数据挖掘第三章汇总

合集下载

金融数据挖掘各章要点

金融数据挖掘各章要点

金融数据挖掘各章主要知识点第一章:1、数据挖掘的定义和数据挖掘的四个基本模块;数据挖掘是从海量数据中发掘那些潜在的、鲜为人知的数据规律和数理模式(新的决策有用知识),其目的是在海量数据的基础上发现规律、预测未来的发展趋势。

1、特征化、比较与关联规则挖掘2、分类与预测3、聚类分析4、序列发现(时间序列的数据挖掘)2、数据挖掘的两种基本类型:描述式挖掘与预测式挖掘;描述式数据挖掘以简洁、概要的方式描述数据,并提供数据的有用信息;预测式数据挖掘分析数据,建立一个或一组模型,并试图预测新数据集的行为。

3、将Excel数据集转化为SAS数据集、数据挖掘数据集的具体方法;File / import,在显示窗口中选择外部数据集类型(Excel),点击next键;选择外部数据集所在的路径,打开后,点击next键;在显示窗口中选择库标记(临时work,永久保存sasuser),给定要建立的SAS数据集的名称,点击Finish键;4、一些重要的SAS函数:计算收益率、正态分布的分布值、二项分布的分布值、Logistic 分布的概率值、均匀分布的随机抽样数;IRR:计算用小数表示的内部收益率;Probnorm(x):标准正态分布的分布函数;Probbnml(p,n,m):二项分布的分布函数Uniform(seed):产生[0,1]上均匀分布的随机数;5、SAS数据库编辑中的一些重要命令的使用①SAS函数表达式;②modify;if …then的使用方法;③set与merge、drop与keep、or与and的使用与区别;④利用sort命令对变量进行排序的方法;点击变量名、点击、点击sort,再保存数据集就可⑤在数据库中生成均匀分布的随机数的SAS命令;6、将一个数据集随机地分成训练样本组、检验样本组的SAS程序;data a;set bank;m=uniform(17);生成一个随机数run;proc sort data=a;by k m;run;data a1;set a;run;data a1;modify a1;if int(_n_/2)-_n_/2=0 then remove;run;data a2;set a;run;data a2;modify a2;if int(_n_/2)-_n_/2^=0 then remove;run;7、VaR的定义,计算VaR时的主要影响因素,利用历史模拟方法计算VaR的SAS程序。

1数据挖掘每章知识

1数据挖掘每章知识

1.数据挖掘定义:从大量的、不完全的、有噪声的、模糊的、随机的数据中,提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。

2.不能在原数据库上做决策而要建造数据仓库的原因:传统数据库的处理方式和决策分析中的数据需求不相称,主要表现在:⑴决策处理的系统响应问题⑵决策数据需求的问题⑶决策数据操作的问题3.数据仓库的定义W.H.Inmon的定义:数据仓库是一个面向主题的、集成的、非易失的且随时间变化的数据集合,用来支持管理人员的决策。

公认的数据仓库概念基本上采用了W.H.Inmon的定义:数据仓库是面向主题的、集成的、不可更新的(稳定性)随时间不断变化(不同时间)的数据集合,用以支持经营管理中的决策制定过程。

