2014-2015学年八年级数学上学期期末考试试题
安徽省阜阳市太和县八年级数学上学期期末试卷(b卷,含解析)-人教版初中八年级全册数学试题

2014-2015学年某某省某某市太和县八年级(上)期末数学试卷(B卷)一、选择题(下列各题所给答案中只有一个答案是正确的,每小题3分,共30分)1.若分式有意义,则x的取值X围是()A. x≠3 B. x=3 C. x<3 D. x>32.化简(﹣a3)2的结果为()A. a9 B.﹣a6 C.﹣a9 D. a63.下列四副图案中,不是轴对称图形的是()A. B. C. D.4.化简的结果是()A. x+1 B. x﹣1 C.﹣x D. x5.已知等腰三角形的两边长是5cm和11cm,则它的周长是()A. 21cm B. 27cm C. 21cm或27cm D. 16cm6.已知点P关于x轴的对称点为(a,﹣2),关于y轴对称点为(1,b),那么点P的坐标为()A.(a,﹣b) B.(b,﹣a) C.(﹣2,1) D.(﹣1,2)7.下列分解因式正确的是()A. x3﹣x=x(x2﹣1) B. x2﹣1=(x+1)(x﹣1)C. x2﹣x+2=x(x﹣1)+2 D. x2+2x﹣1=(x﹣1)28.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A. SSS B. SAS C. AAS D. ASA9.一个多边形的内角和是900°,这个多边形的边数是()A. 10 B. 9 C. 8 D. 710.如图,在△ABC中,∠ABC=50°,∠ACB=80°,BP平分∠ABC,CP平分∠ACB,则∠BPC 的大小是()A. 100° B. 110° C. 115° D. 120°二、填空题(每题4分,共16分)11.已知△ABC≌△DEF,且△ABC的周长为12,若AB=3,EF=4,则AC=.12.如图,边长为a、b的矩形,它的周长为14,面积为10,则a2b+ab2的值为.13.当m=时,分式的值为零.14.如图,AD、AE分别是△ABC的高和角平分线,∠B=30°,∠C=70°,则∠EAD=°.三、计算题(每题5分,共10分)15.计算:(8a3b﹣5a2b2)÷4ab.16.化简:.四、解答题(17,18每题6分;19题7分;20,21每题8分;22题9分)17.解方程:.18.画出△ABC关于x轴对称的图形△A1B1C1,并指出△A1B1C1的顶点坐标.19.如图,C是线段AB的中点,CD∥BE,且CD=BE,求证:AD=CE.20.如图,在△ABC中,AD是BC边上的高,BE平分∠BC交AD于点E,∠C=60°,∠BED=70°,求∠ABC和∠BAC的度数.21.某文具店老板第一次用1000元购进一批文具,很快销售完毕;第二次购进时发现每件文具进价比第一次上涨了2.5元.老板用2500元购进了第二批文具,所购进文具的数量是第一次购进数量的2倍,同样很快销售完毕.两批文具的售价均为每件15元.(1)问第二次购进了多少件文具?(2)文具店老板在这两笔生意中共盈利多少元?22.如图,长为50cm,宽为xcm的大长方形被分割为8小块,除阴影A、B外,其余6块是形状、大小完全相同的小长方形,其较短一边长为acm.(1)从图可知,每个小长方形较长一边长是cm(用含a的代数式表示);(2)求图中两块阴影A、B的周长和(可以用x的代数式表示);(3)分别用含x,a的代数式表示阴影A、B的面积,并求a为何值时两块阴影部分的面积相等.2014-2015学年某某省某某市太和县八年级(上)期末数学试卷(B卷)参考答案与试题解析一、选择题(下列各题所给答案中只有一个答案是正确的,每小题3分,共30分)1.若分式有意义,则x的取值X围是()A. x≠3 B. x=3 C. x<3 D. x>3考点:分式有意义的条件.分析:根据分式有意义的条件是分母不为0;分析原分式可得关系式3﹣x≠0,解可得答案.解答:解:根据题意可得3﹣x≠0;解得x≠3;故选A.点评:判断一个分式是否有意义,应考虑分母上字母的取值,字母的取值不能使分母为零.2.化简(﹣a3)2的结果为()A. a9 B.﹣a6 C.﹣a9 D. a6考点:幂的乘方与积的乘方.分析:根据幂的乘方与积的乘方法则进行解答即可.解答:解:由幂的乘方与积的乘方法则可知,(﹣a3)2=(﹣1)2a2×3=﹣a6.故选:D.点评:本题考查的是幂的乘方与积的乘方法则,即先把每一个因式分别乘方,再把所得的幂相乘.3.下列四副图案中,不是轴对称图形的是()A. B. C. D.考点:轴对称图形.分析:关于某条直线对称的图形叫轴对称图形.解答:解:A、沿某条直线折叠后直线两旁的部分不能够完全重合,不是轴对称图形,故A 符合题意;B、C、D都是轴对称图形,不符合题意.故选:A.点评:轴对称图形的判断方法:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.4.化简的结果是()A. x+1 B. x﹣1 C.﹣x D. x考点:分式的加减法.专题:计算题.分析:将分母化为同分母,通分,再将分子因式分解,约分.解答:解:=﹣===x,故选:D.点评:本题考查了分式的加减运算.分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可;如果是异分母分式,则必须先通分,把异分母分式化为同分母分式,然后再相加减.5.已知等腰三角形的两边长是5cm和11cm,则它的周长是()A. 21cm B. 27cm C. 21cm或27cm D. 16cm考点:等腰三角形的性质;三角形三边关系.分析:题目给出等腰三角形有两条边长为5cm和11cm,而没有明确腰是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.解答:解:当三边是5,5,11时,5+5<11,不符合三角形的三边关系,应舍去;当三边是5,11,11时,符合三角形的三边关系,此时周长是27.故选B.点评:本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.6.已知点P关于x轴的对称点为(a,﹣2),关于y轴对称点为(1,b),那么点P的坐标为()A.(a,﹣b) B.(b,﹣a) C.(﹣2,1) D.(﹣1,2)考点:关于x轴、y轴对称的点的坐标.分析:根据平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点,分别求出点P的坐标的两种形式,依此列出方程(组),求得a、b的值,从而得到点P的坐标.解答:解:∵点P关于x轴的对称点为(a,﹣2),∴点P的坐标为(a,2),∵关于y轴对称点为(1,b),∴点P的坐标为(﹣1,b),则a=﹣1,b=2.∴点P的坐标为(﹣1,2).故选D.点评:解决本题的关键是掌握好对称点的坐标规律,及根据点P的坐标的两种形式,列出方程(组).7.下列分解因式正确的是()A. x3﹣x=x(x2﹣1) B. x2﹣1=(x+1)(x﹣1)C. x2﹣x+2=x(x﹣1)+2 D. x2+2x﹣1=(x﹣1)2考点:提公因式法与公式法的综合运用.分析:根据提公因式法分解因式,公式法分解因式对各选项分析判断利用排除法求解.