人教版高一数学必修2测试题
人教版高一数学必修2 空间直线的垂直关系练习题(含答案详解)

必修2 空间中的垂直关系基础知识点一、选择题:1.若斜线段AB是它在平面α上的射影的长的2倍,则AB与平面α所成的角是( ).A.60°B.45°C.30°D.120°2.直线l⊥平面α,直线m⊂α,则( ).A.l⊥mB.l∥mC.l,m异面D.l,m相交而不垂直3.如图所示,PO⊥平面ABC,BO⊥AC,在图中与AC垂直的线段有( ).A.1条B.2条C.3条D.4条4.若平面α⊥平面β,平面β⊥平面γ,则( ).A.α∥γB.α⊥γC.α与γ相交但不垂直D.以上都有可能5.已知长方体ABCDA1B1C1D1,在平面AB1上任取一点M,作ME⊥AB于E,则( ).A.ME⊥平面ACB.ME ⊂平面ACC.ME∥平面ACD.以上都有可能6.如图,设P是正方形ABCD外一点,且PA⊥平面ABCD,则平面PAB与平面PBC、平面PAD的位置关系是( ).A.平面PAB与平面PBC、平面PAD都垂直B.它们两两垂直C.平面PAB与平面PBC垂直,与平面PAD不垂直D.平面PAB与平面PBC、平面PAD都不垂直二、填空题:7.在正方体A1B1C1D1ABCD中,E,F分别是棱AB,BC的中点,O是底面ABCD的中心(如图),则EF与平面BB1O的关系是________.8.若a,b表示直线,α表示平面,下列命题中正确的有________个.①a⊥α,b∥α⇒a⊥b; ②a⊥α,a⊥b⇒b∥α;③a∥α,a⊥b⇒b⊥α;④a⊥α,b⊥α⇒a∥b.9.α、β是两个不同的平面,m、n是平面α及β外的两条不同的直线,给出四个论断:①m⊥n;②α⊥β;③m⊥α;④n⊥β.以其中三个论断作为条件,余下的一个论断作为结论,写出你认为正确的一个命题________.10.如图,正方体ABCDA1B1C1D1中,截面C1D1AB与底面ABCD所成二面角C1ABC的大小为________.三、解答题:11.如图所示,在Rt △AOB 中,∠ABO=π6,斜边AB=4,Rt △AOC 可以通过Rt △AOB 以直线AO 为轴旋转得到,且二面角BAOC 是直二面角,D 是AB 的中点.求证:平面COD ⊥平面AOB.12.如图,在四棱锥P ABCD 中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD=DC ,E 是PC 的中点,作EF ⊥PB 交PB 于点F.(1)求证:PA ∥平面EDB ;(2)求证:PB ⊥平面EFD.综合提高1.已知l ,m ,n 为两两垂直的三条异面直线,过l 作平面α与直线m 垂直,则直线n 与平面α的关系是( ).A.n ∥αB.n ∥α或n ⊂αC.n ⊂α或n 与α不平行D.n ⊂α2.已知平面α⊥平面β,α∩β=l ,点A ∈α,A ∉l ,直线AB ∥l ,直线AC ⊥l ,直线m ∥α,m ∥β,则下列四种位置关系中,不一定成立的是( ).A.AB ∥mB.AC ⊥mC.AB ∥βD.AC ⊥β3.一个二面角的两个半平面分别垂直于另一个二面角的两个半平面,那么这两个二面角( ).A.相等B.互补C.相等或互补D.关系无法确定4.如图,正方形SG1G2G3中,E,F分别是G1G2,G2G3的中点,现在沿SE,SF,EF 把这个正方形折成一个四面体,使G1、G2、G3重合,重合后的点记为G.给出下列关系:①SG⊥平面EFG;②SE⊥平面EFG;③GF⊥SE;④EF⊥平面SEG.其中成立的有( ).A.①②B.①③C.②③D.③④5.如果三棱锥的三个侧面两两相互垂直,则顶点在底面的正投影是底面三角形的________心.6.已知三棱柱ABCA1B1C1的侧棱与底面边长都相等,若A1在底面ABC内的射影为△ABC的中心,则AB1与ABC底面所成的角的正弦值等于________.7.将正方形ABCD沿对角线BD折成直二面角ABDC,有如下四个结论:①AC⊥BD;②△ACD是等边三角形;③AB与平面BCD成60°的角;④AB与CD 所成的角为60°.其中真命题的编号是________(写出所有真命题的编号).8.如图,A、B、C、D为空间四点,在△ABC中,AB=2,AC=BC=2,等边三角形ADB以AB为轴运动,当平面ADB⊥平面ABC时,则CD=________.9.如图所示,四边形ABCD为正方形,SA垂直于四边形ABCD所在的平面,过点A且垂直于SC的平面分别交SB,SC,SD于点E,F,G.求证:AE⊥SB,AG⊥SD.10.如图,在四棱锥P-ABCD中,PO⊥面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°.(1)求证:PC⊥BC.(2)求点A到平面PBC的距离.11.如图,已知平面PAB⊥平面ABC,平面PAC⊥平面ABC,AE⊥平面PBC,E为垂足.(1)求证:PA⊥平面ABC;(2)当E为△PBC的垂心时,求证:△ABC是直角三角形.12.(创新拓展)已知△BCD 中,∠BCD=90°,BC=CD=1,AB ⊥平面BCD ,∠ADB=60°,E ,F 分别是AC ,AD 上的动点,且AE AC =AF AD=λ(0<λ<1). (1)求证:不论λ为何值,总有平面BEF ⊥平面ABC ;(2)当λ为何值时,平面BEF ⊥平面ACD?参考答案基础篇1.答案 A ;解析 斜线段、垂线段以及射影构成直角三角形.如图所示,∠ABO即是斜线AB 与平面α所成的角,又AB=2BO ,所以cos ∠ABO=OB AB =12.所以∠ABO=60°.故选A.2.答案 A ;解析 无论l 与m 是异面,还是相交,都有l ⊥m ,考查线面垂直的定义,故选A.3.答案 D ;解析 ∵PO ⊥平面ABC ,∴PO ⊥AC ,又∵AC ⊥BO ,∴AC ⊥平面PBD , ∴平面PBD 中的4条线段PB ,PD ,PO ,BD 与AC 垂直.4.答案 D ;解析 以正方体为模型:相邻两侧面都与底面垂直;相对的两侧面都与底面垂直;一侧面和一对角面都与底面垂直,故选D.5.答案 A ;解析 由于ME ⊂平面AB 1,平面AB 1∩平面AC=AB ,且平面AB 1⊥平面AC ,ME ⊥AB ,则ME ⊥平面AC.6.答案A;解析∵PA⊥平面ABCD,∴PA⊥BC.又BC⊥AB,PA∩AB=A,∴BC⊥平面PAB,∵BC⊂平面PBC,∴平面PBC⊥平面PAB.由AD⊥PA,AD⊥AB,PA∩AB=A,得AD⊥平面PAB.∵AD⊂平面PAD,∴平面PAD ⊥平面PAB.由已知易得平面PBC与平面PAD不垂直,故选A.7.答案垂直;解析由正方体性质知AC⊥BD,BB1⊥AC,∵E,F是棱AB,BC 的中点,∴EF∥AC,∴EF⊥BD,EF⊥BB1,∴EF⊥平面BB1O.8.答案2;解析由线面垂直的性质定理知①④正确.9.答案①③④⇒②或②③④⇒①;解析如图,PA⊥α,PB⊥β,垂足分别为A、B,α∩β=l,l∩平面PAB=O,连接OA、OB,可证明∠AOB为二面角αlβ的平面角,则∠AOB=90°⇔PA⊥PB.10.答案45°;解析∵AB⊥BC,AB⊥BC1,∴∠C1BC为二面角C1ABC的平面角,大小为45°.11.证明:由题意:CO⊥AO,BO⊥AO,∴∠BOC是二面角BAOC的平面角,又∵二面角BAOC是直二面角,∴CO⊥BO,又∵AO∩BO=O,∴CO⊥平面AOB,∵CO⊂平面COD,∴平面COD⊥平面AOB.12.证明:(1)连接AC,AC交BD于点O.连接EO,如图.∵底面ABCD是正方形,∴点O是AC的中点.在△PAC中,EO是中位线,∴PA∥EO.而EO⊂平面EDB且PA⊄平面EDB.所以PA∥平面EDB.(2)∵PD⊥底面ABCD且DC⊂底面ABCD.∴PD⊥DC.∵PD=DC,可知△PDC是等腰直角三角形,而DE是斜边PC的中线,∴DE⊥PC.①同样由PD⊥底面ABCD,得PD⊥BC.∵底面ABCD是正方形,有DC⊥BC,∴BC⊥平面PDC.而DE⊂平面PDC,∴BC⊥DE.②由①和②推得DE⊥平面PBC.而PB⊂平面PBC,∴DE⊥PB.又EF⊥PB且DE∩EF=E,∴PB⊥平面EFD.综合提高1.答案A;解析∵l⊂α,且l与n异面,∴n⊄α,又∵m⊥α,n⊥m,∴n ∥α.2.答案D;解析如图,AB∥l∥m,AC⊥l,m∥l⇒AC⊥m,AB∥l⇒AB∥β.故选D.3.答案D;解析如图所示,平面EFDG⊥平面ABC,当平面HDG绕DG转动时,平面HDG始终与平面BCD垂直,所以两个二面角的大小关系不确定,因为二面角HDGF 的大小不确定.4.答案B;解析由SG⊥GE,SG⊥GF,得SG⊥平面EFG,排除C、D;若SE⊥平面EFG,则SG∥SE,这与SG∩SE=S矛盾,排除A,故选B.5.答案垂;解析三棱锥的三个侧面两两相互垂直,则三条交线两两互相垂直,可证投影是底面三角形的垂心.6.答案:23;解析由题意知,三棱锥A1ABC为正四面体(各棱长都相等的三棱锥),设棱长为a ,则AB 1=3a ,棱柱的高A 1O=63a(即点B 1到底面ABC 的距离),故AB 1与底面ABC 所成的角的正弦值为A 1O AB 1=23.' 7.答案 ①②④;解析 本题主要考查了空间直线与直线、直线与平面的夹角.8.答案 2;解析 取AB 的中点E ,连接DE ,CE ,因为△ADB 是等边三角形,所以DE ⊥AB.当平面ADB ⊥平面ABC 时,因为平面ADB ∩平面ABC=AB ,所以DE ⊥平面ABC.又CE ⊂平面ABC 可知DE ⊥CE. 由已知可得DE=3,EC=1,在Rt △DEC 中,CD=DE 2+CE 2=2.9.