数形结合思想论文直觉思维论文
数形结合思想在初中数学教学中的应用优秀获奖科研论文-2

数形结合思想在初中数学教学中的应用优秀获奖科研论文数形结合是一种非常重要的数学思想方法,也是数学解题中要求掌握的重要思想方法之一,在数学学习中有着重要的地位.数形结合,有利于学生对数学知识的理解,落实新课标的要求,即通过“以形助数,以数解形”,能够将复杂问题简单化,抽象问题具体化.很多数学问题利用数形结合思想来解决,能够达到化难为易的目的.在初中数学教学中,教师应重视数形结合思想,从而提高学生分析问题和解决问题的能力.下面结合自己的教学实践就数形结合思想在初中数学教学中的应用谈点体会.一、数形结合思想在集合问题中的应用在教学中,教师单一地讲解集合问题,很难使学生想象出各数集之间的关联性,而利用图示法,能够解决抽象的集合问题,让学生对集合问题一目了然.在图形中,一般利用圆来表示集合,两集合有公共的元素则两圆相交,两圆相离则表示没有公共的元素.例如,在学校开展兴趣班时,初中某班共有28个学生,其中有15人参加音乐兴趣班,有8人参加舞蹈兴趣班,有14人参加书法兴趣班,同时参加音乐和舞蹈兴趣班的有3人,同时参加音乐和书法兴趣班的有3人,没有人同时参加三个兴趣班,问:同时参加舞蹈班和书法兴趣班的有多少人?只参加音乐兴趣班的有多少人?图1解析:如图1,设A={参加音乐兴趣班的学生},B={参加舞蹈兴趣班的学生},C={参加书法兴趣班的学生},同时参加舞蹈和书法兴趣班的学生有x人.由题意可知,card(A交B)=3.card(A交C)=3,card(B交C)=x,则15+8+14-3-3-x=28,得x=3.因此,同时参加舞蹈和书法班的有3人,只参加音乐兴趣班的有15-3-3=9人.这样,利用图示法,可以使复杂的数学问题变得简单化和具体化,降低做题难度,有助于激发学生的学习兴趣.二、数形结合思想在函数问题中的应用函数是整个数学的重点,关于函数类型的题也数不胜数.利用函数求极值的问题是常见的题型,以数辅形,需要将图象中的数量关系整理清楚,以函数的形式表达出来,把握函数与图形之间的关系,达到快速解决数学问题的目的,体现数形结合在解题中的重要性.初中生对一次函数和二次函数的图象有着很深的了解,因此在面对这类函数问题时,往往可以根据函数图象来解答.这样,不但可以加深学生对基本概念的理解,还可以加强学生对这些基本知识的灵活运用.例如,当0 解析:方程中含有两个未知数,无法直接求解,可以转化成两个函数问题,图2求解的个数就是求函数图象的交点个数.由|1-x2|=kx+k,可构造y=|1-x2|和y=kx+k,如图2.所以原方程解的个数为3个.这样,复杂的函数问题,利用图形进行展示,能够直接得出问题的答案,强化了学生的认知,深化了学生的思维训练,提升了教学效率.三、数形结合思想在概率问题中的应用概率作为初中数学教学中的重点内容,一直是教学的难点.许多概率问题在思考中都存在着抽象,如果借助于坐标平面或数学模型的问题,以形助数,运用数形结合思想,就能够帮助学生迅速找到问题的切入点,优化解题过程,提高解题速度.总之,在初中数学教学中,数形结合思想既是一种教学手段,又是一种解题方法.运用数形结合思想,能够拓宽学生的思维;运用数形之间的关联性,以图形助数学解题,能够强化学生对数学本质的认知和了解,提高学生数学思维的灵活性、根基性等.教师应适当运用数形结合思想开展教学活动,从学生的角度出发,培养学生的综合技能和素质,提升初中数学教学质量,确保学生全面发展.。
初中数学教学数形结合思想论文

初中数学教学数形结合思想论文摘要:数和形是初中数学内容的两大板块和两条主线。
数形结合是数学解题中常用的思想方法,数形结合的思想可以使某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质;另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷。