解答:解:A、x3﹣x=x(x2﹣1)=x(x+1)(x﹣1),故本选项错误;B、x2﹣1=(x+1)(x﹣1),故本选项正确;C、x2﹣x+2=x(x﹣1)+2右边不是整式积的形式,故本选项错误;D、应为x2﹣2x+1=(x﹣1)2,故本选项错误.故选B.点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.8.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A. SSS B. SAS C. AAS D. ASA考点:全等三角形的应用.分析:根据图象,三角形有两角和它们的夹边是完整的,所以可以根据“角边角”画出.解答:解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故选D.点评:本题考查了三角形全等的判定的实际运用,熟练掌握判定定理并灵活运用是解题的关键.9.一个多边形的内角和是900°,这个多边形的边数是()A. 10 B. 9 C. 8 D. 7考点:多边形内角与外角.分析:根据多边形的内角和公式(n﹣2)•180°,列式求解即可.解答:解:设这个多边形是n边形,根据题意得,(n﹣2)•180°=900°,解得n=7.故选:D.点评:本题主要考查了多边形的内角和公式,熟记公式是解题的关键.10.如图,在△ABC中,∠ABC=50°,∠ACB=80°,BP平分∠ABC,CP平分∠ACB,则∠BPC 的大小是()A. 100°B. 110° C. 115° D. 120°考点:三角形内角和定理;角平分线的定义.分析:根据三角形内角和定理计算.解答:解:∠ABC=50°,∠ACB=80°,BP平分∠ABC,CP平分∠ACB,∴∠PBC=25°,∠PCB=40°,∴∠BPC=115°.故选C.点评:此题主要考查了三角形的内角和定理:三角形的内角和为180°.二、填空题(每题4分,共16分)11.已知△ABC≌△DEF,且△ABC的周长为12,若AB=3,EF=4,则AC= 5 .考点:全等三角形的性质.分析:全等三角形,对应边相等,周长也相等.解答:解:∵△ABC≌△DEF,∴EF=BC=4,在△ABC中,△ABC的周长为12,AB=3,∴AC=12﹣AB﹣BC=12﹣4﹣3=5,故填5点评:本题考查了全等三角形的性质;要熟练掌握全等三角形的性质,本题比较简单.12.如图,边长为a、b的矩形,它的周长为14,面积为10,则a2b+ab2的值为70 .考点:因式分解的应用.专题:整体思想.分析:应把所给式子进行因式分解,整理为与所给周长和面积相关的式子,代入求值即可.解答:解:∵a+b=7,ab=10,∴a2b+ab2=ab(a+b)=70.故答案为:70.点评:本题既考查了对因式分解方法的掌握,又考查了代数式求值的方法,同时还隐含了整体的数学思想和正确运算的能力.13.当m=﹣2 时,分式的值为零.考点:分式的值为零的条件.分析:分式的值为零时,分子等于零,且分母不等于零.解答:解:依题意,得|m|﹣2=0,且m﹣2≠0,解得,m=﹣2.故答案是:﹣2.点评:本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.14.如图,AD、AE分别是△ABC的高和角平分线,∠B=30°,∠C=70°,则∠EAD= 20 °.考点:三角形内角和定理;三角形的外角性质.分析:由∠B=30°,∠C=70°,根据内角和定理得∠BAC=180°﹣∠B﹣∠C=80°,由角平分线的定义得∠BAE=∠BAC=40°,根据AD⊥BC得∠BAD=90°﹣∠B=60°,利用∠EAD=∠BAD﹣∠BAE求解.解答:解:∵∠B=30°,∠C=70°,∴在△ABC中,∠BAC=180°﹣∠B﹣∠C=80°,∵AE是△ABC的角平分线,∴∠BAE=∠BAC=40°,又∵AD⊥BC,∴∠BAD=90°﹣∠B=60°,∴∠EAD=∠BAD﹣∠BAE=60°﹣40°=20°.故答案为:20.点评:本题考查了三角形内角和定理,角平分线的定义.关键是利用内角和定理求∠BAC,根据角平分线的定义求∠BAE,利用高得出互余关系求∠BAD,利用角的和差关系求解.三、计算题(每题5分,共10分)15.计算:(8a3b﹣5a2b2)÷4ab.考点:整式的除法.分析:利用多项式除以单项式的运算法则进行运算即可.解答:解:原式=8a3b÷4ab﹣5a2b2÷4ab=.点评:本题考查了整式的除法,牢记运算法则及运算律是解答此类题目的关键.16.化简:.考点:分式的加减法.分析:分母不变,直接把分子相加减即可.解答:解:原式===2.点评:本题考查的是分式的加减法,熟知同分母的分数相加减,分母不变,分子相加减是解答此题的关键.四、解答题(17,18每题6分;19题7分;20,21每题8分;22题9分)17.解方程:.考点:解分式方程.专题:计算题.分析:观察可得最简公分母是(x﹣3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答:解:原方程可化为:+3=﹣,方程的两边同乘(x﹣3),得2﹣x+3(x﹣3)=﹣2,解得x=2.5.检验:把x=2.5代入(x﹣3)≠0.∴原方程的解为:x=.点评:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.18.画出△ABC关于x轴对称的图形△A1B1C1,并指出△A1B1C1的顶点坐标.考点:作图-轴对称变换.分析:分别作A、B、C关于x轴的对应点A1、B1、C1,再顺次连接.顶点坐标根据所在坐标中的位置写出即可.解答:解:如图A1(3,﹣4);B1(1,﹣2);C1(5,﹣1).点评:考查的是作简单平面图形轴对称后的图形,其依据是轴对称的性质.基本作法:①先确定图形的关键点;②利用轴对称性质作出关键点的对称点;③按原图形中的方式顺次连接对称点.19.如图,C是线段AB的中点,CD∥BE,且CD=BE,求证:AD=CE.考点:全等三角形的判定与性质.专题:证明题.分析:根据中点定义求出AC=CB,两直线平行,同位角相等,求出∠ACD=∠B,然后证明△ACD和△CBE全等,再利用全等三角形的对应角相等进行解答.解答:解:∵C是AB的中点(已知),∴AC=CB(线段中点的定义),∵CD∥BE(已知),∴∠ACD=∠B(两直线平行,同位角相等)在△ACD和△CBE中,,∴△ACD≌△CBE(SAS).∴AD=CE.点评:本题主要考查了全等三角形的判定与性质的综合应用,确定用SAS定理进行证明是解题的关键.20.如图,在△ABC中,AD是BC边上的高,BE平分∠BC交AD于点E,∠C=60°,∠BED=70°,求∠ABC和∠BAC的度数.考点:三角形内角和定理.分析:先根据垂直的定义得出∠ADB=90°,再根据直角三角形的性质求出∠DBE的度数,由角平分线的性质求出∠ABC的度数,根据三角形内角和定理求出∠BAC的度数即可.解答:解:∵AD是BC的高,∴∠ADB=90°,∴∠DBE+∠BED=90°.∵∠BED=70°,∴∠DBE=20°.∵BE平分∠ABC,∴∠ABC=2∠DBE=40°.∵∠BAC+∠ABC+∠C=180°,∴∠BAC=180°﹣∠ABC﹣∠C=180°﹣40°﹣60°=80°.点评:本题考查的是三角形内角和定理,熟知三角形的内角和等于180°是解答此题的关键.21.