证明 因为SA ⊥平面ABCD ,所以SA ⊥BC.又BC ⊥AB ,SA ∩AB=A ,所以BC ⊥平面SAB ,又AE ⊂平面SAB ,所以BC ⊥AE.因为SC ⊥平面AEFG ,所以SC ⊥AE.又BC ∩SC=C ,所以AE ⊥平面SBC ,所以AE ⊥SB.同理可证AG ⊥SD.10.(1)证明 因为PD ⊥平面ABCD ,BC ⊂平面ABCD ,所以PD ⊥BC.因为∠BCD=90°,所以BC ⊥CD.又PD ∩CD=D ,所以BC ⊥平面PCD.而PC ⊂平面PCD ,所以PC ⊥BC.(2)解 如图,过点A 作BC 的平行线交CD 的延长线于E ,过点E 作PC 的垂线,垂足为F ,则有AE ∥平面PBC ,所以点A 到平面PBC 的距离等于点E 到平面PBC 的距离.又EF ⊥PC ,BC ⊥平面PCD ,则EF ⊥BC.BC ∩PC=C ,所以EF ⊥平面PBC.EF 即为E 到平面PBC 的距离.又因为AE ∥BC ,AB ∥CD ,所以四边形ABCE 为平行四边形.所以CE=AB=2. 又PD=CD=1,PD ⊥平面ABCD ,CD ⊂平面ABCD.所以PD ⊥CD ,∠PCD=45°. 所以EF= 2.即点A 到平面PBC 的距离为 2.11.证明 (1)在平面ABC 内取一点D ,作DF ⊥AC 于F ,∵平面PAC ⊥平面ABC ,且交线为AC ,∴DF ⊥平面PAC.又∵PA ⊂平面PAC ,∴DF ⊥PA.作DG ⊥AB 于G ,同理可证DG ⊥PA.∵DG ∩DF=D ,∴PA ⊥平面ABC.(2)连接BE 并延长交PC 于H.∵E 是△PBC 的垂心,∴PC ⊥BH ,又AE ⊥平面PBC ,故AE ⊥PC ,且AE ∩BE=E ,∴PC ⊥平面ABE.∴PC ⊥AB.又∵PA ⊥平面ABC ,∴PA ⊥AB ,且PA ∩PC=P ,∴AB ⊥平面PAC ,∴AB ⊥AC ,即△ABC 是直角三角形. 12.(1)证明 ∵AB ⊥平面BCD ,∴AB ⊥CD.∵CD ⊥BC 且AB ∩BC=B ,∴CD ⊥平面ABC.又∵AE AC =AF AD=λ(0<λ<1),∴不论λ为何值,恒有EF ∥CD ,∴EF ⊥平面ABC. 又EF ⊂平面BEF ,∴不论λ为何值恒有平面BEF ⊥平面ABC.(2)解 由(1)知,EF ⊥BE ,又平面BEF ⊥平面ACD ,∴BE ⊥平面ACD ,∴BE ⊥AC. ∵BC=CD=1,∠BCD=90°,∠ADB=60°,AB ⊥平面BCD ,∴BD=2,AB=2tan 60°= 6.AC=AB 2+BC 2=7, 由AB 2=AE ·AC 得AE=67,∴λ=AE AC =67,故当λ=67时,平面BEF ⊥平面ACD.。
人教版高一上学期数学(必修二)《4.6函数的应用》同步测试题及答案

人教版高一上学期数学(必修二)《4.6函数的应用》同步测试题及答案1.某研究小组在一项实验中获得一组关于y,t的数据,将其整理得到如图所示的图形.下列函数中,最能近似刻画y与t之间关系的是()A.y=2tB.y=2t2C.y=t3D.y=log2t2.某种产品今年的产量是a,如果保持5%的年增长率,那么经过x年(x∈N*),该产品的产量y满足()A.y=a(1+5%x)B.y=a+5%C.y=a(1+5%)x-1D.y=a(1+5%)x3.中国茶文化博大精深.茶水的口感与茶叶类型和水的温度有关.经验表明,某种绿茶用85℃的水泡制,再等到茶水温度降至60℃时饮用,可以产生最佳口感.为分析泡制一杯最佳口感茶水所需的时间,某研究人员每隔1min测量一次茶水的温度,根据所得数据作出如图所示的散点图.观察散点图的分布情况,下列哪个函数模型可以近似地刻画茶水温度y随时间x变化的规律()A.y=mx2+n(m>0)B.y=mx+n(m>0)C.y=ma x+n(m>0,a>0,a≠1)D.y=m log a x+n(m>0,a>0,a≠1)4.大西洋鲑鱼每年都要逆流而上,洄游到产卵地产卵.科学家发现鲑鱼的游速v(单位:m/s)与鲑鱼的耗氧量的单位数P的关系为v=12log3P100,则鲑鱼静止时耗氧量的单位数为()A.1B.100C.200D.3005.国内首个百万千瓦级海上风电场—三峡阳江沙扒海上风电项目宣布实现全容量并网发电,为粤港澳大湾区建设提供清洁能源动力.风速预测是风电出力大小评估的重要工作,通常采用威布尔分布模型,有学者根据某地气象数据得到该地的威布尔分布模型:F(x)=1-e−(x2)k,其中k为形状参数,x为风速.已知风速为1m/s时,F≈0.221,则当风速为4m/s时,F约为(参考数据:ln0.779≈-0.25,e-4≈0.018)() A.0.920B.0.964C.0.975D.0.9826.(多选)某工厂生产一种溶液,按市场要求杂质含量不得超过0.1%,而这种溶液最初的杂质含量为2%,现进行过滤,已知每过滤一次杂质含量减少1,则使产品达到市场要求的过滤次数可以为(参考数据:lg2≈0.301,3lg3≈0.477)()A.6B.9C.8D.77.近来,国内多个城市纷纷加码布局“夜经济”,以满足不同层次的多元消费,并拉动就业、带动创业,进而提升区域经济发展活力.某夜市的一位工艺品售卖者,通过对每天销售情况的调查发现:该工艺品在过去的一个月内(以30天计),日销售量Q(x)(单位:件)与时间x(单位:天)的部分数据如表所示:x 10 15 20 25 30Q(x) 50 55 60 55 50给出以下四个函数模型:①Q(x)=ax+b;②Q(x)=a|x-m|+b;③Q(x)=a·b x;④Q(x)=a log b x.根据表中的数据,最适合用来描述日销售量Q(x)与时间x的变化关系的函数模型是.8.某种放射性元素的原子数N随时间t的变化规律是N=N0e-λt,其中N0,λ为正常数.由放射性元素的这种性质,可以制造高精度的时钟,用原子数表示时间t为.9.(10分)据观测统计,某湿地公园某种珍稀鸟类的现有个数约1000只,并以平均每年8%的速度增加.(1)求两年后这种珍稀鸟类的大约个数;(3分)(2)写出y(珍稀鸟类的个数)关于x(经过的年数)的函数关系式;(3分)(3)约经过多少年以后,这种鸟类的个数达到现有个数的3倍或以上?(结果为整数)(参考数据:lg2≈0.3010,lg 3≈0.4771)(4分)10.(12分)芦荟是一种经济价值很高的观赏、食用植物,不仅可美化居室、净化空气,又可美容保健,因此深受人们欢迎,在国内占有很大的市场.某人准备进军芦荟市场,栽培芦荟,为了了解行情,进行市场调研,从4月1日起,芦荟的种植成本Q(单位:元/10kg)与上市时间t(单位:天)的数据情况如表:t 50 110 250Q 150 108 150(1)根据表中数据,从下列函数中选取一个最能反映芦荟种植成本Q 与上市时间t 的变化关系的函数:Q =at +b ,Q =at 2+bt +c ,Q =a ·b t ,Q =a log b t ;(6分)(2)利用你选择的函数,求芦荟种植成本最低时的上市天数及最低种植成本.(6分)11.白细胞是一类无色、球形、有核的血细胞,正常成人白细胞计数为(4.0~10.0)×109/L ,可因每日不同时间和机体不同的功能状态而在一定范围内变化.若白细胞计数因为感染产生病理性持续升高,则需进一步探查原因,进行药物干预.研究人员在对某种药物的研究过程中发现,在特定实验环境下的某段时间内,可以用对数模型W (m )=-W 0ln(Km )描述白细胞计数W (m )(单位:109/L)与随用药量m (单位:mg)的变化规律,其中W 0为初始白细胞计数对应值,K 为参数.已知W 0=20,用药量m =50时,在规定时间后测得白细胞计数W =14,要使白细胞计数达到正常值,则需将用药量至少提高到(参考数据:e 15≈1.221)( ) A.58B.59 C.60D.6212.某食品的保鲜时间y (单位:小时)与储藏温度x (单位:℃)满足函数关系y =e kx +b (e 为自然对数的底数,k ,b 为常数).若该食品在0 ℃的保鲜时间是192 h ,在22 ℃的保鲜时间是48 h ,则该食品在33 ℃的保鲜时间是( ) A.16 hB.20 h C.24 hD.26 h13.某工厂生产过程中产生的废气必须经过过滤后才能排放,已知在过滤过程中,废气中的污染物含量p (单位:毫克/升)与过滤时间t (单位:小时)之间的关系为p (t )=p 0e -kt (e 为自然对数的底数,p 0为污染物的初始含量).过滤1小时后,检测发现污染物的含量减少了15,要使污染物的含量不超过初始值的110 000,至少还需过滤 小时(参考数据:lg 2≈0.301 0)( ) A.40B.38 C.44D.4214.光线通过一块玻璃,其强度要失掉原来的110,要使通过玻璃的光线强度为原来的12以下,至少需要这样的玻璃板的块数为 .(lg 2≈0.301 0,lg 3≈0.477 1)15.为了预防某种病毒,某商场需要通过喷洒药物对内部空间进行全面消毒.出于对顾客身体健康的考虑,相关部门规定空气中这种药物的浓度不超过0.25毫克/立方米时,顾客方可进入商场.已知从喷洒药物开始,商场内部的药物浓度y (毫克/立方米)与时间t (分钟)之间的函数关系为y ={0.1t,0≤t ≤10,(12)t10−a ,t >10,函数的图象如图所示.如果商场规定9:30顾客可以进入商场,那么开始喷洒药物的时间最迟是( )A.9:00B.8:40C.8:30D.8:0016.(12分)科学家发现某种特殊物质的温度y (单位:摄氏度)随时间x (单位:分钟)的变化规律满足关系式:y =m ·2x +21-x (0≤x ≤4,m >0).