高考数学二轮复习专题八选考4系列选讲2.8.2不等式选讲学案理
高考数学二轮复习 第1部分 专题八 选考系列 182 不等

第14页
返回导航
2018大二轮 ·数学化(学文)
(2)由(1)可知, 当 x≤2 时,f(x)≥x2-8x+15 的解集为空集; 当 2<x<5 时,f(x)≥x2-8x+15 的解集为{x|5- 3≤x<5}; 当 x≥5 时,f(x)≥x2-8x+15 的解集为{x|5≤x≤6}. 综上,不等式 f(x)≥x2-8x+15 的解集为{x|5- 3≤x≤6}.
所以aa- +22 11= =12, ,
第11页
返回导航
于是 a=3.
2018大二轮 ·数学化(学文)
1.用零点区分法解绝对值不等式的步骤: (1)求零点;(2)划区间、去绝对值号;(3)分别解去掉绝对值的 不等式;(4)取每个结果的并集,注意在分段时不要遗漏区间的端 点值. 2.用图象法、数形结合可以求解含有绝对值的不等式,使得 代数问题几何化,既通俗易懂,又简洁直观,是一种较好的方法.
2x-6≥4,解得 x≥5;
所以 f(x)≥4-|x-4|的解集为{x|x≤1 或 x≥5}.
第10页
返回导航
2018大二轮 ·数学化(学文)
(2)记 h(x)=f(2x+a)-2f(x),
则 h(x)=- 4x-2a2,a,x≤00<,x<a, 2a,x≥a.
由|h(x)|≤2,解得a-2 1≤x≤a+2 1. 又已知|h(x)|≤2 的解集为{x|1≤x≤2},
第7页
返回导航
2018大二轮 ·数学化(学文)
4.柯西不等式
(1)设 a,b,c,d 为实数,则(a2+b2)(c2+d2)≥(ac+bd)2,当
且仅当 ad=bc 时等号成立.
[精品课件]201x届高考数学二轮复习 专题八 选考部分 8.2 不等式选讲课件 理
![[精品课件]201x届高考数学二轮复习 专题八 选考部分 8.2 不等式选讲课件 理](https://img.taocdn.com/s3/m/5f25c34d783e0912a2162a30.png)
由题意知,原不等式的解集为[0,1],
∴1m-+22 m1==10,,
解得 m=1.
(2)证明:∵x2+a2≥2ax,y2+b2≥2by,z2+c2≥2cz,三式相加, 得 x2+y2+z2+a2+b2+c2≥2ax+2by+2cz.
[技法领悟] 含绝对值不等式的证明主要分两类:一类是比较简单的不等 式,可以通过平方法或换元法等去掉绝对值符号转化为常见的不等 式的证明,另一类是利用绝对值三角不等式||a|-|b||≤|a±b|≤|a|+ |b|,通过适当添加、拆项证明或利用放缩法、综合法分析证明.
2.已知函数 f(x)=m-|x-1|-|x-2|,m∈R,且 f(x+1)≥0 的解集为 [0,1].
例 1(2017·全国卷Ⅰ)已知函数 f(x)=-x2+ax+4,g(x)=|x+1| +|x-1|.
(1)当 a=1 时,求不等式 f(x)≥g(x)的解集; (2)若不等式 f(x)≥g(x)的解集包含[-1,1],求 a 的取值范围.
【解析】 (1)当 a=1 时,不等式 f(x)≥g(x)等价于
x2-x+|x+1|+|x-1|-4≤0.①
当 x<-1 时,①式化为 x2-3x-4≤0,无解;
当-1≤x≤1 时,①式化为 x2-x-2≤0,从而-1≤x≤1;
当 x>1 时,①式化为 x2+x-4≤0,
从而 1<x≤-1+2
17 .
所以 f(x)≥g(x)的解集为ห้องสมุดไป่ตู้x-1≤x≤-1+2
17 .
(1)求 m 的值; (2)若 a,b,c,x,y,z∈R,且 x2+y2+z2=a2+b2+c2=m,求证:ax +by+cz≤1.
解析:(1)由 f(x+1)≥0 得|x|+|x-1|≤m. ∵|x|+|x-1|≥1 恒成立, ∴若 m<1,不等式|x|+|x-1|≤m 的解集为∅,不合题意. 若 m≥1,①当 x<0 时,得 x≥1-2 m,1-2 m≤x<0; ②当 0≤x≤1 时,得 x+1-x≤m,即 m≥1 恒成立; ③当 x>1 时,得 1<x≤m+2 1. 综上可知,不等式|x|+|x-1|≤m 的解集为1-2 m,m+2 1.
高考数学二轮复习专题八选考4系列选讲8.2不等式选讲课件理

[对点训练] 已知实数 a,b,c 满足 a>0,b>0,c>0,且 abc=1. (1)证明:(1+a)(1+b)(1+c)≥8; (2)证明: a+ b+ c≤1a+1b+1c. [证明] (1)∵1+a≥2 a,1+b≥2 b,1+c≥2 c, ∴(1+a)(1+b)(1+c)≥2 a·2 b·2 c=8 abc, ∵abc=1,∴(1+a)(1+b)(1+c)≥8.
12/11/2021
证明不等式的方法和技巧 (1)如果已知条件与待证明的结论直接联系不明显,可考虑用 分析法;如果待证的命题以“至少”“至多”等方式给出或是否 定性命题、唯一性命题,则考虑用反证法.
12/11/2021
(2)在必要的情况下,可能还需要使用换元法、构造法等技巧 简化对问题的表述和证明.尤其是对含绝对值不等式的解法或证 明,其简化的基本思路是化去绝对值号,转化为常见的不等式(组) 求解.多以绝对值的几何意义或“找零点、分区间、逐个解、并 起来”为简化策略,而绝对值三角不等式,往往作为不等式放缩 的依据.