某文具店老板第一次用1000元购进一批文具,很快销售完毕;第二次购进时发现每件文具进价比第一次上涨了2.5元.老板用2500元购进了第二批文具,所购进文具的数量是第一次购进数量的2倍,同样很快销售完毕.两批文具的售价均为每件15元.(1)问第二次购进了多少件文具?(2)文具店老板在这两笔生意中共盈利多少元?考点:分式方程的应用.分析:(1)设第一次购进x件文具,则第二次就购进2x件,根据第二次购进时发现每件文具进价比第一次上涨了2.5元,所购进文具的数量是第一次购进数量的2倍,可列方程求解.(2)利润=售价﹣进价,根据(1)算出件数,然后算出总售价减去成本即为所求.解答:解:(1)设第一次购进x件文具,则第二次就购进2x件文具,由题意得:=﹣解之得x=100,经检验,x=100是原方程的解,2x=2×100=200答:第二次购进200件文具.(2)(100+200)×15﹣1000﹣2500=1000(元).答:盈利1000元.点评:本题考查理解题意的能力,关键是设出数量,以价格做为等量关系列方程求解,然后根据利润=售价﹣进价,求出利润即可.22.如图,长为50cm,宽为xcm的大长方形被分割为8小块,除阴影A、B外,其余6块是形状、大小完全相同的小长方形,其较短一边长为acm.(1)从图可知,每个小长方形较长一边长是(50﹣3a)cm(用含a的代数式表示);(2)求图中两块阴影A、B的周长和(可以用x的代数式表示);(3)分别用含x,a的代数式表示阴影A、B的面积,并求a为何值时两块阴影部分的面积相等.考点:一元一次方程的应用.专题:几何图形问题.分析:(1)从图可知,每个小长方形较长一边长是大长方形的长﹣小长方形宽的3倍;(2)从图可知,A的长+B的宽=x,A的宽+B的长=x,依此求出两块阴影A、B的周长和;(3)根据长方形的面积=长×宽即可表示阴影A、B的面积,再令S A=S B,即可求出a的值.解答:解:(1)每个小长方形较长一边长是(50﹣3a)cm.故答案为(50﹣3a);(2)∵A的长+B的宽=x,A的宽+B的长=x,∴A、B的周长和=2(A的长+A的宽)+2(B的长+B的宽)=2(A的长+B的宽)+2(B的长+A的宽)=2x+2x=4x;(3)∵S A=(50﹣3a)×(x﹣3a),S B=3a(x﹣50+3a),∴(50﹣3a)×(x﹣3a)=3a(x﹣50+3a)解得:.点评:考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.。
2014-2015学年第一学期期末八年级数学模拟试卷(A)

2014-2015学年第一学期期末八年级数学模拟试卷(A卷)一、选择题(每小题2分,共28分)在下列各题的四个备选答案中,只有一个是正确的,请把你认为正确的答案的字母代号填写在下表相应题号的方格内.2±=±4 B﹣382227.(2分)某人将一枚质量均匀的硬币连续抛10次,落地后正面朝上6次,反面朝上4次,下9.(2分)如图,已知AD=CB,AB=CD,AC与BD交于点O,则图中全等三角形共有()10.(2分)如图,△ABC中,AB=AC,∠BAC=100°,AD是BC边上的中线,且BD=BE,则∠ADE 的大小为()11.(2分)如图,在△ABC中,DE垂直平分BC,若AB=8,AC=6,则△ADC的周长等于()12.(2分)如图,OC平分∠AOB,CD⊥OB于D,点P是射线OA上的一个动点,若CD=8,OD=6,则PC的最小值为()13.(2分)如图,在△ABC中,∠ABC=60°,∠C=45°,AD是BC边上的高,∠ABC的角平分线BE交AD于点F,则图中共有等腰三角形()14.(2分)如图,在△ABC中,∠ACB=90°,AC=BC,顶点A、B、C恰好分别落在一组平行线中的三条直线上,若相邻两条平行线间的距离是2个单位长度,则△ABC的面积是()二、填空题(每小题3分,共12分)15.(3分)(2002•汕头)比较大小:_________0.5.16.(3分)若m2+6m=2,则(m+3)2=_________.17.(3分)如图,所有阴影部分的四边形都是正方形,所有三角形都是直角三角形,已知正方形A、B、C的面积依次为2、4、3,则正方形D的面积为_________.18.(3分)如图,在△ABC中,AB=AC=12,BC=8,D为AB的中点,点P在线段BC上以每秒2个单位的速度由B点向C点运动,同时,点Q在线段CA上以每秒x个单位的速度由C点向A点运动.当△BPD与以C、Q、P为顶点的三角形全等时,x的值为_________.三、解答题(共60分)19.(14分)计算(1)(3x﹣1)(3x+2)﹣(﹣3x)2;(2)(2a﹣3b)2﹣2a(2a﹣3b);(3)先化简,再求值:(x﹣2y)(﹣2y﹣x)﹣(x﹣2y)2,其中x=3,.20.(8分)把下列多项式分解因式.(1)4x3﹣xy2;(2)4(x+y)2﹣16xy.21.(6分)如图是我国古代数学家赵爽的“勾股方圆图”,它是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形.如果大正方形的面积是12,小正方形的面积是2,直角三角形的两直角边分别是a和b,求(a+b)2的值.22.(9分)某校为了了解本校八年级学生课外阅读的喜好,随机抽取该校八年级部分学生进行问卷调查(每人只选一种书籍).图1和图2是整理数据后绘制的两幅不完整的统计图,请你根据图中提供的信息,解答下列问题:(1)这次活动一共调查了_________名学生;(2)在图2中,“漫画”所在扇形圆心角为_________度;(3)补全条形统计图.23.(10分)如图,已知△ABC.利用直尺和圆规,根据要求作图,并解决后面的问题.(1)作△ABC的角平分线AD;(2)作∠CBE=∠ADC,BE交CA的延长线于点E;(要求:保留作图痕迹,不需写作法和证明)(3)图中线段AB与线段AE相等吗?证明你的结论.24.(13分)如图,在△ABC中,∠BAC=90°,AB=AC=3,D为BC边的中点,∠MDN=90°,将∠MDN 绕点D顺时针旋转,它的两边分别交AB、AC于点E、F.(1)求证:△ADE≌△CDF;(2)求四边形AEDF的面积;(3)连结EF.①当点F在AC边上时总有BE_________EF(填“>”或“<”或“=”),请说明理由;②若BE=2,求EF的长.2014-2015学年第一学期期末八年级数学模拟试卷(A卷)参考答案与试题解析一、选择题(每小题2分,共28分)在下列各题的四个备选答案中,只有一个是正确的,请把你认为正确的答案的字母代号填写在下表相应题号的方格内.1.解:∵(﹣3)2=9,∴(﹣3)2的平方根是±3,故选B.2.解:A、=4,故本选项错误;B、﹣32=﹣9,根据负数没有平方根,故本选项错误;C、1的立方根是1,故本选项错误;D、﹣是7的一个立方根,故本选项正确.故选D.3.解:∵a•2•23=28,∴a=28÷24=24=16.故选C.4.解:(﹣2xy)2÷xy2=4x2y2÷xy2=4x.故选B.5.解:x2﹣x﹣12=(x+3)(x﹣4),则(x+3)(x﹣4)=x2﹣x﹣12.故选A6.