(1)若m =2,求经过多少分钟,该物质的温度为5摄氏度;(5分) (2)如果该物质温度总不低于2摄氏度,求m 的取值范围.(7分)参考答案1.D 2.D 3.C 4.B5.D [因为F (1)≈0.221 所以e−12k≈0.779,12k ≈-ln 0.779,2k ≈4,得k ≈2所以F (4)=1-e −2k≈1-e -4≈0.982.]6.BC [设经过n 次过滤,产品达到市场要求,则 2100×⎝⎛⎭⎫23n ≤11 000即⎝⎛⎭⎫23n ≤120,由n lg 23≤-lg 20即n (lg 2-lg 3)≤-(1+lg 2) 得n ≥1+lg 2lg 3-lg 2≈7.4.]7.② 8.t =-1λln NN 09.解 (1)依题意,得一年后这种鸟类的个数为 1 000+1 000×8%=1 080(只)两年后这种鸟类的个数为 1 080+1 080×8%≈1 166(只).(2)由题意可知珍稀鸟类的现有个数约1 000只,并以平均每年8%的速度增加 则所求的函数关系式为 y =1 000×1.08x ,x ∈N .(3)令1 000×1.08x ≥3×1 000,得1.08x ≥3,两边取常用对数得 lg 1.08x ≥lg 3,即x lg 1.08≥lg 3 因为lg 1.08>0,所以x ≥lg 3lg 1.08所以x ≥lg 3lg 108100=lg 3lg 108-2因为lg 108=lg(33×22)=3lg 3+2lg 2 所以x ≥lg 33lg 3+2lg 2-2≈0.477 13×0.477 1+2×0.301 0-2≈14.3故约经过15年以后,这种鸟类的个数达到现有个数的3倍或以上.10.解 (1)由所提供的数据可知,刻画芦荟种植成本Q 与上市时间t 的变化关系的函数不可能是常函数,若用函数Q =at +b ,Q =a ·b t ,Q =a log b t 中的任意一个来反映时都应有a ≠0,且上述三个函数均为单调函数,这与表格所提供的数据不符合,所以应选用二次函数Q =at 2+bt +c 进行描述,将表格所提供的三组数据分别代入函数Q =at 2+bt +c可得⎩⎨⎧150=2 500a +50b +c ,108=12 100a +110b +c ,150=62 500a +250b +c .解得a =1200,b =-32,c =4252.所以刻画芦荟种植成本Q 与上市时间t 的变化关系的函数为 Q =1200t 2-32t +4252.(2)由(1)可得,函数Q 为图象开口向上,对称轴为t =--322×1200=150的抛物线所以当t =150天时,芦荟种植成本最低为Q =1200×1502-32×150+4252=100(元/10 kg). 11.D [由已知W 0=20,m =50,W (50)=14,代入W (m )=-W 0ln(Km ) 则14=-20ln(50K ),解得K =e−71050则W (m )=-20ln (me −71050)因为用药量m =50时,在规定时间后测得白细胞计数W =14,白细胞计数值偏高 所以令W (m )=-20ln (me −71050)≤10 即ln (me−71050)≥-12解得m ≥50e 15≈50×1.221=61.05.所以要使白细胞计数达到正常值,则需将用药量至少提高到62.] 12.C [由题意可知,当x =0时,y =192;当x =22时,y =48 ∴⎩⎨⎧e b=192,e 22k +b =48,解得⎩⎪⎨⎪⎧e b=192,e 11k =12,则当x =33时 y =e 33k +b =(e 11k )3·e b =⎝⎛⎭⎫123×192=24.]13.D [根据题设,得45p 0=p 0e -k ∴e -k =45,所以p (t )=p 0⎝⎛⎭⎫45t ;由p (t )=p 0⎝⎛⎭⎫45t ≤110 000p 0,得⎝⎛⎭⎫45t ≤10-4,两边分别取以10为底的对数 并整理得t (1-3lg 2)≥4 ∴t ≥41-3lg 2≈41.2因此,至少还需过滤42小时.] 14.7解析 设至少需要x 块玻璃板由题意知⎝⎛⎭⎫1-110x <12即⎝⎛⎭⎫910x <12两边取对数lg ⎝⎛⎭⎫910x <lg 12即x ·(lg 9-lg 10)<-lg 2 即x ·(1-2lg 3)>lg 2 x >lg 21-2lg 3≈6.57 ∴x =7.15.A [根据函数的图象,可得函数的图象过点(10,1)代入函数的解析式,可得(12)1−a=1,解得a =1,所以y ={0.1t,0≤t ≤10,(12)t 10−1,t >10,令y ≤0.25,可得0.1t ≤0.25或(12)t10−1≤0.25解得0<t ≤2.5或t ≥30所以如果商场规定9:30顾客可以进入商场,那么开始喷洒药物的时间最迟是9:00.] 16.解 (1)由题意,得m =2 令y =2·2x +21-x =2·2x +22x =5解得x =1(负值舍去)因此,经过1分钟,该物质的温度为5摄氏度. (2)由题意得m ·2x +21-x ≥2对一切0≤x ≤4恒成立 则由m ·2x +21-x ≥2,得m ≥22x -222x 令t =2-x ,则116≤t ≤1且m ≥2t -2t 2构造函数f (t )=2t -2t 2 =-2⎝⎛⎭⎫t -122+12所以当t =12时,函数y =f (t )取得最大值12 则m ≥12.因此,实数m 的取值范围是⎣⎡⎭⎫12,+∞.。
高中数学必修二测试题及答案人教版

第一章 空间几何体一、选择题1.有一个几何体的三视图如下图所示,这个几何体可能是一个( ).主视图 左视图 俯视图 (第1题) A .棱台 B .棱锥 C .棱柱 D .正八面体2.如果一个水平放置的平面图形的斜二测直观图是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是( ).A .2+2B .221+C .22+2 D .2+13.棱长都是1的三棱锥的表面积为( ).A .3B .23C .33D .434.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是( ).A .25πB .50πC .125πD .都不对 5.正方体的棱长和外接球的半径之比为( ). A .3∶1 B .3∶2 C .2∶3 D .3∶36.在△ABC 中,AB =2,BC =1.5,∠ABC =120°,若使△ABC 绕直线BC 旋转一周,则所形成的几何体的体积是( ).A .29πB .27πC .25πD .23π7.若底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的对角线的长分别是9和15,则这个棱柱的侧面积是( ).A .130B .140C .150D .1608.如图,在多面体ABCDEF 中,已知平面ABCD 是边长为3的正方形,EF ∥AB ,EF =23,且EF 与平面ABCD 的距离为2,则该多面体的体积为( ).A .29 B .5 C .6 D .2159.下列关于用斜二测画法画直观图的说法中,错误..的是( ). A .用斜二测画法画出的直观图是在平行投影下画出的空间图形B .几何体的直观图的长、宽、高与其几何体的长、宽、高的比例相同C .水平放置的矩形的直观图是平行四边形D .水平放置的圆的直观图是椭圆10.如图是一个物体的三视图,则此物体的直观图是( ).(第8题)(第10题)二、填空题11.一个棱柱至少有______个面,面数最少的一个棱锥有________个顶点,顶点最少的一个棱台有________条侧棱.12.若三个球的表面积之比是1∶2∶3,则它们的体积之比是_____________.13.正方体ABCD-A1B1C1D1 中,O是上底面ABCD的中心,若正方体的棱长为a,则三棱锥O-AB1D1的体积为_____________.14.如图,E,F分别为正方体的面ADD1A1、面BCC1B1的中心,则四边形BFD1E在该正方体的面上的射影可能是___________.(第14题)15.已知一个长方体共一顶点的三个面的面积分别是2、3、6,则这个长方体的对角线长是___________,它的体积为___________.16.一个直径为32厘米的圆柱形水桶中放入一个铁球,球全部没入水中后,水面升高9厘米则此球的半径为_________厘米.三、解答题17.有一个正四棱台形状的油槽,可以装油190 L,假如它的两底面边长分别等于60 cm 和40 cm,求它的深度.18 *.已知半球内有一个内接正方体,求这个半球的体积与正方体的体积之比.[提示:过正方体的对角面作截面]19.如图,在四边形ABCD中,∠DAB=90°,∠ADC=135°,AB=5,CD=22,AD=2,求四边形ABCD绕AD旋转一周所成几何体的表面积及体积.(第19题)20.养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为12 m,高4 m,养路处拟建一个更大的圆锥形仓库,以存放更多食盐,现有两种方案:一是新建的仓库的底面直径比原来大4 m(高不变);二是高度增加4 m(底面直径不变).(1)分别计算按这两种方案所建的仓库的体积;(2)分别计算按这两种方案所建的仓库的表面积;(3)哪个方案更经济些?第一章 空间几何体参考答案A 组一、选择题 1.A解析:从俯视图来看,上、下底面都是正方形,但是大小不一样,可以判断可能是棱台.2.A解析:原图形为一直角梯形,其面积S =21(1+2+1)×2=2+2.3.A解析:因为四个面是全等的正三角形,则S 表面=4×43=3. 