12/11/2021
(2)f(x)=|x+4|=x0+x=4x->- 4,4, -4-xx<-4,
∴不等式 f(x)>1-12x 等价于
x+4>1-12xx>-4, 0>1-12xx=-4, -4-x>1-12xx<-4, 解得 x>-2 或 x<-10,
故不等式 f(x)>1-12x 的解集为{x|x>-2 或 x<-10}.
12/11/2021
12/11/2021
[解] (1)当 a=1 时,f(x)=|x+1|-|x-1|,
即 f(x)=2-x,2,-x1≤<-x<11,, 2,x≥1.
2018年高考理科数学二轮复习 讲学案:考前专题八 系列4选讲 第2讲 不等式选讲

第2讲不等式选讲本部分主要考查绝对值不等式的解法.求含绝对值的函数的值域及求含参数的绝对值不等式中参数的取值范围,不等式的证明等,结合集合的运算、函数的图象和性质、恒成立问题及基本不等式,绝对值不等式的应用成为命题的热点,主要考查基本运算能力与推理论证能力及数形结合思想、分类讨论思想.热点一含绝对值不等式的解法含有绝对值的不等式的解法(1)|f(x)|>a(a>0)⇔f(x)>a或f(x)<-a.(2)|f(x)|<a(a>0)⇔-a<f(x)<a.(3)对形如|x-a|+|x-b|≤c,|x-a|+|x-b|≥c的不等式,可利用绝对值不等式的几何意义求解.例1(2017届四川省成都市三诊)已知f(x)=|x-a|,a∈R.(1)当a=1时,求不等式f(x)+|2x-5|≥6的解集;(2)若函数g(x)=f(x)-|x-3|的值域为A,且[-1,2]⊆A,求a的取值范围.解(1)当a=1时,不等式即为|x-1|+|2x-5|≥6.当x≤1时,不等式可化为-(x-1)-(2x-5)≥6,∴x≤0;时,不等式可化为(x-1)-(2x-5)≥6,当1<x<52∴x∈∅;当x≥5时,不等式可化为(x-1)+(2x-5)≥6,2∴x≥4.综上所述,原不等式的解集为{x|x≤0或x≥4}.(2)∵||x -a |-|x -3||≤ |x -a -(x -3)|=|a -3|,∴f (x )-|x -3|=|x -a |-|x -3|∈[-|a -3|,|a -3|] .∴函数g (x )的值域A =[-|a -3|,|a -3|].∵[-1,2]⊆A ,∴⎩⎪⎨⎪⎧ -|a -3|≤-1,|a -3|≥2,解得a ≤1或a ≥5. ∴a 的取值范围是(-∞,1]∪[5,+∞).思维升华 (1)用零点分段法解绝对值不等式的步骤①求零点;②划区间、去绝对值号;③分别解去掉绝对值的不等式;④取每个结果的并集,注意在分段时不要遗漏区间的端点值.(2)用图象法、数形结合法可以求解含有绝对值的不等式,使得代数问题几何化,既通俗易懂,又简洁直观,是一种较好的方法.跟踪演练1 (2017·全国Ⅲ)已知函数f (x )=|x +1|-|x -2|.(1)求不等式f (x )≥1的解集;(2)若不等式f (x )≥x 2-x +m 的解集非空,求m 的取值范围.解 (1)f (x )=⎩⎪⎨⎪⎧ -3,x <-1,2x -1,-1≤x ≤2,3,x >2.当x <-1时,f (x )≥1无解;当-1≤x ≤2时,由f (x )≥1,得2x -1≥1,解得1≤x ≤2;当x >2时,由f (x )≥1,解得x >2.所以f (x )≥1的解集为{x |x ≥1}.(2)由f (x )≥x 2-x +m ,得m ≤|x +1|-|x -2|-x 2+x ,而|x +1|-|x -2|-x 2+x ≤|x |+1+|x |-2-x 2+|x |=-⎝⎛⎭⎫|x |-322+54≤54. 当且仅当x =32时,|x +1|-|x -2|-x 2+x =54,故m 的取值范围是⎝⎛⎦⎤-∞,54. 热点二 不等式的证明1.含有绝对值的不等式的性质||a |-|b ||≤|a ±b |≤|a |+|b |.2.算术—几何平均不等式定理1:设a ,b ∈R ,则a 2+b 2≥2ab .当且仅当a =b 时,等号成立.定理2:如果a ,b 为正数,则a +b 2≥ab ,当且仅当a =b 时,等号成立. 定理3:如果a ,b ,c 为正数,则a +b +c 3≥3abc ,当且仅当a =b =c 时,等号成立. 定理4:(一般形式的算术—几何平均不等式)如果a 1,a 2,…,a n 为n 个正数,则a 1+a 2+…+a n n ≥n a 1a 2…a n ,当且仅当a 1=a 2=…=a n 时,等号成立.例2 (2017届福建省福州质检)(1)求函数f (x )=|3x +2|-|1-2x ||x +3|的最大值M ; (2)若实数a ,b ,c 满足a 2+b 2≤c ,求证:2(a +b +c )+1≥0,并说明取等条件.(1)解 f (x )=|3x +2|-|1-2x ||x +3|≤|3x +2+1-2x ||x +3|=1, 当且仅当x ≤-23或x ≥12时等号成立,所以M =1. (2)证明 2(a +b +c )+1≥2(a +b +a 2+b 2)+1≥2⎣⎢⎡⎦⎥⎤a +b +(a +b )22+1 =(a +b +1)2≥0,当且仅当a =b =-12,c =12时取等号, 所以存在实数a =b =-12,c =12满足条件. 思维升华 (1)作差法是证明不等式的常用方法.作差法证明不等式的一般步骤:①作差;②分解因式;③与0比较;④结论.关键是代数式的变形能力.