4.数据仓库与数据挖掘的关系:⑴数据仓库系统的数据可以作为数据挖掘的数据源。

数据仓库系统能够满足数据挖掘技术对数据环境的要求,可以直接作为数据挖掘的数据源。

⑵数据挖掘的数据源不一定必须是数据仓库系统。

数据挖掘的数据源不一定必须是数据仓库,可以是任何数据文件或格式,但必须事先进行数据预处理,处理成适合数据挖掘的数据。

5. 数据挖掘的功能——7个方面:⑴概念描述:对某类对象的内涵进行描述,并概括这类对象的有关特征。

①特征性描述②区别性描述⑵关联分析:若两个或多个变量间存在着某种规律性,就称为关联。

关联分析的目的就是找出数据中隐藏的关联网。

⑶分类与预测①分类②预测⑷聚类分析:客观的按被处理对象的特征分类,将有相同特征的对象归为一类。

⑸趋势分析:趋势分析——时间序列分析,从相当长的时间的发展中发现规律和趋势。

⑹孤立点分析:孤立点:数据库中包含的一些与数据的一般行为或模型不一致⑺偏差分析:偏差分析——比较分析,是对差异和极端特例的描述,揭示事物偏离常规的异常现象。

6. 数据挖掘常用技术:⑴数据挖掘算法是数据挖掘技术的一部分⑵数据挖掘技术用于执行数据挖掘功能。

⑶一个特定的数据挖掘功能只适用于给定的领域。

简述说明数据挖掘的步骤。

简述说明数据挖掘的步骤。

简述说明数据挖掘的步骤。

数据挖掘的步骤第一章:引言数据挖掘是一种通过发现和分析大量数据中潜在规律和模式来提取有价值信息的过程。

它在各个领域中都扮演着重要角色,帮助人们做出决策、预测趋势和优化业务流程。

本文将详细介绍数据挖掘的步骤,并阐述每个步骤的核心内容。

第二章:问题定义在进行数据挖掘之前,首先需要明确定义需要解决的问题。

这个步骤的关键是准确理解业务需求,并将其转化为可量化的问题。

例如,一个电商公司想提高销售额,问题定义可以是“预测某个产品的销售量”。

第三章:数据收集与整理在数据挖掘的过程中,数据的质量和可用性至关重要。

因此,在进行数据收集之前,需要确定需要的数据类型和数据来源。

然后,通过各种方法,如网络爬虫或调查问卷,收集所需数据。

接下来,对收集到的数据进行清洗和整理,包括去除重复数据、处理缺失值和异常值等。

第四章:数据探索与可视化在数据整理完成后,需要对数据进行探索和可视化分析。

通过使用统计方法和数据可视化工具,可以从数据中发现潜在的关联、趋势和异常值。

这能够帮助我们更好地理解数据,并为后续的模型建立提供指导。

第五章:特征选择与特征工程在进行数据挖掘之前,需要选择合适的特征进行建模。

特征选择是指从大量的特征中选择最相关和最有用的特征。

而特征工程则是对原始特征进行变换和组合,以提取更多的信息。

通过这两个步骤,可以减少维度灾难的影响,并提高模型的准确性和可解释性。

第六章:模型选择与训练在数据预处理完成后,需要选择合适的模型进行训练。

根据问题的特性和数据的类型,可以选择不同的机器学习算法,如决策树、神经网络和支持向量机等。

通过训练数据,模型可以学习到数据的模式和规律,并用于未知数据的预测和分类。

第七章:模型评估与调优在模型训练完成后,需要对模型进行评估和调优。

通过使用评估指标,如准确率、召回率和F1分数等,可以评估模型的性能。

如果模型表现不佳,可以通过调整模型参数、增加训练数据或改进特征工程等方法进行调优,以提高模型的准确性和泛化能力。

数据挖掘PPT-第3章分类

数据挖掘PPT-第3章分类

应用市场:医疗诊断、人脸检测、故障诊断和故障预警 ······
2 of 56
More
高级大数据人才培养丛书之一,大数据挖掘技术与应用
第三章 分类
3.1 基本概念 3.2 决策树 3.3 贝叶斯分类 3.4 支持向量机 3.5 实战:决策树算法在Weka中的实现 习题
3 of 56
*** 基本概念
6 of 56
高级大数据人才培养丛书之一,大数据挖掘技术与应用
第三章 分类
3.1 基本概念 3.2 决策树 3.3 贝叶斯分类 3.4 支持向量机 3.5 实战:决策树算法在Weka中的实现 习题
7 of 56 7
*** 决策树
第三章 分类
决策树是数据挖掘的有力工具之一,决策树学习算法是从一组样本数据集(一个样 本数据也可以称为实例)为基础的一种归纳学习算法,它着眼于从一组无次序、无规则 的样本数据(概念)中推理出决策树表示形式的分类规则。
E
X ,a
g X,a H X,a
第三章 分类
*** 分类的基本概念
分类(Classification)是一种重要的数据分析形式,它提取刻画重要数据类的模型。 这种模型称为分类器,预测分类的(离散的、无序的)类标号。这些类别可以用离散值 表示,其中值之间的次序没有意义。
分类也可定义为: 分类的任务就是通过学习得到一个目标函数(Target Function)ƒ ,把每个属性集x映 射到一个预先定义的类标号y 。
11
No Small 55K ?
12 Yes Medium 80K ?
13 Yes Large 110K ?
14
No Small 95K ?
15
No Large 67K ?