4.B解析:长方体的对角线是球的直径, l =2225+4+3=52,2R =52,R =225,S =4πR 2=50π. 5.C解析:正方体的对角线是外接球的直径. 6.D解析:V =V 大-V 小=31πr 2(1+1.5-1)=23π.7.D解析:设底面边长是a ,底面的两条对角线分别为l 1,l 2,而21l =152-52,22l =92-52,而21l +22l =4a 2,即152-52+92-52=4a 2,a =8,S 侧面=4×8×5=160. 8.D解析:过点E ,F 作底面的垂面,得两个体积相等的四棱锥和一个三棱柱,V =2×31×43×3×2+21×3×2×23=215.9.B解析:斜二测画法的规则中,已知图形中平行于 x 轴的线段,在直观图中保持原长度不变;平行于 y 轴的线段,长度为原来的一半.平行于 z 轴的线段的平行性和长度都不变.10.D解析:从三视图看底面为圆,且为组合体,所以选D. 二、填空题11.参考答案:5,4,3.解析:符合条件的几何体分别是:三棱柱,三棱锥,三棱台.12.参考答案:1∶22∶33.r 1∶r 2∶r 3=1∶2∶3,31r ∶32r ∶33r =13∶(2)3∶(3)3=1∶22∶33.13.参考答案:361a .解析:画出正方体,平面AB 1D 1与对角线A 1C 的交点是对角线的三等分点, 三棱锥O -AB 1D 1的高h =33a ,V =31Sh =31×43×2a 2×33a =61a 3. 另法:三棱锥O -AB 1D 1也可以看成三棱锥A -OB 1D 1,它的高为AO ,等腰三角形OB 1D 1为底面.14.参考答案:平行四边形或线段.15.参考答案:6,6.解析:设ab =2,bc =3,ac =6,则V = abc =6,c =3,a =2,b =1, l =1+2+3=6. 16.参考答案:12.解析:V =Sh =πr 2h =34πR 3,R =32764×=12. 三、解答题 17.参考答案:V =31(S +S S ′+S )h ,h =S S S S V ′+′+3=6001+4002+60030001903×=75.18.参考答案:如图是过正方体对角面作的截面.设半球的半径为R ,正方体的棱长为a ,则CC'=a ,OC =22a ,OC'=R .(第18题)在Rt △C'CO 中,由勾股定理,得CC' 2+OC 2=OC' 2,即 a 2+(22a )2=R 2. ∴R =26a ,∴V 半球=26πa 3,V 正方体=a 3. ∴V 半球 ∶V 正方体=6π∶2. 19.参考答案:S 表面=S 下底面+S 台侧面+S 锥侧面=π×52+π×(2+5)×5+π×2×22 =(60+42)π. V =V 台-V 锥 =31π(21r +r 1r 2+22r )h -31πr 2h 1 =3148π.20.解:(1) 参考答案:如果按方案一,仓库的底面直径变成16 m ,则仓库的体积V 1=31Sh =31×π×(216)2×4=3256π(m 3).如果按方案二,仓库的高变成8 m ,则仓库的体积COAV 2=31Sh =31×π×(212)2×8=3288π(m 3).(2) 参考答案:如果按方案一,仓库的底面直径变成16 m ,半径为8 m . 棱锥的母线长为l =224+8=45, 仓库的表面积S 1=π×8×45=325π(m 2). 如果按方案二,仓库的高变成8 m .棱锥的母线长为l =226+8=10,仓库的表面积S 2=π×6×10=60π(m 2).(3) 参考答案:∵V 2>V 1,S 2<S 1,∴方案二比方案一更加经济些.。
人教版高一数学必修二第四章圆与方程(单元测试,含答案).doc

与方程姓名:班级:一、选择题(共8小题;共40分)1Mx2 +尸一4x + 6y = 0的圆心坐标是()A (2,3)B (-2,3) C(-2,-3) D(2,-3)2OO的百径是3,百线1与OO相交,圆心0到百线1的距离是d,贝M应满足()Ad > 3 B 15 < d < 3 C 0 < d < 15 Dd < 0 3圆(x — 2)2 + (y- l)2 = 4与圆(x + l)2 + (y- 2)2 = 9的公切线有()条A1 B 2 C3 D4 4从原点向圆x2 + y2 一12y + 27 = 0作两条切线,则该圆夹在两条切线间的劣弧长为()A nB 2nC 4TTD 6TT5过点(1,1)的直线与圆(x - 2)2 + (y - 3)2 = 9相交于A, B两点,贝lj| AB |的最小值为() A2V3 B4 C2V5 D5 6已知圆C的半径为2, |员|心在x轴的正半轴上,直线3x + 4y + 4 = 0与圆C相切,贝I」圆C的方程为()Ax2 4-y2 - 2x - 3 = 0 B x2 4- y2 + 4x = 0Cx2 +y2 + 2x - 3 = 0 D x2 + y2 - 4x = 07耍在边长为16米的正方形草坪上安装喷水龙头,使整个草坪都能喷洒到水.假设每个喷水龙头的喷洒范閘都是半径为6米的圆面,则需安装这种喷水龙头的个数最少是()A6 B 5 C4 D38 已知圆:C1:(x-2)2 + (y-3)3 = 1,圆:C2:(x-3)2 + (y-4)2 = 9, M、N分别是圆C〔、C?上的动点,P为x轴上的动点,贝OIPMI + IPNI的最小值为()A5V2-4 B V17- 1 C6-2V2 D V17二、填空题(共7小题;共35分)9过点A(3,—4)与闘x2 +y2 = 25相切的直线方程是_______ .10如果单位圆X? +y2 = 1与圆C: (x — a)2 + (y - a)2 = 4相交,则实数a的取值范围为 ________ 11在空间直角坐标系,已知点A(l,0,2), B(l,-3,1),点M在y轴上,且M到A与到B的距离相等,则点M的坐标是 _____ ・12已知圆C: (x-2)2+y2 = l.若直线y二k(x+l)上存在点P,使得过P向圆C所作的州条切线所成的角为夕则实数k的取值范闌为 _______ .13如图,以棱长为a的止方体的三条棱所在的直线为坐标轴建立空间百角坐标系,若点P为对角线AB的点,点Q在棱CD上运动,则PQ的最小值为 .14在圆C:(x-2)2 + (y-2)2 = 8内,过点P(l,0)的最长的弦为AB,最短的弦为DE,贝9以边形ADBE的面积为____ •15据气象台预报:在A城正东方300km的海而B处有一台风心,正以每小时40km的速度向術北方向移动,在距台风心250km以内的地区将受其影响.从现在起经过约__________ h,台风将影响A城, 持续时间约为_______ h.(结果精确到Olh)三、解答题(共5小题;共65分)16若关于x, y的方程X? + y? - 4x + 4y + m = 0表示圆C.(1)求实数m的取值范围;(2)若圆C与圆M:x2 4-y2 = 2相离,求m的取值范囤.17已知圆C:x? + y? + 4x + 4y + m = 0,直线l:x + y 4- 2 = 0.(1)若I员IC与直线1相离,求m的取值范围;(2)若I员1D过点P(l,l), H.与恻C关丁•直线1对称,求I処D的方程.18如图,在平面直角坐标系xOy,点A(0,3),直线l:y = 2x-4.设圆C的半径为1,圆心在1上.(1)若圆心C也在直线y = x-l上,过点A作圆C的切线,求切线的方程;(2)若圆C上存在点M,使MA = 2M0,求圆心C的横坐标a的取值范|节|・19已知直线啲方程为2x+(l + m)y+2m = 0, m€R,点P的坐标为(-1,0).(1)求证:直线1恒过定点,并求出定点坐标;(2)求点P到直线1的距离的最大值;(3)设点P在直线1上的射影为点M, N的坐标为(2,1),求线段MN长的取值范闱.20 在平面直角坐标系xOy,已知圆Ci: (x + 3)2 + (y - I)2 = 4和圆C?: (x 一4)2 + (y — 5)2 = 4.(1)若直线1过点A(4,0), £L被圆C]截得的弦长为2孙,求直线啲方程;(2)设P为平面上的点,满足:存在过点P的无穷多对互相垂肖的肖线h和12,它们分别与圆C1 和圆C2相交,且直线h被圆C]截得的弦长与直线12被圆C2截得的弦长相等,试求所有满足条件的点p的坐标.答案第一部分I D 2 C 3 B 4 B 5 B 6 D 7 C 8 A第二部分9 3x-4y = 2510 -—< a < H J C —< a < —」 2 22 2 II (0,-1,0) 12 [一普,晋]13 yal4 4V615 20; 66第三部分 16 (1) |w|C 化简为(x- 2)2 4-(y + 2)2 = 8-m,所以8 — m > 0,即m V 8.(2)圆C 的圆心为(2,-2),半径为V8^ (m<8),圆M 的圆心为(0,0),半径为返,由题意,得圆心距大于两圆的半径和,则“22 + 22 + 解得6<m<8.17 (1)圆Ux?+y2+4x + 4y + m = 0即(x 4- 2)2 + (y + 2)2 = 8 - m.圆心C(-2,—2)到直线啲距离d =三|旦=V2,若圆C 与直线1相离,则d > r,所以 * = 8 — m < 2即 m > 6乂严=8 - m > 0即m V 8.故m 的取值范围是(6,8).