数形结合思想主要指借助数形对应转化进而解决实际问题,倘若我们令数量关系借助图形性质便可令较多抽象关系、概念变得更为形象与直观,十分有利于探求合理的解题途径,即所谓的以形助数,而倘若一些图形问题能合理的借助数量关系转化又可获取一般化简捷的解题方式,即以数解形。
由此可见数形结合理念的实质就是有效将直观图形与数学语言结合,令形象思维与抽象思维融合,通过数形转化、图形认识培养学生的形象性与灵活性思维,进而令复杂数学问题趋向简单、抽象问题趋向具体。
可以说数形结合是初中数学教学最为基本的价值化思想之一,在教学实践中应用广泛,是合理解决多类数学问题的重要思维。
一、数形结合方法及主要类型所谓数形结合就是抓住数与形之间本质上的联系,将抽象的数学语言与直观的图形结合起来的一种思想,通过“以形助数”或“以数解形”,使复杂问题简单化、抽象问题具体化,从而达到优化解题的目的。
数形结合思想的主要内容体现在以下几个方面:(1)建立适当的代数模型(主要是方程、不等式或函数模型),(2)建立几何模型(或函数图象)解决有关方程和函数的问题。
(3)与函数有关的代数、几何综合性问题。
(4)以图象形式呈现信息的应用性等问题。
在初中学数学的解题中,数形结合方法主要有三种类型:(1)以“数”转化为“形”这类问题,解决问题的基本思路:明确题中所给的条件和所求的目标,从题中已知条件或结论出发,先观察分析其是否相似(相同)于已学过的基本公式(定理)或图形的表达式,再作出或构造出与之相适合的图形,(2)以“形”变“数”,通过图像找出与数的对应关系。
(3)“数”“形”结合,利用数画出图,利用图找出与数的对应关系。
数学思维论文(5篇)

数学思维论文(5篇)数学思维论文(5篇)数学思维论文范文第1篇一、数学直觉概念的界定简洁的说,数学直觉是具有意识的人脑对数学对象(结构及其关系)的某种直接的领悟和洞察。
对于直觉作以下说明:(1)直觉与直观、直感的区分直观与直感都是以真实的事物为对象,通过各种感觉器官直接获得的感觉或感知。
例如等腰三角形的两个底角相等,两个角相等的三角形是等腰三角形等概念、性质的界定并没有一个严格的证明,只是一种直观形象的感知。
而直觉的讨论对象则是抽象的数学结构及其关系。
庞加莱说:"直觉不必建立在感觉明白之上.感觉不久便会变的无能为力。
例如,我们仍无法想象千角形,但我们能够通过直觉一般地思索多角形,多角形把千角形作为一个特例包括进来。
"由此可见直觉是一种深层次的心理活动,没有详细的直观形象和可操作的规律挨次作思索的背景。
正如迪瓦多内所说:"这些富有制造性的科学家与众不同的地方,在于他们对讨论的对象有一个活全生的构想和深刻的了解,这些构想和了解结合起来,就是所谓''''直觉''''……,由于它适用的对象,一般说来,在我们的感官世界中是看不见的。
"(2)直觉与规律的关系从思维方式上来看,思维可以分为规律思维和直觉思维。
长期以来人们刻意的把两者分别开来,其实这是一种误会,规律思维与直觉思维从来就不是割离的。
有一种观点认为规律重于演绎,而直观重于分析,从侧重角度来看,此话不无道理,但侧重并不等于完全,数学规律中是否会有直觉成分?数学直觉是否具有规律性?比如在日常生活中有很多说不清道不明的东西,人们对各种大事作出推断与猜想离不开直觉,甚至可以说直觉无时无刻不在起作用。
数学也是对客观世界的反映,它是人们对生活现象与世界运行的秩序直觉的体现,再以数学的形式将思索的理性过程格式化。
数学最初的概念都是基于直觉,数学在肯定程度上就是在问题解决中得到进展的,问题解决也离不开直觉,下面我们就以数学问题的证明为例,来考察直觉在证明过程中所起的作用。
妙用“数形结合”提升思维能力 论文