数据挖掘第三版第三章课后习题答案

数据挖掘第三版第三章课后习题答案

2.1再给三个用于数据散布的常用特征度量(即未在本章讨论的),并讨论如何在大型数据库中有效的计算它们答:异众比率:又称离异比率或变差比。

是非众数组的频数占总频数的比率应用:用于衡量众数的代表性。

主要用于测度定类数据的离散程度,定序数据及数值型数据也可以计算。

还可以对不同总体或样本的离散程度进行比较计算:标准分数:标准分数(standard score)也叫z分数(z-score),是一个分数与平均数的差再除以标准差的过程。

用公式表示为:z=(x-μ)/σ。

其中x为某一具体分数,μ为平均数,σ为标准差。

Z值的量代表着原始分数和母体平均值之间的距离,是以标准差为单位计算。

在原始分数低于平均值时Z则为负数,反之则为正数。

计算:Z=(x-μ)/σ其中μ= E( X) 为平均值、σ² = Var( X) X的概率分布之方差若随机变量无法确定时,则为算术平均数离散系数:离散系数,又称“变异系数”,是概率分布离散程度的一个归一化量度,其定义为标准差与平均值之比。

计算:CV=σ/μ极差(全距)系数:Vr=R/X’;平均差系数:Va,d=A.D/X’;方差系数:V方差=方差/X’;标准差系数:V标准差=标准差/X’;其中,X’表示X的平均数。

平均差:平均差是总体所有单位的平均值与其算术平均数的离差绝对值的算术平均数。

平均差是一种平均离差。

离差是总体各单位的标志值与算术平均数之差。

因离差和为零,离差的平均数不能将离差和除以离差的个数求得,而必须讲离差取绝对数来消除正负号。

平均差是反应各标志值与算术平均数之间的平均差异。

平均差异大,表明各标志值与算术平均数的差异程度越大,该算术平均数的代表性就越小;平均差越小,表明各标志值与算术平均数的差异程度越小,该算术平均数的代表性就越大。

计算:平均差=(∑|x-x'|)÷n,其中∑为总计的符号,x为变量,x'为算术平均数,n为变量值的个数。

数据挖掘算法原理与实现第2版第三章课后答案

数据挖掘算法原理与实现第2版第三章课后答案

数据挖掘算法原理与实现第2版第三章课后答案
1.密度聚类分析:
原理:密度聚类分析是指通过测量数据对象之间的密度(density)
来将其聚成几个聚类的一种聚类分析方法。

它把距离邻近的数据归入同一
类簇,并把不相连的数据分成不同的类簇。

实现:通过划分空间中每一点的邻域来衡量数据点之间的聚类密度。

它将每个数据点周围与它最近的K个数据点用一个空间圆包围起来,以定
义该数据点处的聚类密度。

然后,可以使用距离函数将所有点分配到最邻
近的类中。

2.引擎树:
原理:引擎树(Search Engine Tree,SET)是一种非常有效的数据
挖掘方法,它能够快速挖掘关系数据库中指定的有价值的知识。

实现:SET是一种基于决策树的技术,通过从关系数据库的历史数据
中提取出有价值的信息,来建立一种易于理解的引擎树,以及一些有益的
信息发现知识,以便用户快速找到想要的信息。