解:①若AB=AC=2cm,则BC=8﹣2﹣2=4(cm),∵2+2=4,不能组成三角形,舍去;②若AB=BC=2cm,则AC=8﹣2﹣2=4(cm),∵2+2=4,不能组成三角形,舍去;③若AB=2cm,则AC=BC==3(cm),故选B.7.解:∵某人抛硬币抛10次,其中正面朝上6次,反面朝上4次,∴出现正面的频数是6,出现反面的频数是4,出现正面的频率为6÷10=60%;出现反面的频率为4÷10=40%.故选B8.解:A、三个角的比为1:2:3,设最小的角为x,则x+2x+3x=180°,x=30°,3x=90°,故是直角三角形;B、三条边满足关系a2=b2﹣c2,故是直角三角形;C、三条边的比为1:2:3,12+22≠32,故不是直角三角形;D、三边之比为3:4:5,所以设三边长分别为3x,4x,5x,则(3x)2+(4x)2=(5x)2,故是直角三角形;故选:C.9.解:△ADC≌△CBA;△ADB≌△CBD;△AOB≌△COD;△AOD≌△COB共四对.在△ADC和△CBA中,,∴△ADC≌△CBA(SSS),∴∠DCA=∠BAC,在△ABD和△CDB中,,∴△ADB≌△CBD(SSS),∴∠ADB=∠CBD,,∴△AOB≌△COD(ASA),∴DO=CO,BO=DO,在△DOA和△BOC中,,∴△AOD≌△COB(SSS).故选:D.10.解:∵△ABC中,AB=AC,∠BAC=100°∴∠B=∠C=(180°﹣∠BAC)=(180°﹣100°)=40°∵BD=BE∴∠BED=∠BDE=(180°﹣∠B)=(180°﹣40°)=70°∴∠ADE=90°﹣70°=20°.故选B.11.解:∵DE垂直平分BC,∴DB=DC,∵AB=8,AC=6,∴△ADC的周长为:AD+DC+AC=AD+BD+ACAB+AC=14.故选C.12.解:当CP⊥OA时,PC的值最小,∵OC平分∠AOB,CD⊥OB于D,∴PC=CD=8.故选C.13.解:(1)∵∠ABC=60°,∠ACB=45°,AD是高,∴∠DAC=45°,∴CD=AD,∴△ADC为等腰直角三角形,∵∠ABC=60°,BE是∠ABC平分线,∴∠ABE=∠CBE=30°,在△ABD中,∠BAD=180°﹣∠ABD ﹣∠ADB=180°﹣60°﹣90°=30°,∴∠ABF=∠BAD=30°,∴AF=BF即△ABF是等腰三角形,在△ABC中,∠BAC=180°﹣∠ABC﹣∠ACB=180°﹣60°﹣45°=75°,∵∠AEB=∠CBE+∠ACB=30°+45°=75°,∴∠BAE=∠BEA,∴AB=EB即△ABE是等腰三角形,∴等腰三角形有△ACD,△ABF,△ABE;故选B.14.解:过C作EF⊥该组平行线,交A所在直线于点E,交B所在直线于点F,∵∠ACE+∠BCF=90°,∠ACE+∠CAE=90°,∴∠CAE=∠BCF,,∴△ACE≌△CBF(AAS),∴AE=CF=8,∴AC2=AE2+CE2=100,∴S△ABC=AC2=50,故选C.二、填空题(每小题3分,共12分)15.(3分)(2002•汕头)比较大小:>0.5.解:∵0.5=,2<<3,∴>1,∴故填空答案:>.16.(3分)若m2+6m=2,则(m+3)2=11.解:∵m2+6m=2,∴(m+3)2=m2+6m+9=2+9=11.故答案为:11.17.(3分)如图,所有阴影部分的四边形都是正方形,所有三角形都是直角三角形,已知正方形A、B、C的面积依次为2、4、3,则正方形D的面积为9.解:∵正方形A、B的面积依次为2、4,∴正方形E的面积为2+4=6,又∵正方形C的面积为3,∴正方形D的面积3+6=9,故答案为9.18.(3分)如图,在△ABC中,AB=AC=12,BC=8,D为AB的中点,点P在线段BC上以每秒2个单位的速度由B点向C点运动,同时,点Q在线段CA上以每秒x个单位的速度由C点向A点运动.当△BPD与以C、Q、P为顶点的三角形全等时,x的值为2或3.解:设经过t秒后,使△BPD与△CQP全等,∵AB=AC=12,点D为AB的中点,∴BD=6,∵∠ABC=∠ACB,∴要使△BPD与△CQP全等,必须BD=CP或BP=CP,即6=8﹣2t或2t=8﹣2t,t1=1,t2=2,t=1时,BP=CQ=2,2÷1=2;t=2时,BD=CQ=6,6÷2=3;即点Q的运动速度是2或3,故答案为:2或3.三、解答题(共60分)19.(14分)计算(1)(3x﹣1)(3x+2)﹣(﹣3x)2;(2)(2a﹣3b)2﹣2a(2a﹣3b);(3)先化简,再求值:(x﹣2y)(﹣2y﹣x)﹣(x﹣2y)2,其中x=3,.解:(1)原式=9x2+6x﹣3x﹣2﹣9x2=3x﹣2;(2)原式=4a2﹣12ab+9b2﹣4a2+6ab=﹣6ab+9b2;(3)(x﹣2y)(﹣2y﹣x)﹣(x﹣2y)2=4y2﹣x2﹣x2+4xy﹣4y2=﹣2x2+4xy,当x=3,时,原式=﹣2×32+4×3×=﹣10.20.(8分)把下列多项式分解因式.(1)4x3﹣xy2;(2)4(x+y)2﹣16xy.解:(1)原式=x(4x2﹣y2)=x(2x+y)(2x﹣y);(2)原式=4(x2+y2+2xy﹣4xy)=4(x﹣y)2.21.(6分)如图是我国古代数学家赵爽的“勾股方圆图”,它是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形.如果大正方形的面积是12,小正方形的面积是2,直角三角形的两直角边分别是a和b,求(a+b)2的值.解:∵大正方形的面积是12,小正方形的面积是2,∴四个直角三角形面积和为12﹣2=10,即4×ab=10,∴2ab=10,a2+b2=12,∴(a+b)2=a2+b2+2ab=12+10=22.答:(a+b)2的值为22.22.(9分)某校为了了解本校八年级学生课外阅读的喜好,随机抽取该校八年级部分学生进行问卷调查(每人只选一种书籍).图1和图2是整理数据后绘制的两幅不完整的统计图,请你根据图中提供的信息,解答下列问题:(1)这次活动一共调查了200名学生;(2)在图2中,“漫画”所在扇形圆心角为72度;(3)补全条形统计图.解:(1)调查的总人数是:80÷40%=200(人),故答案是:200;(2)“漫画”所在扇形圆心角为:360°×=72°,故答案是:72;(3)喜好科普常识的人数是:200×30%=60(人)..23.(10分)如图,已知△ABC.利用直尺和圆规,根据要求作图,并解决后面的问题.(1)作△ABC的角平分线AD;(2)作∠CBE=∠ADC,BE交CA的延长线于点E;(要求:保留作图痕迹,不需写作法和证明)(3)图中线段AB与线段AE相等吗?证明你的结论.解:(1)如图:(2)如图:(3)AB=AE,∵AD是角平分线,∴∠BAD=∠ADC,∴AD∥BE,∴∠E=∠CAD,∠EBA=BAD,∴∠E=∠EBA,∴AB=AE.24.(13分)如图,在△ABC中,∠BAC=90°,AB=AC=3,D为BC边的中点,∠MDN=90°,将∠MDN 绕点D顺时针旋转,它的两边分别交AB、AC于点E、F.(1)求证:△ADE≌△CDF;(2)求四边形AEDF的面积;(3)连结EF.①当点F在AC边上时总有BE<EF(填“>”或“<”或“=”),请说明理由;②若BE=2,求EF的长.(1)证明:∵∠BAC=90°,AB=AC,D为BC中点,∴∠B=∠C=∠BAD=∠CAD=45°,∠ADC=90°,∴AD=DC=BD,∵∠ADE+∠ADF=90°,∠ADF+∠CDF=90°,∴∠ADE=∠CDF,在△ADE和△CDF中,,∴△ADE≌△CDF(ASA);(2)解:∵△ADE≌△CDF,∴四边形AEDF的面积=S△ADC =S△ABC,∵S△ABC =AB•AC=,∴四边形AEDF的面积=;(3)解:①∵△ADE≌△CDF,∴AE=CF,∵AB=AC,∴BE=AF,∵FA⊥EA,∴AF<EF,即BE<EF;②∵AB=AC=3,BE=2,∴AE=1,AF=BE=2,∴EF==.。