妙用“数形结合”提升思维能力摘要:“敷”和“脑”是数学教学中两个最范本的研究对象,有着初为紧密的联系,在一定条件下可以相互转化.通过数和彩的转化能够让复杂问题简单化,抽象问飕形象化。
通过数学学科所要学习的内容来看,数量关系的相互转化无疑是理点,然而通过一些困舫将这些具有抽象性的数量关系进行转变,将其以更加互现的形式展现在学生而前,学生势必会对好地理解这些教量关系,进而在计算和分析的过程中也会变存更加细致入微。
有鉴于此,本文在对数形蟀合概念及必要性进行分析基础上,提出了基于小学生"致形结合”思维培养的教学教邨术∙养有效构成的系略。
关健四:小学生:敦杉结合:关维能力引言为了实现这一目的,小学一线数学老师也做了很多尝试,数形结合就是i种实操性强的方式,为了更好地实现这一目的就需要数学教师结合自身的教学实践经验,对数形结合的方法进行重点研究,以此来实现学生数学思维的有效培养。
对学生的思维能力进行培养能够有效带动学生学习效果的提升。
一、数形结合及其K要性分析有关数形结合的思想主要包含两个方面的内容:一是借形助数,用代数构建形状,让代数知识史形象,加深学生对数学知识的理解和把握;二是由数思形.以形状为教体寻找和代数存在的关系,然后以代数为基础对形状进行构思,以进而对图形问题进行解决。
这•方式就是在明确形状和代数关系基础上来解决问题。
因此借助数形结合的方式可以让学生参与数学学习的热情更高.在实现教学效果提升方面发挥着非常重要的价值。
因此,数形结合也是•种重要的数学理念,对于优化思维模式方面发挥了很大的价值。
(一)培养学生数学思维能力的关键相较于传统教学模式,借助数形结合的方式,能够让学生更全面掌握数学知识,尤其是对!区难点知识的学习,数形结合的方式更能促进学生学习效果的提升。
当小学生的数形结合意识得到有效改善后,可以让学生快速解决遇到的数学问题,有助于更好地提升学生的数学成绩。
(二)促进小学数学教学改革的有效途径在数形结合教学模式指引下,可以让小学生的思维能力得到有效锻炼,带动他们核心素养的改善0另一方面,教和通过在课堂上引导学生利用数形结合的理念指导学生的数学学习活动,可以让学生高效的解题技巧.二、小学数学教学中存在的问题(一)数学教学模式传统化,创新力不足结合我国教育实际可知,目前教育者的教育理念、教育方法和原则受传统教学模式的影响比较大,其教学方法大部分都是做题,背口诀,在考试和应用的时候,将得好的句里进行嵌套就可以。
数形结合思想方法论文

数形结合的思想方法数形结合思想是高考必考的七大数学思想之一,是数学研究对象的数量关系和空间形式,即数与形两个方面,把数量关系的研究转化为图形性质的研究,或者把图形性质的研究转化为数量关系的研究,这种解决问题过程中“数”与“形”相互转化的研究策略,就是数形结合的思想。
数形结合思想就是要使抽象的数学语言与直观的图形结合起来,使抽象思维与形象思维结合起来。
在使用的过程中,由“形”到“数”的转化,往往比较明显,而由“数”到“形”的转化却需要转化的意识,因此,数形结合的思想的使用往往偏重于由“数”到“形”的转化。
在一维空间,实数与数轴上的点建立一一对应关系;在二维空间,实数对与坐标平面上的点建立一一对应关系。
特别是在集合、函数、不等式、数列、向量、解析几何、导数与积分等能够用图形表述的知识点,就要用数形结合形象化,高考在选择题、填空题侧重突出考查数到形的转化,在解答题中,考虑推理论证严密性,突出形到数的转化。
1.集合问题中的数形结合例1.已知全集u=r,集合a=x|-2≤x≤3,b=x|x4,那么集合ai(c∪b)等于()a.x|-2≤x0)时f’(x0),函数y=f(x)的图象过原点,所以顶点在第一象限评注:要熟悉导函数与原函数之间的关系,对一次、二次函数关系及其图象的特点要很熟悉。
4.利用不等式表示的平面区域解答问题例4.若m为不等式组x≤0y≥0y-x≤2表示的平面区域,则当 a 从-2连续变化到1时,动直线x+y=a扫过m中的那部分区域的面积为分析:作出不等式表示的平面区域,然后再作平行线x+y=-2 和x+y=1 则夹在两平行线之间的部分即为所求。