(2)设圆D 的圆心D 的坐标为(xo ,y ()),由于圆C 的圆心C(_2,_2), 依题意知点D 和点C 关于直线1对称,解牡:0 所以圆D 的方程为x 2+y 2 = r 2,而r=|DP |=V2,因此,圆D 的方程为x 2+y 2 = 2.18 (1)由题设,I 员I 心C 是直线y = 2x- 4和y = x- 1的交点, 解得点C(3,2),于是切线的斜率必存在.设过A(0,3)的圆C 的切线方稈为y = kx + 3由题意,得解得:k=0或—孑 4故所求切线方程为{Xo-2 Yo+2Xo+2 + 竽+2 = 0x (-1) = -1I 3k + 1 |Vk 2 + 1y = 3 或3x + 4y — 12 = 0(2)因为圆心在直线y = 2x —4上,所以圆C的方程为(x — a)2 3 + [y — 2 (a — 2)]2 = 1 设点M(x,y),因为MA = 2M0,所以Jx2 + (y — 3)2 = 2jx2 +y2, 化简得x? + y2 + 2y — 3 = 0,即x2 + (y + l)2 = 4, 所以点M在以D(0,-l)为圆心,2为半径的圆上.由题意,点M(x,y)在圆C上,所以圆(:与圆D有公共点,贝I」12-11 < CD <2 + 1, 即l<Va2 + (2a-3)2<3 整理,得—8 S 5a2— 12a S 0由5a2-12a + 8>0,得a G R;S5a2 - 12a < 0,得12所以点C的横坐标a的取值范闌为[0,y .19(1)由2x + (l + m)y+2m = 0得2x + y + m(y + 2) = 0,所以直线1恒过直线2x + y= 0与直线y + 2 = 0交点Q.解方程组炸暮律得Q(l,-2),所以直线1恒过定点,且定点为Q(l,-2).2 设点P在直线1上的射影为点M,贝IJIPMI < |PQ|,当且仅当直线1与PQ垂直时,等号成立, 所以点P到直线1的距离的最大值即为线段PQ的长度为2逅.3因为直线1绕着点Q(l,-2)旋转,所以点M在以线段PQ为直径的I员1上,其I员I心为点C(O.-l),半径为说,因为N的坐标为(2,1),所以|CN| = 2V2,从而V2 < |MN| < 3V2.20(1)由于直线x = 4与圆C]不相交,所以直线1的斜率存在.设直线1的方程为y = k(x - 4),圆C]的I员I心到直线1的距离为d, 乂因为直线1被I员©截得的弦长为2箱,所以|l-k(-3-4)| d = ------- , ----Vl + k 2 y = 0 或 7x + 24y - 28 = 0 (2)设点P(a,b)满足条件,不妨设直线h 的方程为y — b = k(x — a), k H 0, 则直线】2的方程为山点到直线的距离公式得 d = J22 - (V3)2 = 1从而即所以直线1的方程k(24k + 7) = 0, 7 241因为圆Ci和C2的半径相等,及宜线I】被圆C]截得的弦长与直线-被【员丄2截得的弦长相等,所以I 员IC]的|员]心到直线1]的距离和圆C2的國心到直线】2的距离相等,即|1 一k(-3 - a) - b| |5 + £ (4 — a) — b|整理得|1 + 3k + ak — bl = |5k + 4 — a — bk|,从而1 + 3k + ak — b = 5k + 4 — a - bk,(a + b — 2)k — b — a + 3, 因为k的取值有无穷多个,所以(a + b — 2 = 0,戒(a — b + 8 = 0, (b - a + 3 = 0 严ia + b-5 = 0 解得这样点P只可能是点P] (I,-扌)或点卩2 (-!,¥)• 经检验点P]和P2满足题口条件.。
高一数学必修2测试题及答案全套

(数学2必修)第一章 空间几何体[基础训练A 组] 一、选择题1.有一个几何体的三视图如下图所示;这个几何体应是一个( )A .棱台B .棱锥C .棱柱D .都不对2.棱长都是1的三棱锥的表面积为( )AB. C. D. 3.长方体的一个顶点上三条棱长分别是3,4,5;且它的8个顶点都在 同一球面上;则这个球的表面积是( )A .25πB .50πC .125πD .都不对 4.正方体的内切球和外接球的半径之比为( )AB2 C.2:D35.在△ABC 中;02, 1.5,120AB BC ABC ==∠=;若使绕直线BC 旋转一周;则所形成的几何体的体积是( )A.92π B. 72π C. 52π D. 32π 6.底面是菱形的棱柱其侧棱垂直于底面;且侧棱长为5;它的对角线的长 分别是9和15;则这个棱柱的侧面积是( ) A .130 B .140 C .150 D .160二、填空题1.一个棱柱至少有 _____个面;面数最少的一个棱锥有 ________个顶点; 顶点最少的一个棱台有 ________条侧棱。
主视图 左视图 俯视图2.若三个球的表面积之比是1:2:3;则它们的体积之比是_____________。
3.正方体1111ABCD A B C D - 中;O 是上底面ABCD 中心;若正方体的棱长为a ; 则三棱锥11O AB D -的体积为_____________。
4.如图;,E F 分别为正方体的面11A ADD 、面11B BCC 的中心;则四边形E BFD 1在该正方体的面上的射影可能是____________。
5.已知一个长方体共一顶点的三个面的面积分别是2、3、6;这个长方体的对角线长是___________;若长方体的共顶点的三个侧面面积分别为3,5,15;则它的体积为___________.三、解答题1.养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用);已建的仓库的底面直径为12M ;高4M ;养路处拟建一个更大的圆锥形仓库;以存放更多食盐;现有两种方案:一是新建的仓库的底面直径比原来大4M (高不变);二是高度增加4M (底面直径不变)。
人教版高一数学必修第二册同步单元测试卷第07章 复数(B卷提高篇)解析版

第七章复数B(提高卷)参考正确答案与试题详细解析一.选择题(共8小题)1.(2020春•西城区校级期中)复数,则在复平面内,z对应的点的坐标是()A.(1,0)B.(0,1)C.D.【参考解答】解:由i;则在复平面内,z对应的点的坐标是:(0,1).故选:B.2.(2019春•抚顺期末)若复数(a2﹣3a+2)+|a﹣1|i(a∈R)不是纯虚数,则()A.a≠2 B.a≠1 C.a=1 D.a≠1且a≠2【参考解答】解:∵若复数(a2﹣3a+2)+|a﹣1|i是纯虚数,∴a2﹣3a+2=0且|a﹣1|≠0∴a=2,a=1,且a≠1,a≠0,∴a=2,∴复数(a2﹣3a+2)+|a﹣1|i(a∈R)不是纯虚数时,a≠2,故选:A.3.(2020•张家口二模)已知非零复数z满足i(其中是的z共轭复数,是虚数单位),z在复平面内对应点P(x,y),则点P的轨迹为()A.x﹣y=0(x2+y2≠0)B.x+y=0(x2+y2≠0)C.x﹣y﹣2=0(x2+y2≠0)D.x+y﹣2=0(x2+y2≠0)【参考解答】解:由题意,z=x+yi(x,y∈R),由i,得(x2+y2≠0),即x﹣yi=i(x+yi)=xi﹣y,则x=﹣y,即x+y=0(x2+y2≠0).∴点P的轨迹为x+y=0(x2+y2≠0).故选:B.4.(2020春•桃城区校级月考)已知复数(a∈R,i为虚数单位),若复数z的共轭复数的虚部为,则复数z在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【参考解答】解:∵,∴的虚部为,由,得a=2.∴复数z在复平面内对应的点的坐标为(,),位于第一象限.故选:A.5.(2020•浙江模拟)若复数z1=2+i,z2=cosα+i sinα(α∈R),其中i是虚数单位,则|z1﹣z2|的最大值为()A.B.C.D.【参考解答】解:∵z1=2+i,z2=cosα+i sinα(α∈R),∴z2对应的点在以原点为圆心,以1为半径的圆上,z1=2+i对应的点为Z1(2,1).如图:则|z1﹣z2|的最大值为.故选:C.6.(2020•临川区校级模拟)已知i为虚数单位,若复数z1,z2在复平面内对应的点分别为(2,1),(1,﹣2),则复数()A.﹣3﹣4i B.﹣3+4i C.﹣4﹣3i D.﹣3【参考解答】解:由题意,z1=2+i,z2=1﹣2i,则.故选:A.7.(2019春•辽宁期末)设i是虚数单位,则2i+3i2+4i3+……+2020i2019的值为()A.﹣1010﹣1010i B.﹣1011﹣1010iC.﹣1011﹣1012i D.1011﹣1010i【参考解答】解:设S=2i+3i2+4i3+ (2020i2019)∴iS=2i2+3i3+ (2020i2020)则(1﹣i)S=i+i+i2+i3+……+i2019﹣2020i2020.i2021+i,∴S.故选:B.8.(2019春•遂宁期末)设m∈R,复数z=(1+i)(m﹣i)在复平面内对应的点位于实轴上,又函数f(x)=mlnx+x,若曲线y=f(x)与直线l:y=2kx﹣1有且只有一个公共点,则实数k的取值范围为()A.B.(﹣∞,0]∪{1}C.(﹣∞,0]∪{2} D.(﹣∞,0)∪(2,+∞)【参考解答】解:∵z=(1+i)(m﹣i)=(m+1)+(m﹣1)i在复平面内对应的点位于实轴上,∴m﹣1=0,即m=1.则f(x)=lnx+x,f′(x),又当x→0时,f(x)→﹣∞,作出函数f(x)=lnx+x的图象如图:直线l:y=2kx﹣1过(0,﹣1),设切点为(x0,lnx0+x0),则在切点处的切线方程为y﹣lnx0﹣x0=()(x﹣x0),把(0,﹣1)代入,可得﹣1﹣lnx0﹣x0=﹣1﹣x0,即lnx0=0,即x0=1.