成都龙泉一中八年级级2014-2015学年度上期数学期末考试模拟试题

成都龙泉一中初二摸底考试试卷八年级(上)数学(时间120分钟,满分150分)全卷分为第A 卷(100分)和第B 卷(50分)两部分.答题前,请考生务必在答题卷上密封线外正确填写自己的姓名、考号和考试科目。
考试结束,只将答题卷交回.A 卷(100分)一、选择题(本题共10小题,每题3分共30分,在每题四个选项中,只有一项是符合题目要求的) 1.下列变形正确的是 ( )4=±3=±3=-3=-2. 有下列说法:①有理数和数轴上的点一一对应;②不带根号的数一定是有理数;③负数没有立方根;④17-是17的平方根。
其中正确的有 ( ) A .0个 B .1个 C .2个 D .3个3、点),(y x A 在第二象限内,且||2||3x y ==,,则点A 关于原点对称点的坐标为( ) A .(-2,3) B .(2,-3) C .(-3,2) D .(3,-2) 4、下列命题中的真命题是( )A .一组对边平行,另一组对边相等的四边形是平行四边形B .有一组对边和一组对角分别相等的四边形是平行四边形C .两组对角分别相等的四边形是平行四边形D .两条对角线互相垂直且相等的四边形是正方形5、如图,在矩形ABCD 中,A B =2,BC =1,动点P 从点B 出发,沿路线B →C →D 作匀速运动,那么△APB的面积S 与点P 运动的路程之间的函数图象大致是( )6、如果方程组⎩⎨⎧=-+=525y x y x 的解是方程532=+-a y x 的解, 那么a 的值是( )A .20B .-15C .-10D .57、一次函数y =kx +b 的图像不经过第三象限,也不经过原点,那么k 、b 的取值范围是( ) A 、k >0且b >0 B 、k >0且b <0 C 、 k <0且b >0 D 、 k <0且b <0 8、若点M (a ,b )在第四象限,则点N (– a ,–b + 2)在( ) A .第一象限B .第二象限C .第三象限D .第四象限.9、已知一个两位数,十位上的数字x 比个位上的数字y 大1,若颠倒个位与十位数字的位置,得到新数比原数小9,求这个两位数列出的方程组正确的是( )A .⎩⎨⎧=+++=-9)()(1x y y x y xB .⎩⎨⎧++=++=9101x y y x y xC .⎩⎨⎧++=+=+910101x y y x y x D .⎩⎨⎧++=++=910101x y y x y x10. 如图,P 是矩形ABCD 内一点,PA =3,PD =4,PC =5,则PB 为( ) A .4.5 B...4 二、填空题. (本大题共4小题,每小题4分,共16分)11. 有7个数由小到大依次排列,其平均数是38,如果这组数的前4个数的平均数是33,后4个数的平均数是42,则这7个数的中位数是 .12.一组数据1,2,a ,4,5的平均数是3,则这组数据的的方差为 .13. 已知一次函数142y x =-,将此直线向上平移6个单位,则平移后的直线的解析式为__________________.14. 长为10m 的梯子AB 斜靠墙上(墙与地面垂直)。
河北省2014-2015学年八年级数学上学期期末考试试题新人教版

河北省2014-2015学年八年级数学上学期期末考试试题选择题(1-6小题,每题2分,7-16小题,每题3分,共42分) 1.如果代数式1-x x有意义,那么x 的取值范围是( ) A.x ≥0 B.x ≠1 C.x >0 D.x ≥0且x ≠1 2.下列说法中正确的是( )A.36的平方根是6B.4的平方根是±2C.8的立方根是-2D.4的算术平方根是-23.等腰三角形的一个内角是50°,则另外两个角的度数分别是( )A.65°,65°B.50°,80°C.65°,65°或50°,80°D.50°,50° 4.如果把分式yx x+2中的x 和y 都扩大2倍,那么分式的值( ) A.不变 B.扩大2倍 C.扩大4倍 D.缩小2倍5.在以下永洁环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形的是( )6.把直线y =-x-1向右平移2个单位后得到的直线的解析式是( )A.y =-x+3B.y =-x+2C.y =-x+1D.y =-x-37.如图所示,Rt △ABC 中,∠ACB =90°,∠A =50°,将其折叠,使点A 落在边CB 上A'处,折痕为CD ,则∠A'DB =( )A.40°B.30°C.20°D.10°8.如图,在四边形ABCD 中,AD ∥BC ,AD=BC ,连接AC ,E 为AC 上一点,连接DE ,过点B 作BF ∥DE ,交AC 于点F ,则图中的全等三角形共有( )A.1对B.1对C.3对D.4对9.如右图,在平面直角坐标系中,点A (-2,4),点B (4, 2),在x 轴上去一点P ,使点P 到点A 和点B 的距离之和最小,则点P 的坐标是( )A.(-2,0)B.(4,0)C.(2,0)D.(0,0)10.如图,已知AE=CF ,∠AFD=∠CFB ,那么添加下列哪个条件后,仍无法判定△ADF ≌△CBE ( )A.∠A=∠CB.AD=CBC.BE=DFD.AD ∥BC11.已知直线y =653+-x 和y =x -2,则它们与y 轴所围成的三角形的面积为( ) A.6 B.10 C.20 D.1212.在一个暗箱里放入除颜色外其它都相同的3个红球和11个黄球,搅拌均匀后随机任取一个球,取到是红球的概率是( ) A.113 B.118 C.1411 D.14313.估计2+15的运算结果应在( ) A.3到4之间 B.4到5之间 C.5到6之间 D.6到7之间14.如图,在△ABC 中,∠BAC=60°,在△ABC 的内部取一点O ,连接OA ,OB ,OC ,恰有OA=OC ,∠OBA=20°,∠OCA=40°。
广东省广州市海珠区2014-2015学年八年级上期末考试数学试题及答案

