AB二.填空题 13. )2,1(- 14. 2a 3π 15. 相离16. (1a三.解答题 17. 解: (1)点O (0,0),点C (1,3), ∴ OC所在直线的斜率为30310OCk -==-. (2)在OABC 中,//AB OC,CD ⊥AB ,∴ CD ⊥OC .∴ CD 所在直线的斜率为13CD k =-.∴CD 所在直线方程为13(1)3y x -=--,3100x y +-=即. 18. 解法1:正四棱锥V -ABCD 中,ABCD是正方形,11163222MC AC BD ∴===⨯=(c m).且11661822ABCD S AC BD =⨯⨯=⨯⨯=(cm 2).VM 是棱锥的高, ∴Rt △VMC 中,4VM ===(cm). ∴正四棱锥V -ABCD 的体积为11184243ABCD S VM ⨯=⨯⨯=(cm 3). 解法2:正四棱锥V-ABCD中,ABCD 是正方形,∴11163222MC AC BD ===⨯=(cm). 且2AB BC AC === . ∴2218ABCD S AB ===(cm 2).VM 是棱锥的高, ∴Rt △VMC中,4VM ==(cm).∴正四棱锥V -ABCD 的体积为111842433ABCD S VM ⨯=⨯⨯=(cm 3). 19. (1)证明:连结BD .在长方体1AC 中,对角线11//BD B D .又 E 、F 为棱AD 、AB 的中点, //EF BD ∴. 11//EF B D ∴. 又B 1D 1平面11CB D ,EF ⊄平面11CB D ,∴ EF ∥平面CB 1D 1.(2) 在长方体1AC 中,AA 1⊥平面A 1B 1C 1D 1,而B 1D 1平面A 1B 1C 1D 1, ∴ AA 1⊥B 1D 1. 又在正方形A 1B 1C 1D 1中,A 1C 1⊥B 1D 1,∴ B 1D 1⊥平面CAA 1C 1. 又B 1D 1平面CB 1D 1, ∴平面CAA 1C 1⊥平面CB 1D 1. 20. 解:(Ⅰ)1l 与 2l 分别过定点(0,0)、(2,1),且两两垂直,∴ 1l 与 2l 的交点必在以(0,0)、(2,1)为一条直径的圆:0)1y (y )2x (x =-+- 即(Ⅱ)由(1)得1P (0,0)、2P (2,1),∴⊿21P PP 面积的最大值必为45r r 221=⋅⋅. 此时OP 与12P P 垂直,由此可得m=3或13-. 21.解:(1)在面ABCD 内过点B 作AC 的平行线BE ,易知BE 即为直线l , ∵AC ∥11A C ,AC ∥l ,∴l ∥11A C .(2)易证11A C ⊥面11DBB D ,∴11A C⊥1B D ,同理可证1A B ⊥1B D ,又11A C ⋂1A B =1A ,∴1B D ⊥面11A BC . (3)线AC 到面11A BC 的距离即为点A 到面11A BC 的距离,也就是点1B 到面11A BC 的距离,记为h ,在三棱锥111B BA C -中有111111B BAC B A B C V V --=,即1111111133A BC ABC S hS BB ∆∆⋅=⋅,∴h =. (4)1(,,0),(,,)C a a C a a a 22. 解:(1)连,OP Q 为切点,PQ OQ ⊥,由勾股定理有222PQ OP OQ =-.又由已知PQ PA =,故22PQ PA =.即:22222()1(2)(1)a b a b +-=-+-. 化简得实数a 、b 间满足的等量关系为:230a b +-=.(2)由230a b +-=,得23b a =-+.PQ ===故当65a =时,minPQ =即线段PQ 长的 解法2:由(1)知,点P 在直线l :2x + y -3 =0 上.∴ | PQ |min = | PA |min ,即求点A 到直线 l 的距离.∴ | PQ |min = | 2×2 + 1-3 |2 2 + 1 2= 255 . (3)设圆P 的半径为R ,圆P 与圆O 有公共点,圆 O 的半径为1,1 1.R OP R ∴-≤≤+即1R OP ≥-且1R OP ≤+.而OP ===,故当65a =时,minOP =此时b =-,min R =.得半径取最小值时圆P 的方程为22263()()1)55x y -+-=.解法2: 圆P 与圆O 有公共点,圆 P 半径最小时为与圆O 外切(取小者)的情形,而这些半径的最小值为圆心O 到直线l 的距离减去1,圆心P 为过原点与l 垂直的直线l ’ 与l 的交点P 0.r =32 2 + 12-1 = 355 -1. 又 l ’:x -2y = 0,解方程组20,230x y x y -=⎧⎨+-=⎩,得6,535x y ⎧=⎪⎪⎨⎪=⎪⎩.即P 0( 65 ,35).∴ 所求圆方程为22263()()1)55x y -+-=.。

相关文档
最新文档