SET对原始数据进行一系
列数据挖掘处理后,能够提取出其中模式分析的信息,从而实现快速、高
效的引擎。

3.最大期望聚类:
原理:最大期望聚类(Maximization Expectation Clustering,MEC)是一种有效的数据挖掘算法,它可以自动识别出潜在的类簇结构,提取出
类簇内部的模式,帮助用户快速完成类簇分析任务。

数据挖掘概念与技术第三章精品PPT课件

数据挖掘概念与技术第三章精品PPT课件

假设调查了1500个人,按性别分成男和女。每个
人投票是否喜欢阅读小说。这样,就有了两个属 性:gender和preferred_reading.观察到的每个 可能的联合事件的次数在表3.1中。圆括号中的表 示事件的期望次数,按照公式3.2计算出来的。
可以注意到,每一行中,期望次数的总和必须和这一 行的观察次数的总和相等;每一列中,期望次数的和 等于这一列的观察次数的和。 利用公式3.1,计算卡方值为:
如果rAB =0,则A和B相互独立,它们之间没有任 何关系。如果值<0,则A和B负相关,表示一个属性的 值随着另一个值的降低而增大。
散点图可以用来可视化属性之间的关联关系。
注意:关联并不表示因果。即如果A和B相关, 但并不意味着A导致B或者B导致A。
例如,在分析一个人口统计数据库时,我们发 现表示医院数目的属性和盗车数目相关。但这并不表 示一个属性导致了另外一个。两个属性实际上都是因 为人口数这第三个属性导致的。
第三章 数据预处理
3.1 数据预处理 3.2 数据清理 3.3 数据集成 3.4 数据规约 3.5 数据变换与数据离散化 3.6小结
3.3.1 为什么要对数据预处理
低质量的数据将导致低质量的挖掘结果
准确性
完整性
高质量数据
一致性 时效性
Байду номын сангаас
可信性
可解释性
3.1.2 数据处理的主要任务
考虑下表,这是一个观察到的5次AllElectronics和 Hightech公式的股票价格。如果股票是被同一个公 司的趋势影响,那么它们的价格是否一起涨落呢?
3)离群点分析:通过如聚类来检测利群点。
3.2.3 数据清理作为一个过程
✓ 数据清理的第一步是偏差检测。导致偏差的因素很多,认为输入错误、 有意错误、数据退化(过时数据)、编码不一致、设备错误、系统错 误。

数据挖掘 第三章 课后习题答案

数据挖掘  第三章  课后习题答案

1、分类技术在很多领域都有应用,例如可以通过客户分类构造一个分类模型来对银行贷款进行风险评估;当前的市场营销中很重要的一个特点是强调客户细分。

客户类别分析的功能也在于此,采用数据挖掘中的分类技术,可以将客户分成不同的类别,比如呼叫中心设计时可以分为:呼叫频繁的客户、偶然大量呼叫的客户、稳定呼叫的客户、其他,帮助呼叫中心寻找出这些不同种类客户之间的特征,这样的分类模型可以让用户了解不同行为类别客户的分布特征;其他分类应用如文献检索和搜索引擎中的自动文本分类技术;安全领域有基于分类技术的入侵检测等等。

机器学习、专家系统、统计学和神经网络等领域的研究人员已经提出了许多具体的分类预测方法。

又如:信用卡核准过程,信用卡公司根据信誉程度,将一组持卡人记录为良好、一般和较差三类,且把类别标记赋给每个记录,如:“信誉良好的客户是那些收入在5万元以上,年龄在40-50岁之间的人士”。

2、决策树是一种倒立的树结构,它由内部节点、叶子节点和边组成。

其中最上面的一个节点叫根节点。

构造一棵决策树需要一个训练集,一些例子组成,每个例子用一些属性(或特征)和一个类别标记来描述。

构造决策树的目的是找出属性和类别间的关系,一旦这种关系找出,就能用它来预测将来未知类别的记录的类别。

这种具有预测功能的系统叫决策树分类器。

构造出的决策树有二叉树和多叉树,二叉树的内部节点一般表示为一个逻辑判断,如形式为(ai = vi )的逻辑判断,其中ai 是属性,vi 是该属性的某个属性值;树的边是逻辑判断的分支结果。