海珠区2014-2015学年第一学期期末调研测试八年级数学试卷本试卷分第1卷和第2卷两部分,共三大题25小题,共4页,满分100+50分,考试时间为120分钟,不可以使用计算器. 注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名和考生号填写在答题卡指定的位置上.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用墙皮擦干净后,再选涂其它答案,答案不能答在问卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B 铅笔画图.答案必须卸写在答卷各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;改动的答案也不能超出指定的区域.不准使用铅笔(除作图外)、圆珠笔和涂改液.不按以上要求作答的答案无效.一、选择题(本大题共10小题,每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列图案属于轴对称图形的是( ).2.点M (1,2)关于Y 轴对称的点的坐标为( ).A .(-1,-2)B .(-1,2)C .(1,-2)D .(2,1) 3.已知三角形两边长分别为7、11,那么第三边的长可以是( ).A .2B .3C .4D .5 4.下列计算正确的是( ). A .()236aa = B . 22a a a =∙ C .326a a a += D .()3339a a =5.一个多边形的每一个外角都等于36°,则这个多边形的边数是( ).A .8B .9C .10D .11 6.如图,已知△ABC 中,75A ∠=︒,则12∠+∠=( ).A .335°B .255°C .155°D .150° 第6题图 7.下列从左到右的运算是因式分解的是( ).A .22212(1)1a a a a -+=-+ B .()()22x y x y x y -+=-C .()2296131x x x -+=-D .()2222x y x y xy +=-+8.若等腰三角形的两边长分别为6和8,则周长为( ).A .20或22B .20C .22D .无法确定 9.如图,已知∠1=∠2,则不一定能使△ABD ≌△ACD 的条件是( ).A .AB=ACB .BD=CDC .∠B=∠CD .∠BDA=∠CDA 10.如图,已知∠MON=30°,点A 1,A 2,A 3,……在射线ON 上,点B 1,B 2,B 3,……在射线OM 上,△A 1B 1A 2,△A 2B 2A 3,△A 3B 3A 4,……均为等边三角形,若OA 1=2,则△A 5B 5A 6( ). A .8 B .16 C .24 D .32第10题图 二、填空题(本题共18分,每小题3分,共18分)11.科学家发现一种病毒的直径为0.0043微米,则用科学计数法表示为 微米. 12.若一个三角形三个内角的度数之比为1:2:3,则这个三角形中的最大的角度是 .13.计算()213.143-⎛⎫π-+= ⎪⎝⎭.14.若多项式24x mx ++是完全平方式,则m= .15.如图,∠AOB=30°,OP 平分∠AOB ,PD ⊥OB 于D ,PC//OB 交OA 于C ,若PC=6,则PD= . 16.下面的图表是我国数学家发明的“杨辉三角”,此图揭示了(a+b )n (n 为非负整数)的展开式的项数及各项系数的有关规律.请你观察,并根据此规律写出:()5a b -= .第15题图 第16题图三、解答题(本题共9小题,共102分,解答题要求写出文字说明,证明过程或计算步骤) 17.(本题满分10分,每小题5分)计算:(1)a a 4)(32∙- (2)()()2211x x x ++-18.(本题满分10分,每小题5分)解下列分式方程:(1)1122x x x -=-- (2)223111x x x +=--(1)画出△ABC关于y轴对称的图形△A,B,C,;(2)在x轴上找出点P,使得点P到点A、点B的距离之和最短(保留作图痕迹)20.(本题满分10分)如图,已知点E、F在线段BC上,BE=CF,AB=CD,∠B=∠C.求证:∠A=∠D.21.(本题满分12分)小鹏的家距离学校1600米,一天小鹏从家去上学,出发10分钟后,爸爸发现他的数学课本忘了拿,立即带上课本去追他,在学校门口追上了他,已知爸爸的速度是小鹏速度的2倍,求小鹏的速度.第二卷(共50分)22.(本题满分12分)如图,在△ABC中,AB=AC,∠A=36°,DE是AC的垂直平分线.(1)求证:△BCD是等腰三角形;(2)△BCD的周长是a,BC=b,求△ACD的周长(用含a,b的代数式表示)AB D CEB C DAED B CE A第24题图①第24题图②第24题图③ 先化简代数式:4312112-⨯--+-x x x x ,然后再从22x -≤≤的范围内选取一个合适的整数代入求值.24.(本题满分12分)已知△ABC 是等边三角形,点D 是直线BC 上一点,以AD 为一边在AD 的右侧作等边△ADE. (1)如图①,点D 在线段BC 上移动时,直接写出∠BAD 和∠CAE 的大小关系;(2)如图②,点D 在线段BC 的延长线上移动时,猜想∠DCE 的大小是否发生变化.若不变请求出其大小;若变化,请说明理由.25.(本题满分14分)已知点D 到△ABC 的两边AB 、AC 所在直线的距离相等,且DB=DC. (1)如图①,若点D 在BC 上,求证AB=AC ;(2)如图②,若点D 在△ABC 的内部,求证:AB=AC ;(3)若点D 在△ABC 的外部,且点D 与点A 分别在线段BC 的两侧,AB=AC 成立吗?请说明理由.。
2014-2015学年度上学期八年级数学试题(卷)

12014~2015学年度上学期八年级数学试题 姓名一、选择题(本大题共10小题,每小题3分,共30分) 1. 下面哪个点不在函数y = -2x+3的图象上( )A .(-5,13) B.(0.5,2) C.(3,0) D.(1,1) 2. 如图,在直角坐标系中,直线l 对应的函数表达式是( )A. 1+-=x yB.1+=x yC. 1--=x yD. 1-=x y3.在-2)5(-、2π71、0 、311 中无理数个数为 ( ) A.1个 B.2个 C.3个 D.4个4. 已知点(-4,y 1),(2,y 2)都在直线y=- 12 x+2上,则y 1 与y 2的大小关系是( )A. y 1 >y 2B. y 1 =y 2C. y 1 <y 2D. 不能比较 5. 已知0)5(2=+-++y x y x 那么x 和y 的值分别是( ) A 、25-,25 B 、25,25- C 、25,25 D 、25-, 25-6.下列说法错误的是 ( )A.1)1(2=- B. ()1133-=- C. 2的平方根是2±D.()232)3(-⨯-=-⨯-7.若点)3,(x A 与点),2(y B 关于x 轴对称,则( )A. x = -2, y =-3B.x =2, y =3C. x =2, y =-3D. x =-2, y =3 8. 在等式b kx y +=中,当x=0时,y=1-;当x=1-时,y=0,则这个等式是( ) A .1--=x y B .x y -= C .1+-=x y D .1+=x y9.如图,梯子AB 靠在墙上,梯子的底端A 到墙根O 的距离为2 m ,梯子的顶端B 到地面的距离为7 m ,现将梯子的底端A 向外移动到A ′,使梯子的底端A ′到墙根O 的距离等于3m ,同时梯子的顶端B 下降至B ′,那么BB ′( ) A .小于1 m B .大于1 m C .等于1 m D .小于或等于1 m10. 在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是( ) A.10 B.54 C. 10或54 D.10或172二、填空题(本大题共6小题,每小题3分,共18分) 看谁的命中率高 11. 已知一次函数y=kx+5的图象经过点(-1,2),则k= 12.