(2)在不等式的证明中,适当“放”“缩”是常用的推证技巧.跟踪演练2 (2017届河北省衡水中学押题卷)已知a ,b 为任意实数.(1)求证:a 4+6a 2b 2+b 4≥4ab (a 2+b 2);(2)求函数f (x )=|2x -a 4+(1-6a 2b 2-b 4)|+2|x -(2a 3b +2ab 3-1)|的最小值.(1)证明 a 4+6a 2b 2+b 4-4ab (a 2+b 2)=(a 2+b 2)2-4ab (a 2+b 2)+4a 2b 2=(a 2+b 2-2ab )2=(a -b )4.因为(a -b )4≥0,所以a 4+6a 2b 2+b 4≥4ab (a 2+b 2).(2)解 f (x )=|2x -a 4+(1-6a 2b 2-b 4)|+2|x -(2a 3b +2ab 3-1)|=|2x -a 4+(1-6a 2b 2-b 4)|+|2x -2(2a 3b +2ab 3-1)|≥|[2x -2(2a 3b +2ab 3-1)]-[2x -a 4+(1-6a 2b 2-b 4)]|=|(a -b )4+1|≥1.即f (x )min =1.热点三 柯西不等式的应用柯西不等式(1)设a ,b ,c ,d 均为实数,则(a 2+b 2)(c 2+d 2)≥(ac +bd )2,当且仅当ad =bc 时等号成立.(2)设a 1,a 2,a 3,…,a n ,b 1,b 2,b 3,…,b n 是实数,则(a 21+a 22+…+a 2n )(b 21+b 22+…+b 2n )≥(a 1b 1+a 2b 2+…+a n b n )2,当且仅当b i =0(i =1,2,…,n )或存在一个数k ,使得a i =kb i (i =1,2,…,n )时,等号成立.例3 (2017届长沙市雅礼中学模拟)已知关于x 的不等式|x +a |<b 的解集为{x |2<x <4}.(1)求实数a ,b 的值;(2)求证:2≤at +12+bt ≤4.(1)解 由|x +a |<b ,得-b -a <x <b -a ,则⎩⎪⎨⎪⎧-b -a =2,b -a =4,解得a =-3,b =1.(2)证明 由柯西不等式,有(-3t +12+t )2=(3·-t +4+1·t )2≤[(3)2+12][(-t +4)2+(t )2]=16, 所以-3t +12+t ≤4, 当且仅当4-t 3=t 1,即t =1时等号成立. 又(-3t +12+t )2=-3t +12+t +2-3t +12·t ≥12-2t ≥4(0≤t ≤4),所以-3t +12+t ≥2,当且仅当t =4时等号成立,综上,2≤at +12+bt ≤4.思维升华 (1)使用柯西不等式证明的关键是恰当变形,化为符合它的结构形式,当一个式子与柯西不等式的左边或右边具有一致形式时,就可使用柯西不等式进行证明.(2)利用柯西不等式求最值的一般结构为(a 21+a 22+…+a 2n )⎝⎛⎭⎫1a 21+1a 22+…+1a 2n≥(1+1+…+1)2=n 2.在使用柯西不等式时,要注意右边为常数且应注意等号成立的条件.跟踪演练3 已知函数f (x )=|x +2|-m ,m ∈R ,且f (x )≤0的解集为[-3,-1].(1)求m 的值;(2)设a ,b ,c 为正数,且a +b +c =m ,求3a +1+3b +1+3c +1的最大值. 解 (1)由f (x )≤0,得|x +2|≤m ,所以⎩⎪⎨⎪⎧m ≥0,-m -2≤x ≤m -2, 又f (x )≤0的解集为[-3,-1], 所以⎩⎪⎨⎪⎧-m -2=-3,m -2=-1,解得m =1.(2)由(1) 知a +b +c =1,由柯西不等式,得 (3a +1+3b +1+3c +1)2≤(3a +1+3b +1+3c +1)·(12+12+12),所以(3a +1+3b +1+3c +1)2≤3[3(a +b +c )+3]=18, 所以3a +1+3b +1+3c +1≤32, 当且仅当3a +1=3b +1=3c +1,即a =b =c =13时等号成立, 所以3a +1+3b +1+3c +1的最大值为3 2.真题体验1.(2017·全国Ⅰ)已知函数f (x )=-x 2+ax +4,g (x )=|x +1|+|x -1|.(1)当a =1时,求不等式f (x )≥g (x )的解集;(2)若不等式f (x )≥g (x )的解集包含[-1,1],求a 的取值范围.解 (1)当a =1时,不等式f (x )≥g (x )等价于x 2-x +|x +1|+|x -1|-4≤0.①当x <-1时,①式化为x 2-3x -4≤0,无解;当-1≤x ≤1时,①式化为x 2-x -2≤0,从而-1≤x ≤1;当x >1时,①式化为x 2+x -4≤0,从而1<x ≤-1+172.所以f (x )≥g (x )的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ -1≤x ≤-1+172.(2)当x ∈[-1,1]时,g (x )=2,所以f (x )≥g (x )的解集包含[-1,1]等价于当x ∈[-1,1]时,f (x )≥2.又f (x )在[-1,1]上的最小值必为f (-1)与f (1)之一,所以f (-1)≥2且f (1)≥2,得-1≤a ≤1.所以a 的取值范围为[-1,1].2.