则2k=2,k=1.而f′(x)1(x>0),由图可知,当2k∈(﹣∞,1],即k∈(﹣∞,]时,曲线y=f(x)与直线l:y=2kx﹣1有且只有一个公共点,综上可得,当k∈(﹣∞,]∪{1}时,曲线y=f(x)与直线l:y=2kx﹣1有且只有一个公共点.故选:A.二.多选题(共4小题)9.(2020春•东海县期中)下列关于复数的说法,其中正确的是()A.复数z=a+bi(a,b∈R)是实数的充要条件是b=0B.复数z=a+bi(a,b∈R)是纯虚数的充要条件是b≠0C.若z1,z2互为共轭复数,则z1z2是实数D.若z1,z2互为共轭复数,则在复平面内它们所对应的点关于y轴对称【参考解答】解:对于选项A:复数z=a+bi(a,b∈R)是实数的充要条件是b=0,所以选项A正确;对于选项B:复数z=a+bi(a,b∈R)是纯虚数的充要条件是a=0且b≠0,所以选项B错误;对于选项C:若z1,z2互为共轭复数,不妨设z1=a+bi(a∈R,b∈R),则z2=a﹣bi,所以,所以选项C正确;对于选项D:若z1,z2互为共轭复数,不妨设z1=a+bi(a∈R,b∈R),则z2=a﹣bi,则它们在复平面内所对应的点分别为(a,b)和(a,﹣b),关于x轴对称,所以选项D错误,故选:AC.10.(2020春•胶州市期中)若复数z满足(1+i)z=3+i(其中i是虚数单位),复数z的共轭复数为,则()A.B.z的实部是2C.z的虚部是1D.复数在复平面内对应的点在第一象限【参考解答】解:由(1+i)z=3+i,得z.∴|z|,故A正确;z的实部为2,故B正确;z的虚部是﹣1,故C错误;复数在复平面内对应的点的坐标为(2,1),在第一象限,故D正确.故选:ABD.11.(2020春•苏州期中)已知复数(i为虚数单位),为z的共轭复数,若复数,则下列结论正确的有()A.w在复平面内对应的点位于第二象限B.|w|=1C.w的实数部分为D.w的虚部为【参考解答】解:因为复数(i为虚数单位),为z的共轭复数,则复数i;故w对应的点为(,);|w|1;且w的实部为:,虚部为:;故选:ABC.12.(2020春•滕州市校级月考)已知集合M={m|m=i n,n∈N},其中i为虚数单位,则下列元素属于集合M的是()A.(1﹣i)(1+i)B.C.D.(1﹣i)2【参考解答】解:根据题意,M={m|m=i n,n∈N}中,n=4k(k∈N)时,i n=1;n=4k+1(k∈N)时,i n=i;n=4k+2(k∈N)时,i n=﹣1;n=4k+3(k∈N)时,i n=﹣i,∴M={﹣1,1,i,﹣i}.选项A中,(1﹣i)(1+i)=2∉M;选项B中,;选项C中,;选项D中,(1﹣i)2=﹣2i∉M.故选:BC.三.填空题(共4小题)13.(2019春•杨浦区校级期末)若复数z满足|1﹣z|•|1+z|=2,则|z|的最小值为1【参考解答】解:设z=a+bi;|1﹣z|•|1+z|=2,即:2•,令|z|=t.(t>0),则t2=a2+b2,所以2⇒4=t4+2t2+1﹣4a2,因为a2≥0,所以4≤t4+2t2+1,所以t4+2t2﹣3≥0,解得:t2≥1或者t2≤﹣3(舍),所以t≥1,故正确答案为:1.14.(2020春•浦东新区校级月考)关于x的实系数方程x2+4x+m=0的两个复数根为a、β,且|a﹣β|=2,则m =3或5.【参考解答】解:对于方程x2+4x+m=0,∴α+β=﹣4,αβ=m,①当△=16﹣4m<0时,设两个复数根为a、β,且设α=a+bi,β=a﹣bi,a,b∈R,所以2a=﹣4,|2bi|=2,∴a=﹣2,b=±1故α=﹣2+i,β=﹣2﹣i,∴αβ=(﹣2)2﹣i2=5.②△=16﹣4m≥0时,设两根为x1,x2.易知x1+x2=﹣4,x1x2=m,∴,解得m=3.综上可知,m的值为3或5.故正确答案为:3或5.15.(2020春•开封期中)若|z1﹣z2|=1,则称z1与z2互为“邻位复数”.已知复数与z2=2+bi互为“邻位复数”,a,b∈R,则a2+b2的最大值为8.【参考解答】解:由题意,,故,∴点(a,b)在圆上,而表示点(a,b)到原点的距离,故a2+b2的最大值为.故正确答案为:.16.(2020春•浦东新区校级月考)定义复数的一种运算z1⊗z2(等式右边为普通运算),若复数z =a+bi(a,b∈R)满足a+b=3,则z⊗最小值为.【参考解答】解:由题意得z⊗.将b=3﹣a代入得:,显然,当a时上式取得最小值.故正确答案为:.四.参考解答题(共5小题)17.(2020春•锡山区校级期中)(1)计算:(i为虚数单位);(2)已知z是一个复数,求解关于z的方程z3i•1+3i.(i为虚数单位).【参考解答】解:(1);(2)设z=a+bi(a,b∈R),则,代入z3i•1+3i,得a2+b2﹣3i(a﹣bi)=1+3i,即a2+b2﹣3b﹣3ai=1+3i,则,解得或.则z=﹣1或z=1+3i.18.(2020春•兴庆区校级期中)实数m分别取什么数值时,复数z=(m2+5m+6)+(m2﹣2m﹣15)i (1)与复数2﹣12i相等.(2)与复数12+16i互为共轭.(3)对应的点在x轴上方.【参考解答】解:(1)根据复数相等的充要条件得解之得m=﹣1.(2)根据共轭复数的定义得解之得m=1.(3)根据复数z对应点在x轴上方可得m2﹣2m﹣15>0,解之得m<﹣3或m>5.19.(2019春•平遥县校级期中)设z1是虚数,z2=z1是实数,且﹣1≤z2≤1.(1)求|z1|的值以及z1的实部的取值范围.(2)若ω,求证:ω为纯虚数.【参考解答】解:(1)设z1=a+bi(a,b∈R且b≠0),则z2=z1a+bi a+bi=a+bi i=a(b)i.∵z2是实数,b≠0,∴b0.b≠0,于是有a2+b2=1,即|z1|=1,还可得z2=2a.由﹣1≤z2≤1,得﹣1≤2a≤1,解得a,即z1的实部的取值范围.(2)证明:ωi.∵a∈,b≠0,∴ω为纯虚数.20.(2020春•胶州市期中)在复平面内,平行四边形OABC的顶点O,A,C,对应复数分别为0,2+i,﹣1+3i.(1)求,及,;(2)设∠OCB=θ,求cosθ.【参考解答】解:(1)∵,∴所对应的复数z1=(2+i)+(﹣1+3i)=1+4i,∴,.∵,∴所对应的复数z2=(2+i)﹣(﹣1+3i)=3﹣2i,∴,;(2)由题意,,∵,,∴,,.∴.21.(2019春•黄浦区校级月考)已知复数z1=sin2x+λi,(λ,m,x∈R),且z1=z2.(1)若λ=0且0<x<π,求x的值;(2)设λ=f(x);①求f(x)的最小正周期和单调递减区间;②已知当x=α时,,试求的值.【参考解答】解:由z1=sin2x+λi,(λ,m,x∈R),且z1=z2.得.(1)若λ=0且0<x<π,则sin2x,即tan2x,∴x或;(2)①λ,则T=π,由,得,k∈Z.∴f(x)的单调递减区间为,k∈Z;②由题意,,∴sin(),即cos().∴.。
(人教版)高中数学必修二(全册)同步练习+单元检测卷汇总

(人教版)高中数学必修二(全册)同步练习+单元检测卷汇总课后提升作业一棱柱、棱锥、棱台的结构特征(45分钟70分)一、选择题(每小题5分,共40分)1.下列说法中正确的是( )A.棱柱的面中,至少有两个面互相平行B.棱柱中两个互相平行的平面一定是棱柱的底面C.棱柱中一条侧棱的长就是棱柱的高D.棱柱的侧面一定是平行四边形,但它的底面一定不是平行四边形【解析】选A.棱柱的两底面互相平行,故A正确;棱柱的侧面也可能有平行的面(如正方体),故B错;立在一起的一摞书可以看成一个四棱柱,当把这摞书推倾斜时,它的侧棱就不是棱柱的高,故C错;由棱柱的定义知,棱柱的侧面一定是平行四边形,但它的底面可以是平行四边形,也可以是其他多边形,故D错.2.四棱柱有几条侧棱,几个顶点( )A.四条侧棱、四个顶点B.八条侧棱、四个顶点C.四条侧棱、八个顶点D.六条侧棱、八个顶点【解析】选C.结合正方体可知,四棱柱有四条侧棱,八个顶点.3.下列说法错误的是( )A.多面体至少有四个面B.九棱柱有9条侧棱,9个侧面,侧面为平行四边形C.长方体、正方体都是棱柱D.三棱柱的侧面为三角形【解析】选D.三棱柱的侧面是平行四边形,故D错误.4.如图,将装有水的长方体水槽固定底面一边后倾斜一个小角度,则倾斜后水槽中的水形成的几何体是( )A.棱柱B.棱台C.由一个棱柱与一个棱锥构成D.不能确定【解析】选 A.根据棱柱的结构特征,当倾斜后水槽中的水形成了以左右(或前后)两个侧面为底面的四棱柱.5.(2016·郑州高一检测)如图都是正方体的表面展开图,还原成正方体后,其中两个完全一样的是( )A.(1)(2)B.(2)(3)C.(3)(4)D.(1)(4)【解题指南】让其中一个正方形不动,其余各面沿这个正方形的各边折起,进行想象后判断.【解析】选B.在图(2)(3)中,⑤不动,把图形折起,则②⑤为对面,①④为对面,③⑥为对面,故图(2)(3)完全一样,而(1)(4)则不同. 【补偿训练】下列图形经过折叠可以围成一个棱柱的是( )【解析】选D.A,B,C中底面多边形的边数与侧面数不相等.6.若棱台上、下底面的对应边之比为1∶2,则上、下底面的面积之比是( )A.1∶2B.1∶4C.2∶1D.4∶1【解析】选 B.由棱台的概念知,上、下两底面是相似的多边形,故它们的面积之比等于对应边长之比的平方,故为1∶4.7.(2016·温州高一检测)在五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个五棱柱的对角线的条数共有( )A.20条B.15条C.12条D.10条【解析】选 D.