解:如图知δaob是直角边为2 的等腰直角三角形,δbcd是斜边为1等腰直角三角形,则所求区域的面积为s=sδaob-sδbcd=■×2×2-■×1×■=■评注:涉及到不等式表示的平面区域问题时常常要画出图形数形结合解答问题。
数形结合思想数学论文1400字_数形结合思想数学毕业论文范文模板

数形结合思想数学论文1400字_数形结合思想数学毕业论文范文模板数形结合思想数学论文1400字(一):小学数学数形结合教学思想论文一、数形结合教学思想在小学数学教学中的运用数形结合作为一种教学思想方法,一般包含两方面内容,一个方面是“以形助数”,另一个方面的内容是“以数解形”。
下面介绍这两个方面的内容在小学数学教学中的运用。
(一)以形助数所谓“以形助数”,是指老师在讲解某些数学知识的时候,仅靠数字讲解学生不太能理解,借助几何图形的特点,将所要讲的知识点更直观地展现在学生面前,从而将抽象化的问题转变为具体化的问题。
学生在学习行程问题的应用题时,可以运用图形的办法清晰地展现问题。
如:一辆汽车从甲地开往乙地,先是经过上坡路,然后是平地,最后是下坡路,汽车上坡速度是每小时20千米,在平地的速度是每小时30千米,而下坡的速度则是每小时40千米,汽车从甲地到乙地一共上坡花了6小时,平地花了2小时,下坡花了4小时。
请问汽车从乙地到甲地需要多长时间?在这道题中,既存在变量,又存在不变量。
变量就是上坡路和下坡路随着汽车行驶的方向而发生改变,当汽车从乙地到甲地行驶时,原先的上坡路变成了下坡路,原先的斜坡路变成了上坡路。
而不变量就是这两个路程汽车行驶的速度都是始终不变的。
那么在解决问题的时候,就可以直观地展现出来。
先算出汽车从乙地到甲地的上坡时间,即(40×4)÷20=8(小时),然后算出下坡所花费的时间,即(20×6)÷40=3(小时),而平地所花费的时间是不变的,所以汽车从乙地到甲地所花费的时间是8+3+2=13(小时)。
在这道题中,运用图像将数学中的数量关系、运算都直观地展现出来,学生比较易于理解,这样的教学可以在很大程度上提高教学效率。
(二)以数解形虽然图形可以更加直观地展现数学中的数量关系,但是对于一些几何图形,特别是小学数学中的几何图形来讲,非常简单,如果仅仅是通过直接观察反而看不出规律,这时就可以运用“以数解形”的方式教学。
小学数学数形结合论文

小学数学数形结合论文浅析小学数学课堂中数形结合思想的运用一、数形结合思想的由来。
华罗庚先生在《谈谈与蜂房结构有关的数学问题》中首次提出“数形结合”思想,强调数与形的对应关系和相互转化,以几何与代数统一为核心。
数形结合思想能将抽象的数学问题直观化,使复杂问题简明化,有助于抽象思维与形象思维的协调发展。
小学中的数形结合思想主要借助实物和直观性活动,如摆、数、画等,使抽象的数与现实生活相联系,培养学生的数学思维和感知能力,为未来的数学学习打下基础。
二、小学教学中运用数形结合思想的必要性。
在小学课堂中用好数形结合思想,对于老师教学和学生成长都大有裨益。
(一)对于教师而言。
“双减”背景下,教师应遵循科学原则布置作业,特别是对于小学一、二年级的学生,不应布置书面作业。
这一政策的实施对传统教学模式产生了深远影响,促使教师们积极转变观念,重新审视并调整自己的教育实践。
基于小学低年级学生的认知特点,数学教师需更深入地解读教材,有效融入数形结合等数学思想,以激发低年级学生的数学兴趣,努力提升课堂教学质量,为国家教育改革做贡献。
(二)对于学生而言。
数形结合思想在小学数学低年级教学中的应用,可以有助于学生获得“四能”,即从生活中发现并提出数学问题、分析并解决问题。