(2017·全国Ⅱ)已知a >0,b >0,a 3+b 3=2,证明:(1)(a +b )(a 5+b 5)≥4;(2)a +b ≤2.证明 (1)(a +b )(a 5+b 5)=a 6+ab 5+a 5b +b 6=(a 3+b 3)2-2a 3b 3+ab (a 4+b 4)=4+ab (a 4+b 4-2a 2b 2)=4+ab (a 2-b 2)2≥4.(2)因为(a +b )3=a 3+3a 2b +3ab 2+b 3=2+3ab (a +b )≤2+3(a +b )24(a +b ) =2+3(a +b )34, 所以(a +b )3≤8,因此a +b ≤2. 押题预测1.已知函数f (x )=|x -2|+|2x +a |,a ∈R .(1)当a =1时,解不等式f (x )≥4;(2)若∃x 0,使f (x 0)+|x 0-2|<3成立,求a 的取值范围.押题依据 不等式选讲问题中,联系绝对值,关联参数、体现不等式恒成立是考题的“亮点”所在,存在问题、恒成立问题是高考的热点,备受命题者青睐.解 (1)当a =1时,f (x )=|x -2|+|2x +1|.由f (x )≥4,得|x -2|+|2x +1|≥4.当x ≥2时,不等式等价于x -2+2x +1≥4,解得x ≥53,所以x ≥2; 当-12<x <2时,不等式等价于2-x +2x +1≥4, 即x ≥1,所以1≤x <2;当x ≤-12时,不等式等价于2-x -2x -1≥4, 解得x ≤-1,所以x ≤-1.所以原不等式的解集为{x |x ≤-1或x ≥1}.(2)应用绝对值不等式,可得f (x )+|x -2|=2|x -2|+|2x +a |=|2x -4|+|2x +a |≥|2x +a -(2x -4)|=|a +4|.因为∃x 0,使f (x 0)+|x 0-2|<3成立,所以(f (x )+|x -2|)min <3,所以|a +4|<3,解得-7<a <-1,故实数a 的取值范围为(-7,-1).2.已知x ,y ∈R +,x +y =4.(1)要使不等式1x +1y≥|a +2|-|a -1|恒成立,求实数a 的取值范围; (2)求证:x 2+2y 2≥323,并指出等号成立的条件. 押题依据 不等式选讲涉及绝对值不等式的解法,包含参数是命题的显著特点.本题将二元函数最值、解绝对值不等式、不等式证明综合为一体,意在检测考生理解题意,分析问题、解决问题的能力,具有一定的训练价值.(1)解 因为x ,y ∈R +,x +y =4,所以x 4+y 4=1. 由基本不等式,得1x +1y =⎝⎛⎭⎫1x +1y ⎝⎛⎭⎫x 4+y 4 =12+14⎝⎛⎭⎫y x +x y≥12+12 y x ·x y=1, 当且仅当x =y =2时取等号.要使不等式1x +1y≥|a +2|-|a -1|恒成立, 只需不等式|a +2|-|a -1|≤1成立即可.构造函数f (a )=|a +2|-|a -1|,则等价于解不等式f (a )≤1.因为f (a )=⎩⎪⎨⎪⎧ -3,a ≤-2,2a +1,-2<a <1,3,a ≥1,所以解不等式f (a )≤1,得a ≤0.所以实数a 的取值范围为(-∞,0].(2)证明 因为x ,y ∈R +,x +y =4,所以y =4-x (0<x <4),于是x 2+2y 2=x 2+2(4-x )2=3x 2-16x +32=3⎝⎛⎭⎫x -832+323≥323, 当x =83,y =43时等号成立.A 组 专题通关1.(2017届山西省实验中学模拟)已知函数f (x )=|x -2|+|x +4|,g (x )=x 2+4x +3.(1)求不等式f (x )≥g (x )的解集;(2)如果f (x )≥|1-5a |恒成立,求a 的取值范围.解 (1)f (x )≥g (x ),即|x -2|+|x +4|≥x 2+4x +3,①当x <-4时,原不等式等价于-(x -2)-(x +4)≥x 2+4x +3,即x 2+6x +5≤0,解得-5≤x ≤-1,∴-5≤x <-4;②当-4≤x ≤2时,原不等式等价于-(x -2)+(x +4)≥x 2+4x +3,即x 2+4x -3≤0,解得-2-7≤x ≤-2+7,∴-4≤x ≤-2+7;③当x >2时,原不等式等价于(x -2)+(x +4)≥x 2+4x +3,即x 2+2x +1≤0,解得x =-1,得x ∈∅.综上可知,不等式f (x )≥g (x )的解集是{x |-5≤x ≤-2+7}.(2)∵|x -2|+|x +4|≥|x -2-x -4|=6,且f (x )≥|1-5a |恒成立,∴6≥|1-5a |,即-6≤1-5a ≤6,∴-1≤a ≤75,∴a 的取值范围是⎣⎡⎦⎤-1,75. 2. (2017届陕西省渭南市二模)已知函数f (x )=|x +3|-m ,m >0,f (x -3)≥0的解集为(-∞,-2]∪[2,+∞).(1)求m 的值;(2)若∃x ∈R ,f (x )≥|2x -1|-t 2+32t +1成立,求实数t 的取值范围. 解 (1)∵f (x )=|x +3|-m ,∴f (x -3)=|x |-m ≥0.∵m >0,∴x ≥m 或x ≤-m .又∵f (x -3)≥0的解集为(-∞,-2]∪[2,+∞),∴m =2.