比较大小:—4;(填“<”或“>”符号) 13. 直线32+-=x y 与坐标轴的交点坐标为 14. 如果一个二元一次方程的一个解是⎩⎨⎧-==11yx ,请你写出一个符合题意的二元一次方程215. 五一节某超市稿促销活动:①一次性购物不超过150元不享受优惠;②一次性购物超过150元但不超过500元一律九折;③一次性购物超过500元一律八折.王宁两次购物分别付款120元、432元,若王宁一次性购买与上两次相同的商品,则应付款 元 16.如果二元一次方程组⎩⎨⎧=+=-a y x ay x 3的解是二元一次方程0753=--y x 的一个解,那么a 的值是三、解答题(共52分,解答应写出过程)看谁最细心 17. 计算(每小题5 分,共10分) (1)13312-- (2) ⎩⎨⎧=-=+423732y x y x18. (本小题满分6分) 有一块边长为12米的正方形绿地,如图所示,在绿地旁边B 处有健身器材(5=BC 米),由于居住在A 处的居民践踏了绿地,小明想在A 处树立一个标牌“少走▇米,踏之何忍?”请问:小明在标牌▇填上的数字是多少?19. (本小题满分6分) 有一种节能型轿车的油箱最多可装天燃气50升,加满燃气后,油箱中的剩余燃气量y (升)与轿车行驶路程x (千米)之间的关系如图所示,根据图象回答下列问题:(1)一箱天燃气可供轿车行驶多少千米? (2)轿车每行驶200千米消耗燃料多少升? (3)求出y 与x 之间的关系式;(0≤x ≤1000)20.(本小题满分6分)作图题:作函数y=-x-2的图象,并写出图象与X ,Y 轴围成的面积。
安阳市2014—2015学年上八年级数学期末试题答案

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 2分
B D P E' E C A
∴∠B=∠ECB=∠E’CB=60°. · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 7分
八年级数学答案 第2页 共3页
在△PBD 和△PCE’中,
B E ' CP, BPD CPE ', DB E ' C.
∴△PBD≌△PCE’.· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 9分 ∴PB=PC. · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 10 分 23. 以下答案及评分意见以方法一为例. 证明:如图,在 AN 上截取 AE=AC,连接 CE. ∵AC 平分∠MAN,∠MAN=120° , ∴∠CAB=∠CAD=60° ,………………………2 分 ∴△ACE 是等边三角形. ∴∠AEC=60° ,AC=EC=AE.……………………3 分 又∠ABC+∠ADC=180° ,∠ABC+∠EBC=180° ∴∠ADC=∠EBC · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 4分 在△ADC 和△EBC 中, ∠DAC=∠BEC ∠ADC=∠EBC AC=EC ∴△ADC≌△EBC · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 7分 ∴DA=BE · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 8分 ∴AB+AD=AB+BE=AE, · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 9分 ∴AB+ AD=AC. · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 10 分 (注:以上均为参考答案,若学生使用其他解法,只要正确均可给分)
阚疃中学2014—2015学年度第一学期期末(含答案)八年级数学竞赛试卷

2014-2015学年度第一学期阚疃中学八年级数学竞赛试卷一、选择题(30分)1.对于任意有理数x ,点p(x,x 2–2x )一定不在第( )象限。
A. 一;B. 二;C. 三;D. 四 2.下列关系式中,不能表示y 是x 的函数的是( )A. y =x1; B. y = | x |; C. | y | = x ; D. y = 3x 3. 某人骑车沿直线旅行,先前进了akm,休息了一段时间,又原路返回bkm (b<a ),再前进ckm ,则此人离起点的距离s 与时间t 的关系示意图应是( )4. k ≠0,当k 取不同的数时,直线y = k x +3-2k 都经过P ,则P 点的坐标是( )A. (2,3);B. (-2,3);C. (-2,-3);D. (2,-3)5. 有5角、1元的硬币各若干个,从中取出一些凑成4元,共有m 种不同的取法,则m 的值是( )A. 5;B. 4;C. 3;D. 2 6.三个互不相等的有理数,既可表示为,1,k+b, k ;又可表示为 0,bk,b 。
那么一次函数y=kx +b 中, 当 x= -3 时,y 的值是( )A. 5;B. 4;C. 3;D. 27. 三角尺的直角顶点放在直尺的边上,如图。
∠1= 30°,∠2= 55°,∠3=()A. 23°;B. 25°;C. 35°;D. 40°8. 如图:AB =AD ,CB =CD 则图中全等三角形共有( )对。
A. 4;B.3;C. 2;D. 19. 下列正确的是( )A.两边与第三边上的高对应相等的两个三角形全等B.两边与第三边上的中线对应相等的两个三角形全等,C.有两边与一个内角对应相等的两个三角形全等D.三个角对应相等的两个三角形全等。
10.直线y =-3x+3 交x 轴于A ,交Y 轴与B 。
如图CB 平分∠yBA ,AC 平分∠BAO ,则∠C 是( ) A.30°; B. 45°; C. 60°; D. 36°二、填空题:(20分) 11. 函数21-+=x x y 的自变量x 的取值范围是 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014-2015学年
八年级数学上学期期末考试试题
(考试时间:120分钟;满分:120分)
第I 卷
一、选择题(本题满分24分,共有8道小题,每小题3分)
下列每小题都给出标号为A 、B 、C 、D 的四个结论,其中只有一个是正确的.每小题选对得分;不选、选错或选出的标号超过一个的不得分. 1. 在﹣3.14159…,∙
1.2,2
π
,6.1,511,3001.0-中,无理数有( )个
A. 2
B. 3
C. 4
D. 5
2.下列计算错误的是( ) A .32333=- B .()
9
1
32
=
-- C .-2+2-=0 D .283±= 3. 在平面直角坐标系中,点P (-3,2)关于x 轴的对称点的坐标为( ). A .(2,-3)
B .(-2,3)
C .(-3,2)
D .(-3,-2)
4. 如图,△ABC 中,∠C =450,点D 在AB 上,点E 在BC 上, 若AD =DB =DE ,AE =1,则AC 的长为( ) A.5 B.2 C.3 D.2
5. 下列语句是命题的是 ( )
A .量线段A
B 的长度 B .同位角相等,两直线平行吗?