因为棱柱的侧棱都是平行的,所以过任意不相邻的两条侧棱的截面为一个平行四边形,共可得5个截面,每个平行四边形可得到五棱柱的两条对角线,故共有10条对角线.8.(2015·广东高考)若空间中n个不同的点两两距离都相等,则正整数n的取值( )A.大于5B.等于5C.至多等于4D.至多等于3【解析】选 C.正四面体的四个顶点是两两距离相等的,即空间中n 个不同的点两两距离都相等,则正整数n的取值至多等于4.二、填空题(每小题5分,共10分)9.在正方体上任意选择4个顶点,它们可能是如下各种几何体的4个顶点,这些几何体是________.(写出所有正确结论的编号)①矩形;②不是矩形的平行四边形;③有三个面为等腰直角三角形,有一个面为等边三角形的四面体;④每个面都是等边三角形的四面体;⑤每个面都是直角三角形的四面体.【解析】如图:①正确,如图四边形A1D1CB为矩形;②错误,任意选择4个顶点,若组成一个平面图形,则必为矩形或正方形,如四边形ABCD为正方形,四边形A1BCD1为矩形;③正确,如四面体A1ABD;④正确,如四面体A1C1BD;⑤正确,如四面体B1ABD;则正确的说法是①③④⑤.答案:①③④⑤10.(2016·天津高一检测)一个棱柱有10个顶点,所有的侧棱长的和为60cm,则每条侧棱长为________cm.【解析】因为n棱柱有2n个顶点,又此棱柱有10个顶点,所以它是五棱柱,又棱柱的侧棱都相等,五条棱长的和为60cm,可知每条侧棱长为12cm.答案:12三、解答题(每小题10分,共20分)11.根据下面对几何体结构特征的描述,说出几何体的名称.(1)由8个面围成,其中2个面是互相平行且全等的六边形,其他各面都是平行四边形.(2)由5个面围成,其中一个是正方形,其他各面都是有1个公共顶点的三角形.【解析】(1)根据棱柱的结构特征可知,该几何体为六棱柱.(2)根据棱锥的结构特征可知,该几何体为四棱锥.12.已知三棱柱ABC-A′B′C′,底面是边长为1的正三角形,侧面为全等的矩形且高为8,求一点自A点出发沿着三棱柱的侧面绕行一周后到达A′点的最短路线长.【解析】将三棱柱侧面沿侧棱AA′剪开,展成平面图形如图,则AA″即为所求的最短路线.在Rt△AA1A″中,AA1=3,A1A″=8,所以AA″==.【延伸探究】本题条件不变,求一点自A点出发沿着三棱柱的侧面绕行两周后到达A′点的最短路线长.【解析】将两个相同的题目中的三棱柱的侧面都沿AA′剪开,然后展开并拼接成如图所示,则AA″即为所求的最短路线.在Rt△AA1A″中,AA1=6,A1A″=8,所以AA″===10.【能力挑战题】如图,在边长为2a的正方形ABCD中,E,F分别为AB,BC的中点,沿图中虚线将3个三角形折起,使点A,B,C重合,重合后记为点P.问:(1)折起后形成的几何体是什么几何体?(2)这个几何体共有几个面,每个面的三角形有何特点?(3)每个面的三角形面积为多少?【解析】(1)如图,折起后的几何体是三棱锥.(2)这个几何体共有4个面,其中△DEF为等腰三角形,△PEF为等腰直角三角形,△DPE和△DPF均为直角三角形.(3)S△PEF=a2,S△DPF=S△DPE=×2a×a=a2,S△DEF=S正方形ABCD-S△PEF-S△DPF-S△DPE=(2a)2-a2-a2-a2=a2.关闭Word文档返回原板块温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
人教版高一数学必修第二册同步单元测试卷第08章 立体几何初步(B卷提高篇)原卷版

第八章立体几何初步B(提高卷)试卷副标题考试范围:xxx;考试时间:100分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________题号一二三四总分得分第Ⅰ卷(选择题)请点击修改第I卷的文字说明评卷人得分一.选择题(共8小题)1.(2019春•辽宁期中)直角三角形的三边满足a<b<c,分别以a,b,c三边为轴将三角形旋转一周所得旋转体的体积记为V a,V b,V c,则()A.V c<V b<V a B.V a<V b<V c C.V c<V a<V b D.V b<V a<V c2.(2020•大连二模)已知三棱锥P﹣ABC,面P AB⊥面ABC,P A=PB=4,,∠ACB=90°,则三棱锥P ﹣ABC外接球的表面积()A.20πB.32πC.64πD.80π3.(2020•泰安模拟)我国古代数学名著《九章算术》中记载:“刍甍者,下有袤有广,而上有袤无广.刍,草也.甍,屋盖也.”今有底面为正方形的屋脊形状的多面体(如图所示),下底面是边长为2的正方形,上棱,EF ∥平面ABCD,EF与平面ABCD的距离为2,该刍甍的体积为()A.6 B.C.D.124.(2020•全国Ⅰ卷模拟)已知O为等腰直角三角形POD的直角顶点,以OP为旋转轴旋转一周得到几何体,CD 是底面圆O上的弦,△COD为等边三角形,则异面直线OC与PD所成角的余弦值为()A.B.C.D.5.(2020•合肥模拟)已知四棱锥S﹣ABCD中,四边形ABCD为等腰梯形,AD∥BC,∠BAD=120°,△SAD是等边三角形,且SA=AB=2,若点P在四棱锥S﹣ABCD的外接球面上运动,记点P到平面ABCD的距离为d,若平面SAD⊥平面ABCD,则d的最大值为()A. 1 B. 2 C. 1 D. 26.(2020•葫芦岛模拟)正方体ABCD﹣A1B1C1D1的棱长为2,在A,B,C,D,C1,D1这六个顶点中,选择两个点与A1,B1构成正三棱锥P,在剩下的四个顶点中选择两个点与A1,B1构成正三棱锥Q,M表示P与Q的公共部分,则M的体积为()A.B.C.D.17.(2020•广东二模)如图,在矩形ABCD中,已知AB=2AD=2a,E是AB的中点,将△ADE沿直线DE翻折成△A1DE,连接A1C.若当三棱锥A1﹣CDE的体积取得最大值时,三棱锥A1﹣CDE外接球的体积为π,则a=()A.2 B.C.2D.48.(2020•新疆模拟)半正多面体亦称“阿基米德多面体”,是由边数不全相同的正多边形为面的多面体,体现了数学的对称美.如图,将正方体沿交于一顶点的三条棱的中点截去一个三棱锥,如此共可截去八个三棱锥,得到一个有十四个面的半正多面体,它们的棱长都相等,其中八个为正三角形,六个为正方形,称这样的半正多面体为二十四等边体.一个二十四等边体的各个顶点都在同一个球面上,若该球的表面积为16π,则该二十四等边体的表面积为()A.B.C.D.第Ⅱ卷(非选择题)请点击修改第Ⅱ卷的文字说明评卷人得分二.多选题(共4小题)9.(2020春•宝应县期中)如图所示,P为矩形ABCD所在平面外一点,矩形对角线交点为O,M为PB的中点,下列结论正确的是()A.OM∥PD B.OM∥平面PCD C.OM∥平面PDA D.OM∥平面PBA 10.(2020•山东模拟)已知α、β是两个不同的平面,m、n是两条不同的直线,下列说法中正确的是()A.若m⊥α,m∥n,n⊂β,则α⊥βB.若α∥β,m⊥α,n⊥β,则m∥nC.若α∥β,m⊂α,n⊂β,则m∥nD.若α⊥β,m⊂α,α∩β=n,m⊥n,则m⊥β11.(2020•市中区校级模拟)《九章算术》中将底面为直角三角形且侧棱垂直于底面的三棱柱称为“堑堵”;底面为矩形,一条侧棱垂直于底面的四棱锥称之为“阳马”;四个面均为直角三角形的四面体称为“鳖膈”.如图在堑堵ABC﹣A1B1C1中,AC⊥BC,且AA1=AB=2.下列说法正确的是()A.四棱锥B﹣A1ACC1为“阳马”B.四面体A1C1CB为“鳖膈”C.四棱锥B﹣A1ACC1体积最大为D.过A点分别作AE⊥A1B于点E,AF⊥A1C于点F,则EF⊥A1B12.(2020•4月份模拟)如图,正方体ABCD﹣A1B1C1D1的棱长为a,线段B1D1上有两个动点E,F,且EF a,以下结论正确的有()A.AC⊥BEB.点A到△BEF的距离为定值C.三棱锥A﹣BEF的体积是正方体ABCD﹣A1B1C1D1体积的D.异面直线AE,BF所成的角为定值评卷人得分三.填空题(共4小题)13.(2020•昆山市模拟)在长方体ABCD﹣A1B1C1D1中,AB=4,AD=4,AA1=3,若在长方体中挖去一个体积最大的圆柱,则此圆柱与原长方体的体积比为.14.(2020•珠海三模)在三棱锥P﹣ABC中,平面P AB⊥平面ABC,△ABC是边长为2的正三角形,△P AB是以AB为斜边的直角三角形,则该三棱锥外接球的表面积为.15.(2020•中山区校级一模)如图是某机械零件的几何结构,该几何体是由两个相同的直四棱柱组合而成的,且前后、左右、上下均对称,每个四棱柱的底面都是边长为2的正方形,高为4,且两个四棱柱的侧棱互相垂直.则这个几何体有个面,其体积为.16.(2020春•江西月考)在四棱锥P﹣ABCD中,底面ABCD为正方形,平面P AD⊥平面ABCD,且△P AD为等边三角形,若四棱锥P﹣ABCD的体积与四棱锥P﹣ABCD外接球的表面积大小之比为,则正方形ABCD 的边长为.评卷人得分四.参考解答题(共5小题)17.(2020•新课标Ⅰ)如图,D为圆锥的顶点,O是圆锥底面的圆心,△ABC是底面的内接正三角形,P为DO上一点,∠APC=90°.(1)证明:平面P AB⊥平面P AC;(2)设DO,圆锥的侧面积为π,求三棱锥P﹣ABC的体积.18.(2020春•房山区期末)如图,在四棱锥P﹣ABCD中,底面ABCD为矩形,平面P AD⊥平面ABCD,P A=PD =AD=2,AB=3.点M,N分别是AB,PC的中点.(Ⅰ)求证:MN∥平面P AD;(Ⅱ)求四棱锥P﹣ABCD的体积;(Ⅲ)在棱CD上是否存在一点T,使得直线BT⊥PC?请给出你的判断,并说明理由.19.(2020•宜昌模拟)已知菱形ABCD的边长为2,∠ABC=60°,对角线AC、BD交于点O,平面外一点P在平面ABCD内的射影为O,PB与平面ABCD所成角为30°.(1)求证:BD⊥P A;(2)点N在线段PB上,且,求的值.20.(2020春•东城区校级月考)如图,在三棱柱ABC﹣A1B1C1中,BB1⊥平面ABC,AB⊥BC,AA1=AB=BC=2.(Ⅰ)求证:BC1⊥平面A1B1C;(Ⅱ)求异面直线B1C与A1B所成角的大小;(Ⅲ)点M在线段B1C上,且,点N在线段A1B上,若MN∥平面A1ACC1,求的值.21.(2020•重庆模拟)如图,四边形ABCD为平行四边形,点E在AB上,AE=2EB=2,且DE⊥AB.以DE为折痕把△ADE折起,使点A到达点F的位置,且∠FEB=60°.(Ⅰ)求证:平面BFC⊥平面BDC;(Ⅱ)若直线DF与平面BCDE所成角的正切值为,求点C到平面DEF的距离.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学必修2测试题一、 选择题(12×5分=60分)1、下列命题为真命题的是( )A. 平行于同一平面的两条直线平行;B.与某一平面成等角的两条直线平行;C. 垂直于同一平面的两条直线平行;D.垂直于同一直线的两条直线平行。