(2)f (x )≥|2x -1|-t 2+32t +1等价于不等式 |x +3|-|2x -1|≥-t 2+32t +3,g (x )=|x +3|-|2x -1|=⎩⎨⎧ x -4,x ≤-3,3x +2,-3<x <12,-x +4,x ≥12,故g (x )max =g ⎝⎛⎭⎫12=72,则有72≥-t 2+32t +3, 即2t 2-3t +1≥0,解得t ≤12或t ≥1. 即实数t 的取值范围为⎝⎛⎦⎤-∞,12∪[1,+∞). 3.(2017届安徽省蚌埠市教学质检)已知x ,y ∈R ,m +n =7,f (x )=|x -1|-|x +1|.(1)解不等式f (x )≥(m +n )x ;(2)设max{a ,b }=⎩⎪⎨⎪⎧a ,a ≥b ,b ,a <b ,求F =max{|x 2-4y +m |,|y 2-2x +n |}的最小值. 解 (1)f (x )≥(m +n )x ⇔|x -1|-|x +1|≥7x ,当x ≤-1时,2≥7x ,恒成立,当-1<x <1时,-2x ≥7x ,即-1<x ≤0;当x ≥1时,-2≥7x ,即x ∈∅,综上可知,不等式的解集为{x |x ≤0}.(2)∵F ≥|x 2-4y +m |,F ≥|y 2-2x +n |,∴2F ≥|x 2-4y +m |+|y 2-2x +n |≥|(x -1)2+(y -2)2+m +n -5|=|(x -1)2+(y -2)2+2|≥2,∴F ≥1,F min =1.4.(2017届河南省洛阳市统考)设不等式0<|x +2|-|1-x |<2的解集为M ,a ,b ∈M .(1)证明:⎪⎪⎪⎪a +12b <34;(2)比较|4ab -1|与2|b -a |的大小,并说明理由.(1)证明 记f (x )=|x +2|-|1-x |=⎩⎪⎨⎪⎧ -3,x ≤-2,2x +1,-2<x <1,3,x ≥1.由0<2x +1<2,解得-12<x <12, 则M =⎝⎛⎭⎫-12,12. ∵a ,b ∈M ,∴|a |<12,|b |<12, ∴⎪⎪⎪⎪a +12b ≤|a |+12|b |<12+12×12=34. (2)解 由(1)得a 2<14,b 2<14. ∵|4ab -1|2-4|b -a |2=(16a 2b 2-8ab +1)-4(b 2-2ab +a 2)=(4a 2-1)(4b 2-1)>0,∴|1-4ab |2>4|a -b |2,故|1-4ab |>2|a -b |.5.(2017届云南省昆明市适应性检测)已知a ,b ,c ,m ,n ,p 都是实数,且a 2+b 2+c 2=1,m 2+n 2+p 2=1.(1)证明:|am +bn +cp |≤1;(2)若abc ≠0,证明:m 4a 2+n 4b 2+p 4c 2≥1. 证明 (1)因为|am +bn +cp |≤|am |+|bn |+|cp |,a 2+b 2+c 2=1,m 2+n 2+p 2=1,所以|am |+|bn |+|cp |≤a 2+m 22+b 2+n 22+c 2+p 22=a 2+b 2+c 2+m 2+n 2+p 22=1,即|am +bn +cp |≤1.(2)因为a 2+b 2+c 2=1,m 2+n 2+p 2=1,所以m 4a 2+n 4b 2+p 4c 2 =⎝⎛⎭⎫m 4a 2+n 4b 2+p 4c 2(a 2+b 2+c 2) ≥⎝⎛⎭⎫m 2a·a +n 2b ·b +p 2c ·c 2 =(m 2+n 2+p 2)2=1.所以m 4a 2+n 4b 2+p 4c 2≥1. B 组 能力提高6.(2017届云南省师范大学附属中学月考)已知函数f (x )=|x -1|.(1)求不等式2f (x )-x ≥2的解集;(2)对∀x ∈R ,a ,b ,c ∈(0,+∞),求证:|x -1|-|x +5|≤1a 3+1b 3+1c 3+3abc . (1)解 令g (x )=2f (x )-x =2|x -1|-x =⎩⎪⎨⎪⎧ x -2,x ≥1,-3x +2,x <1,当x ≥1时,由x -2≥2,得x ≥4,当x <1时,由-3x +2≥2,得x ≤0,∴不等式的解集为(-∞,0]∪[4,+∞).(2)证明 |x -1|-|x +5|≤|x -1-(x +5)|=6,又∵a ,b ,c >0,∴1a 3+1b 3+1c 3+3abc ≥331a 3·1b 3·1c 3+3abc =3abc+3abc ≥23abc ·3abc =6, 当且仅当a =b =c =1时取等号,∴|x -1|-|x +5|≤1a 3+1b 3+1c3+3abc .7.(2017届四川省成都市二诊)已知函数f (x )=4-|x |-|x -3|.(1)求不等式f ⎝⎛⎭⎫x +32≥0的解集; (2)若p ,q ,r 为正实数,且13p +12q +1r=4,求3p +2q +r 的最小值. 解 (1)f ⎝⎛⎭⎫x +32=4-⎪⎪⎪⎪x +32-⎪⎪⎪⎪x -32≥0, 根据绝对值的几何意义,得⎪⎪⎪⎪x +32+⎪⎪⎪⎪x -32表示点(x,0)到A ⎝⎛⎭⎫-32,0,B ⎝⎛⎭⎫32,0两点的距离之和.接下来找出到A ,B 距离之和为4的点.将点A 向左移动12个单位长度到点A 1(-2,0), 这时有|A 1A |+|A 1B |=4;同理,将点B 向右移动12个单位长度到点B 1(2,0), 这时有|B 1A |+|B 1B |=4.