C .直角三角形两个锐角互余
D .画线段AB =CD 6. 如图,下列哪种说法是错误的( ) A. ∠B >∠ACD B. ∠B +∠ACB =180°-∠A
C.
∠B +∠ACB < 180°
D. ∠HEC >∠B
7.下列一次函数中,y 的值随着x 值的增大而增大的是( ).
A .y =﹣x -1 B. y =0.3x C.y =-x +1 D.y =-x
8. 为确保信息安全,信息需加密传输,发送方将明文加密为密文传输给接收方,接收方收到密文后解密还原为明文,已知加密规则为:明文a ,b ,对应密文a -2b ,2a +b .例如,明文1,2,对应密文-3,4.当接收方收到密文是1,7时,则解密得到的明文为( ) A. -1,1 B. 1,3 C. 3,1 D. 1,1
2014-2015学年度第一学期学业水平阶段性检测
八年级数学试题
第II 卷
二、填空题(本题满分18分,共有6道小题,每小题3分)
9. 方程组⎩⎨⎧=+=-1202y x x y 的解为⎩
⎨⎧==84
y x ,则一次函数y =2x 和y=12﹣x 图像的交点坐标
为 .
10. 把命题“直角三角形两锐角互余”改写成:如果________,那么__________. 11. 一个三角形的三边之比为13:12:5,且周长为60cm ,则它的面积是 2cm
12. 某工厂去年的利润(总收入—总支出)为200万元.今年总收入比去年增加了20%,总支出比去年减少了10%,今年的利润为780万元.设去年的总收入为x 万元、总支出为y 万元,根据题意可列方程组 .
13. 甲、乙、丙三台包装机同时分装质量为400克的茶叶.从它们各自分装的茶叶中分别随机抽取了10盒,测得它们的实际质量的方差如下表所示:
根据表中数据,可以认为三台包装机中, 包装机包装的茶叶质量最稳定。
14. 勾股定理是几何中一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,
则弦五”的记载.如图1,是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入长方形
内得到的,∠BAC =90°,AB =3,AC =4,
点D ,E ,F ,G ,H ,I 都在长方形KLMJ 的边上,则长方形
KLMJ 的面积为
三、作图题(4分)
15. 如图,正方形网格中的每个小正方形边长都为1,每个小正方形的顶点叫格点,以格点为顶点画一个三角形,使三角形三边长为3,5,8.
四 、解答题(本大题满分74分)
16. 化简计算(本题满分8分,每小题4分) (1)5
1
202453+
- (2)3642
20
10-⨯
17. 解方程组(本题满分6分)
⎩
⎨⎧-=--=+29544
2y x y x 18. (本题满分6分)
如图,△
ABC
中,∠A =65º,点D 在边AC 上,连接BD ,作∠DCE =∠ABD =30º,求∠BEC 的度数.
19. 列方程组解决实际问题(本题满分8分)
我市某超市举行店庆活动,对甲、乙两种商品实行打折销售.打折前,购买3件甲商品和1件乙商品需用190元;购买2间甲商品和3件乙商品需用220元.而店庆期间,购买10件甲商品和10件乙商品仅需735元,这比不打折前少花多少钱?
20.(本题满分8分).
某班同学分三组进行数学活动,对七年级400名同学最喜欢喝的饮料情况,八年级300学生零花钱零花钱的最主要用途情况、九年级300名同学完成家庭作业时间情况进行了全面调查,并分别用扇形图、频数分布直方图、表格来描述整理得到的数据.
① ②
九年级同学完成家庭作业时间情况统计表:
根据以上信息,请回答下列问题:
(1)七年级400名同学中最喜欢喝“冰红茶”的人数是多少?
(2)补全八年级300名同学中零花钱的最主要用途情况频数分布直方图;
(3)九年级300名同学中完成家庭作业的平均时间大约是多少小时?(结果保留一位小数)
21.(本题满分8分)
如图,A l 与 B l 分别表示A 步行与B 骑车同一路上行驶的路程S 与时间t 的关系.B 自行车遇到故障中途停下修理1小时。
若B 的自行车不发生故障,保持出发时的速度前进,那么经过多少时间与A 相遇?
22.(本题满分8分)
如图,直线AB ∥CD ,并且被直线MN 所截,MN 分别交AB 、
CD 于点E 、F ,点Q 在PM
上,且∠EPM =∠FQM 。
求证:∠AEP =∠CFQ .
23. (本小题满分10分) 【提出问题】
已知P 是∠ABC 、∠ACB 的角平分线的交点,你能找到∠P 、∠A 的关系吗? 【分析问题】
在解决这个问题时,小明是这样做的:先找一个例子,如∠A =800
度,计算出∠P =1300
,随后他又举了几个例子,并对结
论进行了证明,从而找到∠P 与∠A 的关系:∠P =90°
N
+
2
1
∠A 在解决问题的过程中,小明运用了“由特例得到猜想,证明得出一般
结论”的方法,你能用这种方法解决下面的两个问题。
【解决问题】
(1)若点P 是∠ABC 、∠ACB 的三等分线的交点,即∠PBC = 3
1
∠ABC ,∠PCB =
3
1
∠ACB ,则∠P 与∠A 的关系为_____________,请证明你的结论。
(2)若P 是∠ABC 、∠ACB 的四等分线交点,∠PBC =41∠ABC , ∠PCB =4
1∠ACB ,则∠P 与∠A 的关系为__________。
(直接写出答案,不需证明) (3) 若P 是∠ABC 、∠ACB 的n 等分线交点,∠PBC =
n 1∠ABC , ∠PCB =n
1
∠ACB , 则∠P 与∠A 的关系为__________。
(直接写出答案,不需证明) 24.(本小题满分12分)
在平面直角坐标系中,点A 从原点O 出发,每次向上移动2个单位长度或向右移动1个单位长度.
(1)实验操作:
在平面直角坐标系中描出点A 从点O 出发,移动1次后,2次后,3次后可能到达的点,并把相应点的坐标填写在表格中:
(2)观察发现:
任一次移动,点A 可能到达的点在我们学过的一种函数的图象上, ①求移动1次后点A 可能到达的点所在图像的函数表达式;
②移动2次后在函数 的图象上,……由此我们知道,移动n 次后在函数 的图象上.(请填写相应的函数表达式) (3)探索运用:
点A 从点O 出发经过n 次移动后,到达直线y =x 上的点B ,且平移的总路径长为20,求点B 的
坐标.。