数形结合思想增强了学生学习数学的主动性和自觉性,丰富了学生对于数学意义的理解,对于培养小学生数学素养和创新能力有很大的帮助。
三、如何在课堂上用好数形结合的思想。
下面通过一些教学案例,具体阐释如何把数形结合思想融入小学课堂当中。
在小学数学中,数形结合思想的具体运用主要有“以形助数”和“以数解形”两类。
“以形助数”是借助形的几何直观性来阐明某些概念及数之间的关系。
例如可以借助形来认识数、掌握加减法、掌握乘除法并解决数学问题。
在理解乘法的意义时,教师可以先提问几?然后展示一张有3排,每排5张桌子的图片,引导学生理解其中的联系。
“以数解形”是借助于数的精确性、程序性和可操作性来阐明形的某些属性。
数形结合在小学数学论文_数学论文

数形结合在小学数学论文_数学论文论文搜集网络仅供交流学习版权归原作者所有摘要:数学思想方法对研究和应用数学具有指导意义,学生一旦掌握将会终身受益。
数形结合思想是一种在小学数学教学中常用数学思想,本文联系自己的数学教学实践,从理解算理过程中渗透数形结合思想,教学新知中渗透数形结合思想,数学练习题中挖掘数形结合思想三方面浅谈了数形结合思想在小学数学教学中的渗透。
关键词:思想方法数形结合渗透日本数学史家米山国藏在他的著作《数学的精神、思想和方法》中说道:不管他们(指学生)从事什么业务工作,即使把所教给的知识(概念、定理、法则和公式等)全忘了,唯有铭刻在他们心中的数学精神、思想和方法都随时随地地发生作用,使他们受益终生。
随着社会的发展,要想实现“终身学习”和“人的可持续发展”,重要的是在教育中发展学生的能力,使之掌握获得知识和进一步学习的方法,逐渐掌握蕴涵在知识内的数学思想方法。
只有这样,才能使学生真正感受到数学的价值和力量。
小学是学生学习数学知识的启蒙时期,这一阶段注意给学生渗透基本的数学思想便显得尤为重要。
数形结合思想是一种重要的数学思想。
数形结合就是通过数(数量关系)与形(空间形式)的相互转化、互相利用来解决数学问题的一种思想方法。
它既是一个重要的数学思想,又是一种常用的数学方法。
数形结合,可将抽象的数学语言与直观的图形相结合,是抽象思维与形象思维结合。
著名数学家华罗庚说过“数缺形时少直观、形少数时难入微”。
有些数量关系,借助于图形的性质,可以使抽象的概念和关系直观化、形象化、简单化;而图形的一些性质,借助于数量的计量和分析,得以严谨化。
那么在小学数学教学中如何去挖掘并适时地加以渗透呢?以下根据自身的数学教学实践谈谈自己的粗浅见解。
一、在理解算理过程中渗透数形结合思想。
小学数学内容中,有相当部分的内容是计算问题,计算教学要引导学生理解算理。
但在教学中很多老师忽视了引导学生理解算理,尤其在课改之后,老师们注重了算法多样化,在计算方法的研究上下了很大功夫,却更加忽视了算理的理解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数形结合思想论文直觉思维论文:
数形结合思想探析
摘要:试就数形结合思想在数学中的应用做一综述,对于如何培养学生的数形结合意识,加强数形结合思想训练的方法做一总结和建议,体现数形结合思想在数学中的基础性和重要性。
关键词:数形结合;直觉思维;性别差异;数学思想;意识培养
1 数形结合思想在中学数学中的重要性
数形结合思想是中学数学中的一种重要的数学思想。
所谓数形结合是将数学中抽象的数学语言,数量关系与具体直观的图像结合起来,利用抽象思维与形象思维的有机结合,借助形的具体明确来反应数量之间的关系,借助数来具体描述形的本质内涵。
用这种思想来解决数学问题往往可以使复杂的问题简单化,抽象问题具体化。
数形结合思想既能发挥代数的优势,又可以充分利用图形的直观性,从多个角度探索问题,对思维能力的发展大有稗益。
我国著名的数学家华罗庚曾写下这样一首诗,形象生动的阐述了数形结合的意义。
“数与形,本是相倚依,焉能分作两边飞。
数缺形时少直觉,形缺数时难入微。