∴当x ∈[-2,2]时,⎪⎪⎪⎪x +32+⎪⎪⎪⎪x -32≤4, 即f ⎝⎛⎭⎫x +32≥0的解集为[-2,2]. (2)令a 1=3p ,a 2=2q ,a 3=r ,由柯西不等式,得⎣⎡⎦⎤⎝⎛⎭⎫1a 12+⎝⎛⎭⎫1a 22+⎝⎛⎭⎫1a 32·(a 21+a 22+a 23) ≥⎝⎛⎭⎫1a 1·a 1+1a 2·a 2+1a 3·a 32 即⎝⎛⎭⎫13p +12q +1r (3p +2q +r )≥9,∵13p +12q +1r =4,∴3p +2q +r ≥94. 上述不等式当且仅当13p =12q =1r =43, 即p =14,q =38,r =34时取等号. ∴3p +2q +r 的最小值为94.8.(2017·湖北省黄冈中学三模)设函数f (x )=|x +a |-|x -1-a |.(1)当a =1时,解不等式f (x )≥12; (2)若对任意a ∈[0,1],不等式f (x )≥b 的解集不为空集,求实数b 的取值范围.解 (1)当a =1时,不等式f (x )≥12等价于 |x +1|-|x |≥12, ①当x ≤-1时,不等式化为-x -1+x ≥12,无解; ②当-1<x <0时,不等式化为x +1+x ≥12, 解得-14≤x <0; ③当x ≥0时,不等式化为x +1-x ≥12, 解得x ≥0.综上所述,不等式f (x )≥12的解集为⎣⎡⎭⎫-14,+∞. (2)∵不等式f (x )≥b 的解集不为空集,∴b ≤f (x )max ,∵f (x )=|x +a |-|x -1-a | ≤|x +a -x +1-a | =|a +1-a |=a +1-a , 当且仅当x ≥1-a 时取等号,∴f (x )max =a +1-a , 对任意a ∈[0,1],不等式f (x )≥b 的解集不为空集,∴b ≤[a +1-a ]min ,令g (a )=a +1-a ,∴g 2(a )=1+2a ·1-a =1+2a (1-a ) =1+2 -⎝⎛⎭⎫a -122+14.∵当a ∈⎣⎡⎦⎤0,12时单调递增,a ∈⎣⎡⎦⎤12,1时单调递减,当且仅当a =0或a =1,g (a )min =1, ∴b 的取值范围为(-∞,1].。
2019高考数学二轮复习 专题八 选考4系列选讲 第二讲 选考4-5 不等式选讲 学案 理

第二讲 不等式选讲考点一 含绝对值不等式的解法1.|ax +b |≤c ,|ax +b |≥c 型不等式的解法(1)若c >0,则|ax +b |≤c ⇔-c ≤ax +b ≤c ,|ax +b |≥c ⇔ax +b ≥c 或ax +b ≤-c ,然后根据a ,b 的取值求解即可;(2)若c <0,则|ax +b |≤c 的解集为∅,|ax +b |≥c 的解集为R . 2.|x -a |+|x -b |≥c ,|x -a |+|x -b |≤c (c >0)型不等式的解法 (1)零点分段讨论法. (2)绝对值的几何意义. (3)数形结合法.[解] (1)当a =1时,f (x )=|x +1|-|x -1|, 即f (x )=⎩⎪⎨⎪⎧-2,x ≤-1,2x ,-1<x <1,2,x ≥1.故不等式f (x )>1的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >12. (2)当x ∈(0,1)时|x +1|-|ax -1|>x 成立等价于当x ∈(0,1)时|ax -1|<1成立. 若a ≤0,则当x ∈(0,1)时|ax -1|≥1;若a >0时,则|ax -1|<1的解集为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫0<x <2a .所以2a≥1,故0<a ≤2.用零点分段讨论法解绝对值不等式的4步(1)令每个绝对值符号的代数式为零,并求出相应的根; (2)将这些根按从小到大排列,把实数集分为若干个区间;(3)由所分区间去掉绝对值符号得若干个不等式,解这些不等式,求出解集; (4)取各个不等式解集的并集就是原不等式的解集.[对点训练](2018·湖北黄冈模拟)已知函数f (x )=|2x -a |+|2x -1|(a ∈R ). (1)当a =-1时,求f (x )≤2的解集.(2)若f (x )≤|2x +1|的解集包含集合⎣⎢⎡⎦⎥⎤12,1,求实数a 的取值范围. [解] (1)当a =-1时,f (x )=|2x +1|+|2x -1|,由f (x )≤2得⎪⎪⎪⎪⎪⎪x +12+⎪⎪⎪⎪⎪⎪x -12≤1. 上述不等式化为数轴上点x 到两点-12,12的距离之和小于等于1,则-12≤x ≤12,即原不等式的解集为⎣⎢⎡⎦⎥⎤-12,12.(2)∵f (x )≤|2x +1|的解集包含⎣⎢⎡⎦⎥⎤12,1,∴当x ∈⎣⎢⎡⎦⎥⎤12,1时,不等式f (x )≤|2x +1|恒成立, ∴|2x -a |+2x -1≤2x +1,即|2x -a |≤2,∴2x -2≤a ≤2x +2在x ∈⎣⎢⎡⎦⎥⎤12,1上恒成立, ∴(2x -2)max ≤a ≤(2x +2)min ,∴0≤a ≤3.考点二 含绝对值不等式的综合问题1.定理1:如果a ,b 是实数,则|a +b |≤|a |+|b |,当且仅当ab ≥0时,等号成立.2.定理2:如果a ,b ,c 是实数,那么|a -c |≤|a -b |+|b -c |,当且仅当(a -b )(b -c )≥0时,等号成立.[解] (1)当a =1时,f (x )=⎩⎪⎨⎪⎧2x +4,x ≤-1,2,-1<x ≤2,-2x +6,x >2.