多叉树(如ID3)的内部节点是属性,边是该属性的所有取值,有几个属性值,就有几条边。

树的叶子节点都是类别标记。

构造一个决策树分类器通常分为两步:树的生成和剪枝。

其中树的生成是采用自上而下的递归方法。

以多叉树为例,它的构造思路是,如果训练例子集合中的所有例子是同类的,则将之作为叶子节点,节点内容即是该类别标记。

否则,根据某种策略选择一个属性,按照属性的各个取值,把例子集合划分为若干子集合,使得每个子集上的所有例子在该属性上具有同样的属性值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

鸢尾花(Iris)数据集
Many of the exploratory data techniques are illustrated with the Iris Plant data set. Can be obtained from the UCI Machine Learning Repository /~mlearn/MLRepository.html From the statistician Douglas Fisher Three flower types (classes): Setosa Virginica Versicolour Four (non-class) attributes Sepal width and length Petal width and length
f
requency(vi
)
具有属性值vi的对象数 m
For example, given the attribute ‘gender’ and a representative population of people, the gender ‘female’ occurs about 50% of the time.
众数(mode) The mode of a an attribute is the most frequent attribute value
2020年9月29日星期二
数据挖掘导论
9
百分位数
用于有序或连续属性 百分位数(percentile)
x是有序或连续属性, p是0与100之间的数, 第p个百分位数xp是一个x 值, 使得x 的p%的观测值小于xp
Most summary statistics can be calculated in a single pass through the data
2020年9月29日星期二
数据挖掘导论
8
频率和众数
频率和众数: 用于离散属性
频率(frequency ):
给定一个在{v1,..., vi,..., vk}上取值的分类属性x和m个对象的集合,值 vi的频率定义为
Key motivations of data exploration include Helping to select the right tool for preprocessing or analysis Making use of humans’ abilities to recognize patterns People can recognize patterns not captured by data analysis tools
In our discussion of data exploration, we focus on Summary statistics Visualization
Online Analytical Processing (OLAP)
2020年9月29日星期二
数据挖掘导论
4
3.1 鸢尾花数据集
2020年9月29日星期二
数据挖掘导论
3
ห้องสมุดไป่ตู้
数据探索技术
In EDA, as originally defined by Tukey The focus was on visualization Clustering and anomaly detection were viewed as exploratory techniques In data mining, clustering and anomaly detection are major areas of interest, and not thought of as just exploratory
Related to the area of Exploratory Data Analysis (EDA) Created by statistician John Tukey Tukey’s other contributions: FFT, bit, software Seminal book is Exploratory Data Analysis by Tukey A nice online introduction can be found in Chapter 1 of the NIST Engineering Statistics Handbook /div898/handbook/index.htm
2020年9月29日星期二
数据挖掘导论
6
3.2 汇总统计
汇总统计
Summary statistics are numbers that summarize properties of the data
Summarized properties include frequency, location and spread Examples: location - mean spread - standard deviation
数据挖掘导论
Pang-ning Tan, Michael Stieinbach, and Vipin Kumar著 Pearson Education LTD. 范明 等译 人民邮电出版社
第3章 数据探索
鸢尾花数据集 汇总统计 可视化
*OLAP和多维数据分析
什么是数据探索
A preliminary exploration of the data to better understand its characteristics.
第25、50和75个百分位数, 分别记为Q1、Q2和Q3, 分别称为第一、第二 和第三个四分位数(quartiles)
第二个四分位数Q2又称中位数(median) 如果值的个数n是奇数, 则中位数是有序集合的中间值; 否则中位数 是中间两个数的平均值
四分位数极差(IQR): IQR = Q3 Q1 五数概括(five-number summary)
相关文档
最新文档