2、下列命题中错误的是:( )A. 如果α⊥β,那么α内一定存在直线平行于平面β;B. 如果α⊥β,那么α内所有直线都垂直于平面β;C. 如果平面α不垂直平面β,那么α内一定不存在直线垂直于平面β;D. 如果α⊥γ,β⊥γ,α∩β=l,那么l ⊥γ.3、右图的正方体ABCD-A ’B ’C ’D ’中,异面直线AA ’与BC 所成的角是( )A. 300B.450C. 600D. 9004.一个圆柱的侧面积展开图是一个正方形,这个圆柱的全面积与侧面积的比是 ) A .ππ221+ B .ππ441+ C .ππ21+ D .ππ241+ 5、直线5x-2y-10=0在x 轴上的截距为a,在y 轴上的截距为b,则( )A.a=2,b=5;B.a=2,b=5-;C.a=2-,b=5;D.a=2-,b=5-.6、直线2x-y=7与直线3x+2y-7=0的交点是( )A (3,-1)B (-1,3)C (-3,-1)D (3,1)7、过点P(4,-1)且与直线3x-4y+6=0垂直的直线方程是( )A 4x+3y-13=0B 4x-3y-19=0C 3x-4y-16=0D 3x+4y-8=08、正方体的全面积为a,它的顶点都在球面上,则这个球的表面积是:( ) A.3aπ; B.2aπ; C.a π2; D.a π3.10、圆x 2+y 2-4x-2y-5=0的圆心坐标是:( )A.(-2,-1);B.(2,1);C.(2,-1);D.(1,-2).11、直线3x+4y-13=0与圆1)3()2(22=-+-y x 的位置关系是:( ) A. 相离; B. 相交; C. 相切; D. 无法判定. 12、圆C 1: 1)2()2(22=-++y x 与圆C 2:16)5()2(22=-+-y x 的位置关系是( )A 、外离B 相交C 内切D 外切ABD A ’B ’D ’CC ’二、填空题(5×5=25)13、底面直径和高都是4cm 的圆柱的侧面积为 cm 2。
14、两平行直线0962043=-+=-+y x y x 与的距离是 。
15、已知点M (1,1,1),N (0,a ,0),O (0,0,0),若△OMN 为直角三角形,则a =____________;16、若直线08)3(1=-++=-my x m y x 与直线平行,则=m 。
三、解答题 18、(10分)已知点A (-4,-5),B (6,-1),求以线段AB 为直径的圆的方程。
19、(10分)已知三角形ABC 的顶点坐标为A (-1,5)、B (-2,-1)、C (4,3),M 是BC 边上的中点。
(1)求AB 边所在的直线方程;(2)求中线AM 的长。
20、(15分)如图,在边长为a 的菱形ABCD 中,ABCD PC ABC 面⊥=∠,60 ,E,F 是PA 和AB 的中点。
(1)求证: EF||平面PBC ;(2)求E 到平面PBC 的距离。
ABCDPEF21、(15分)已知关于x,y 的方程C:04222=+--+m y x y x . (1)当m 为何值时,方程C 表示圆。
(2)若圆C 与直线l:x+2y-4=0相交于M,N 两点,且MN=54,求m 的值。
22、(15分)如图,在底面是直角梯形的四棱锥S-ABCD 中,.21,1,90====⊥=∠AD BC AB SA ABCD SA ABC ,面(1)求四棱锥S-ABCD 的体积; (2)求证:;SBC SAB面面⊥SCADB题号 1 2 3 4 5 67 8 9 10 11 12 答案 C B D A BA AB BC D2.如果α⊥β,则α内与两平面的交线平行的直线都平行于面β,故可推断出A 命题正确.3.B 选项中α内与两平面的交线平行的直线都平行于面β,故B 命题错误.4.C 根据平面与平面垂直的判定定理可知C 命题正确.5.D 根据两个平面垂直的性质推断出D 命题正确. 故选B∴S 全=2πr 2+(2πr )2=2πr 2(1+2π).S 侧=h 2=4π2r 2,∴ππ221+=侧全S S 。
答案为A 。
7.因为与直线垂直,k=-a/b 所以所求直线的斜率为-4/3 。
又因为过点P ,所以为故选A8.设正方体变成为X,那么X * X *6=a ,X=根号a/6 ,那么正方体单个面的对角线=根号a/3 ,由勾股定理根号a/3和根号a/6可得到正方体对角线=根号a/2 ,也就是球半径R=二分之根号a/2 ,球表面积=4 π r ²= a π/211.由圆的方程得到:圆心坐标为(2,3),半径r=1,所以圆心到直线3x+4y-13=0的距离d= |6+12-13|/5 =1=r ,则直线与圆的位置关系为相切。
二、填空题(5×5=25)13、π16 14、2010 15、3 16、23- 解析:14.d=|C1-C2|/√(A^2+B^2)15.这个问题其实就是要求MNO 三点所构成的图形为三角形即可,而O 点是在原点上的,N 点是在Y 轴上的,M 点为(1,1,1),所以直角只能为角OMN,根据向量的知识,有向量OM 为(1,1,1),MN 为(1,1-a,1),OM*MN=0,有 1*1+1*(1-a)+1*1=0 解之得a=3 16.A1B2=A2B1 三、解答题18、解:所求圆的方程为:222)()(r b y a x =-+-………………2 由中点坐标公式得线段AB 的中点坐标为C (1,-3)…… 29)53()41(22=+-++==AC r (7)故所求圆的方程为:29)3()1(22=++-y x ………………10 19、解:(1)由两点式写方程得121515+-+=---x y , (2)即 6x-y+11=0 (3)或 直线AB 的斜率为 616)1(251=--=-----=k (1)直线AB 的方程为 )1(65+=-x y (3)即 6x-y+11=0…………………………………………………………………5 (2)设M 的坐标为(00,y x ),则由中点坐标公式得1231,124200=+-==+-=y x 故M (1,1) (8)52)51()11(22=-++=AM (10)20、(1)证明:PBEF BF AF PE AE ||,,∴== (1)又 ,,PBC PB PBC EF 平面平面⊂⊄故 PBC EF 平面|| (5)(2)解:在面ABCD 内作过F 作H BC FH 于⊥ (6)PBC PC ABCD PC 面面⊂⊥,ABCD PBC 面面⊥∴……………………………………………8 又 BC ABCD PBC =面面 ,BC FH ⊥,ABCD FH 面⊂ ABCD FH 面⊥∴又PBC EF 平面||,故点E 到平面PBC 的距离等于点F 到平面PBC 的距离FH 。
(10)在直角三角形FBH 中,2,60a FB FBC ==∠, a a a FBC FB FH 4323260sin 2sin 0=⨯=⨯=∠=……………12 故点E 到平面PBC 的距离等于点F 到平面PBC 的距离,等于a 43。
………………………………………………………………15 21、解:(1)方程C 可化为 m y x -=-+-5)2()1(22..................2 显然 5,05<>-m m 即时时方程C 表示圆。
(5)(2)圆的方程化为 m y x -=-+-5)2()1(22圆心 C (1,2),半径 m r -=5………………………………8 则圆心C (1,2)到直线l:x+2y-4=0的距离为 5121422122=+-⨯+=d (10)5221,54==MN MN 则 ,有 222)21(MN d r +=,)52()51(522+=-∴M 得 4=m (15)22、(1)解:4111)121(61)(213131=⨯⨯+⨯=⨯⨯+⨯⨯==SA AB BC AD Sh v(2)证明:BCSA ABCD BC ABCD SA ⊥∴⊂⊥,面,面 又,A AB SA BC AB =⊥ , SAB BC 面⊥∴SAB BC 面⊂SBC SAB 面面⊥∴..................5 ..........................................6 ....................................8 (10)。