可得f (x )≥0的解集为{x |-2≤x ≤3}. (2)f (x )≤1等价于|x +a |+|x -2|≥4.而|x +a |+|x -2|≥|a +2|,且当x =2时等号成立. 故f (x )≤1等价于|a +2|≥4.由|a +2|≥4可得a ≤-6或a ≥2.角度2:含绝对值不等式的恒成立问题[解] (1)由题意得,当a =2018时,f (x )=⎩⎪⎨⎪⎧2x -2018,x ≥2018,2018,x <2018,因为f (x )在[2018,+∞)上单调递增,所以f (x )的值域为[2018,+∞).(2)由g (x )=|x +1|,不等式g (x )-2>x -f (x )恒成立,知|x +1|+|x -a |>2恒成立,即(|x +1|+|x -a |)min >2.而|x +1|+|x -a |≥|(x +1)-(x -a )|=|1+a |, 所以|1+a |>2,解得a >1或a <-3.绝对值恒成立问题应关注的3点(1)巧用“||a |-|b ||≤|a ±b |≤|a |+|b |”求最值. (2)f (x )<a 恒成立⇔f (x )max <a ,f (x )>a 恒成立⇔f (x )min >a . (3)f (x )<a 有解⇔f (x )min <a ,f (x )>a 有解⇔f (x )max >a .[对点训练]1.[角度1](2018·山东淄博模拟)设函数f (x )=|x +4|. (1)若y =f (2x +a )+f (2x -a )的最小值为4,求a 的值; (2)求不等式f (x )>1-12x 的解集.[解] (1)因为f (x )=|x +4|,所以y =f (2x +a )+f (2x -a )=|2x +a +4|+|2x -a +4|≥|2x +a +4-(2x -a +4)|=|2a |, 又y =f (2x +a )+f (2x -a )的最小值为4, ∴|2a |=4, ∴a =±2.(2)f (x )=|x +4|=⎩⎪⎨⎪⎧x +4(x >-4),0(x =-4),-4-x (x <-4),∴不等式f (x )>1-12x 等价于⎩⎪⎨⎪⎧x +4>1-12x (x >-4),0>1-12x (x =-4),-4-x >1-12x (x <-4),解得x >-2或x <-10,故不等式f (x )>1-12x 的解集为{x |x >-2或x <-10}.2.[角度2](2018·河南郑州二模)已知函数f (x )=|2x +1|,g (x )=|x |+a . (1)当a =0时,解不等式f (x )≥g (x );(2)若存在x ∈R ,使得f (x )≤g (x )成立,求实数a 的取值范围.[解] (1)当a =0时,由f (x )≥g (x )得|2x +1|≥|x |,两边平方整理得3x 2+4x +1≥0,解得x ≤-1或x ≥-13,∴原不等式的解集为(-∞,-1]∪⎣⎢⎡⎭⎪⎫-13,+∞.(2)由f (x )≤g (x )得a ≥|2x +1|-|x |, 令h (x )=|2x +1|-|x |,则h (x )=⎩⎪⎨⎪⎧-x -1,x ≤-12,3x +1,-12<x <0,x +1,x ≥0,故h (x )min =h ⎝ ⎛⎭⎪⎫-12=-12,所以实数a 的取值范围为a ≥-12.考点三 不等式的证明定理1:设a ,b ∈R ,则a 2+b 2≥2ab .当且仅当a =b 时,等号成立. 定理2:如果a ,b 为正数,则a +b2≥ab ,当且仅当a =b 时,等号成立.定理3:如果a ,b ,c 为正数,则a +b +c3≥3abc ,当且仅当a =b =c 时,等号成立.[证明] (1)(a +b )(a 5+b 5) =a 6+ab 5+a 5b +b 6=(a 3+b 3)2-2a 3b 3+ab (a 4+b 4) =4+ab (a 2-b 2)2≥4.(2)因为(a +b )3=a 3+3a 2b +3ab 2+b 3=2+3ab (a +b )≤2+3(a +b )24(a +b )=2+3(a +b )34,所以(a +b )3≤8,因此a +b ≤2.证明不等式的方法和技巧(1)如果已知条件与待证明的结论直接联系不明显,可考虑用分析法;如果待证的命题以“至少”“至多”等方式给出或是否定性命题、唯一性命题,则考虑用反证法.(2)在必要的情况下,可能还需要使用换元法、构造法等技巧简化对问题的表述和证明.尤其是对含绝对值不等式的解法或证明,其简化的基本思路是化去绝对值号,转化为常见的不等式(组)求解.多以绝对值的几何意义或“找零点、分区间、逐个解、并起来”为简化策略,而绝对值三角不等式,往往作为不等式放缩的依据.[对点训练]已知实数a ,b ,c 满足a >0,b >0,c >0,且abc =1. (1)证明:(1+a )(1+b )(1+c )≥8; (2)证明:a +b +c ≤1a +1b +1c.[证明] (1)∵1+a ≥2a ,1+b ≥2b ,1+c ≥2c , ∴(1+a )(1+b )(1+c )≥2a ·2b ·2c =8abc , ∵abc =1,∴(1+a )(1+b )(1+c )≥8. (2)∵ab +bc ≥2ab 2c =2b ,ab +ac ≥2a 2bc =2a , bc +ac ≥2abc 2=2c ,上面三式相加得,2ab +2bc +2ca ≥2a +2b +2c , 即ab +bc +ca ≥a +b +c . 