数形结合百般好,隔裂分家万事非。
切莫忘,几何代数统一体,永远联系,切莫分离。
”可见,数与形二者相辅相成,缺一不可。
数的抽象,形的具体,两者珠联璧合,对于数学解题将有出其不意的效果。
2 直觉思维对学习数形结合思想的影响
在心理学的意义上对于直觉思维是这样定义的:所谓直觉思维就是人脑对于突然出现在面前的事物、现象、问题及其关系的一种迅速识别,敏锐而深入的洞察,直接的本质理解和综合的整体判断。
直觉思维是贯穿于日常生活学习中,具有迅捷性、直接性、本能意识等特点。
伊恩•斯图加特曾经说过这样两句话:“数学的全部力量就在于直觉和严格性的巧妙的结合在一起,受控制的精神和富有灵感的逻辑”,“直觉是真正的数学家赖以生存的东西。
”而事实也证明了直觉思维对数学学习具有巨大的影响:欧几里德的欧式几何中的五个公设均基于直觉思维。
可见,直觉思维是学生学习数学的必要条件。
利用数形结合思想方法解题时,能够充分调动了学生的直觉思维和逻辑思维。
学生审题结束后,要根据题目中的已知条件对问题的大致方向,所牵涉的知识要点,相关知识结构,利用直觉思维进行最直接的判断,即判断是否可以利用数形结合思想解题。
简而言之,直觉思维是能否利用数形结合思想解题的最初判断。
而我国的数学教育一直侧重于学生逻辑思维能力的培养,强调的是对数学概念的明晰度,逻辑推理的严密度,而对学生直觉思维的培养甚少。
因而,直觉思维对于数形结合思想的运用在一定程度上存在影响。
直觉思维越活跃往往可以将数形结合思想掌握的更牢固运用的更灵活。
3 性别差异对学习数形结合思想的影响
在数学的学习上,男性善于辨别和判断事物的种类,他们习惯着眼于全局,从整体考虑处理问题,并且具有较强的空间想象能力,对于形
的感知较强。
女生则擅长模仿,注重细节,对于基础知识和技能的掌握优于男性。
但是,随着年级的上升,数学内容逐步深化,难度逐步提高,对学生数学能力的要求也日益增加,与此同时女生对于数学的学习就不是很轻松了,而男生的优势却日益明显了。
可见,性别对数学的学习有一定影响。
对于数形结合思想的学习和运用也是如此,男生对于它的运用较女生而言更灵活一些。
之所以出现这样的问题是因为数形结合思想的学习对于学生而言是一个在对事物认识上的一个转折。
以往的数学题是单纯的对于数或形这样的单个个体而展开的,而数形结合思想却同时包含了“数”和“形”两个对象,将原本看上去无关的代数和几何融合在一起,甚至是将其融会贯通。
这就给学生的学习加大了难度。
研究对象可由“数”转变为“形”,也可由“形”转变为“数”,学生要改变以往单一的处理符号信息或者是图形信息的操作,要将两种信息同时进行操作。
而男性对于形的认识高于女性,对于问题大的整体把握也优于女性。
因此,性别的差异就造成了对于数形结合思想运用的差异性。
4 培养学生对“数形结合”的兴趣
数学家哈代曾说过:“数学就像画家的颜色或者诗人的文字一样,一定会和谐地组合在一起。
美感是首要的试金石,丑陋的数学在世界上是站不住脚的。
”数学美感是数学美在生活和情感等方面的体现,如果在数学教学中揭示数形结合思想的同时,也能够使学生享受到美感,那么就能激发学生学习和运用数形结合思想的兴趣,从而大大地提高
他们的学习效果。
数形结合思想在数学的学习中是较为常用的,但是很大一部分学生对此存在误解,认为数形结合思想是非常枯燥和抽象的,在数学学习过程中,学生往往陷入只知数,不看形,将数与形分开,只死记公式应用,不理解公式推导过程,数形脱节等误区。
因而在学习和运用数形结合思想的时候会存在反感心理。
其实,数形结合思想不仅有教学功能,它还拥有美育功能。
教师在教学中应当从数形结合的本质出发,在数学教学中改革教学方法,选择有数学美典型特征的知识进行教学,从学生熟悉的数学内容开始,多方面结合,增强学生对数形结合思想的美感体验,选择恰当的时机和环境开展教学。
例如黄金分割在生活中的运用,举世闻名的完美建筑古希腊帕提依神庙,建筑师们发现由于高和宽的比是0.618,按照这样的比例进行建筑设计,建筑物会更加壮观舒适。
古希腊维纳斯女塑像故意延长双腿,使之与身高的比值为0.618,从而创造艺术美。
音乐家发现,二胡演奏中,“千金”分弦的比符合0.618∶1时,演奏出的音调更为和谐和悦耳。
教师可以再教学中引导学生体会数形结合的美感,增强他们对数形结合思想的兴趣,从而更加积极地学习和运用数形结合思想。
5 充分挖掘教学中数形结合思想的体现
现行数学课程的内容,基本上是根据学生的认知水平和接受能力相适应的。
课程内容强调学生的数学活动,发展学生的数感、符号感、空间观念、统计观念以及应用意识和能力。
由于数形结合思想是一种深层的数学知识,它隐含于数学教材之中,教学的首要任务就在于引导学生充分挖掘教材中的数形结合思想,而挖掘过程采用的主要方法是归纳和提炼。
教师在教学过程中根据数学知识编排课程内容时,要注意根据学生的认知规律,渗透一些数学结合的初步思想。
根据教学实际情况引导说明,抓住数形结合的思想引导学生学习,既借助图形使数量更加直观形象,又借助代数方法研究图形特征。
这样,既有利于数形结合思想的阐述,又比较符合学生的心理发展规律和认识规律。
这样,有利于提高学生学习数学的兴趣,开拓学生的解题思路、活跃课堂气氛、发展学生的形象思维能力、空间想像能力等。
6 加强数形结合思想训练
当学生弄清楚了数形结合思想以后,教师在数学基础知识教学和及解题指导中,应尽量体现数形结合思想方法的运用,使其达到自觉、自由的熟练运用。
在进一步的运用过程中继续加深对数形结合思想的理解。
这个阶段要注意设置阶梯,有明显的层次感,循序渐进,由浅入深。
数形结合思想方的运用必须恰当,有时貌似数与形没有联系,实则不然,有时需要先转化再用数形结合思想;有时则是一开始研究问题就需要运用数形结合思想。
掌握其间的分寸,正是加强数形结合思想训练的目的。
7 结论
数学是一门逻辑思维很强的科学,在解答数学题是,同样存在着现在所谓的“性价比”之说。
“性价比高”即在解答问题时用最小的“代价”取得尽可能大的成果。
数学思想方法就是打开“高性价比”之门的钥匙,数形结合思想作为数学思想方法中重要的一员,也具有重要的地位和作用。
因而,数形结合思想在中学数学中是比较重要的。
数形结合思想在数学中的应用非常广泛,在集合,不等式,函数,平面向量,解析几何,不定积分的应用等多方面都有所涉及。
可见,数形结合思想是不可或缺的一门知识。
学生要从单纯的学习数学知识上升至对于数学思想的认识,这样才能真正体会到数学“美”的真谛。
数形结合思想是解答数学试题的的一种常用方法与技巧,特别是在解决一些疑难问题中有奇特功效,往往会给人们带来一种“柳暗花明又一村”的感觉。
在教学中,教师要注意及时总结数形结合思想的特点,渗透数形结合意识,培养学生的直觉思维。
根据男女性别差异对于数学学习的影响,因材施教,强化其对于数形结合思想的理解,以提高利用数形结合思想方法解题的能力。
参考文献
[1]李士著.PME:数学教育心理[M].上海:华东师范大学出版社,2001:235.
[2]喻平.数学教育学引导[M].桂林:广西师范大学出版社,1998.
[3]M. Lee Manning,Gender differences in young
adolescents' mathematics and science achievement [J]. Commission on Mathematical Instruction. Education,2004,(14):18-26.
[4]Thomas Raizen, Gender Differences in Mathematics.[J]. Ann Gallagher James Kanfman,2005,(16):24-28.。