又1a +1b +1c=ab +bc +ac ,∴a +b +c ≤1a +1b +1c.1.(2017·全国卷Ⅰ)已知函数f (x )=-x 2+ax +4,g (x )=|x +1|+|x -1|. (1)当a =1时,求不等式f (x )≥g (x )的解集;(2)若不等式f (x )≥g (x )的解集包含[-1,1],求a 的取值范围.[解] (1)当a =1时,不等式f (x )≥g (x )等价于x 2-x +|x +1|+|x -1|-4≤0.① 当x <-1时,①式化为x 2-3x -4≤0,无解;当-1≤x ≤1时,①式化为x 2-x -2≤0,从而-1≤x ≤1; 当x >1时,①式化为x 2+x -4≤0,从而1<x ≤-1+172.所以f (x )≥g (x )的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-1≤x ≤-1+172. (2)解法一(等价转化法):当x ∈[-1,1]时,g (x )=2.所以f (x )≥g (x )的解集包含[-1,1]等价于当x ∈[-1,1]时f (x )≥2.又f (x )在[-1,1]的最小值必为f (-1)与f (1)之一,所以f (-1)≥2且f (1)≥2,得-1≤a ≤1. 所以a 的取值范围为[-1,1].解法二(分类讨论法):当x ∈[-1,1]时,g (x )=2,所以f (x )≥g (x )的解集包含[-1,1]等价于x ∈[-1,1]时f (x )≥2,即-x 2+ax +4≥2,当x =0时,-x 2+ax +4≥2成立;当x ∈(0,1]时,-x 2+ax +4≥2可化为a ≥x -2x ,而y =x -2x在(0,1]单调递增,最大值为-1,所以a ≥-1;当x ∈[-1,0)时,-x 2+ax +4≥2可化为a ≤x -2x ,而y =x -2x在[-1,0)单调递增,最小值为1,所以a ≤1.综上,a 的取值范围为[-1,1].2.(2018·全国卷Ⅲ)设函数f (x )=|2x +1|+|x -1|.(1)画出y =f (x )的图象;(2)当x ∈[0,+∞)时,f (x )≤ax +b ,求a +b 的最小值.[解] (1)f (x )=⎩⎪⎨⎪⎧-3x ,x <-12,x +2,-12≤x <1,3x ,x ≥1.y =f (x )的图象如图所示.(2)由(1)知,y =f (x )的图象与y 轴交点的纵坐标为2,且各部分所在直线斜率的最大值为3,故当且仅当a ≥3且b ≥2时,f (x )≤ax +b 在[0,+∞)成立,因此a +b 的最小值为5.1.不等式选讲是高考的选考内容之一,考查的重点是不等式的证明、绝对值不等式的解法等,命题的热点是绝对值不等式的求解,以及绝对值不等式与函数的综合问题的求解.2.此部分命题形式单一、稳定,难度中等,备考本部分内容时应注意分类讨论思想的应用.专题跟踪训练(三十三)1.(2018·广州二模)设函数f (x )=|2x +3|+|x -1|. (1)解不等式f (x )>4;(2)若∀x ∈⎝ ⎛⎭⎪⎫-∞,-32,不等式a +1<f (x )恒成立,求实数a 的取值范围. [解] (1)∵f (x )=|2x +3|+|x -1|,∴f (x )=⎩⎪⎨⎪⎧-3x -2,x <-32,x +4,-32≤x ≤1,3x +2,x >1,f (x )>4⇔⎩⎪⎨⎪⎧ x <-32,-3x -2>4或⎩⎪⎨⎪⎧-32≤x ≤1,x +4>4或⎩⎪⎨⎪⎧x >1,3x +2>4⇔x <-2或0<x ≤1或x >1.∴不等式f (x )>4的解集为(-∞,-2)∪(0,+∞). (2)由(1)知,当x <-32时,f (x )=-3x -2,∵当x <-32时,f (x )=-3x -2>52,∴a +1≤52,即a ≤32.∴实数a 的取值范围为⎝⎛⎦⎥⎤-∞,32.2.(2018·河南新乡二模)已知函数f (x )=|x -4|+|x -1|-3. (1)求不等式f (x )≤2的解集;(2)若直线y =kx -2与函数f (x )的图象有公共点,求k 的取值范围.[解] (1)由f (x )≤2,得⎩⎪⎨⎪⎧x ≤1,2-2x ≤2或⎩⎪⎨⎪⎧1<x <4,0≤2或⎩⎪⎨⎪⎧x ≥4,2x -8≤2,解得0≤x ≤5,故不等式f (x )≤2的解集为[0,5].(2)f (x )=|x -4|+|x -1|-3=⎩⎪⎨⎪⎧2-2x ,x ≤1,0,1<x <4,2x -8,x ≥4,作出函数f (x )的图象,如图所示,易知直线y =kx -2过定点C (0,-2), 当此直线经过点B (4,0)时,k =12;当此直线与直线AD 平行时,k =-2.故由图可知,k ∈(-∞,-2)∪⎣⎢⎡⎭⎪⎫12,+∞. 3.(2018·大庆二模)已知f (x )=|x +3|+|x -1|,g (x )=-x 2+2mx . (1)求不等式f (x )>4的解集;(2)若对任意的x 1,x 2,f (x 1)≥g (x 2)恒成立,求m 的取值范围. [解] (1)解法一:不等式f (x )>4即|x +3|+|x -1|>4.可得⎩⎪⎨⎪⎧x ≥1,x +3+x -1>4或⎩⎪⎨⎪⎧-3<x <1,x +3+1-x >4或⎩⎪⎨⎪⎧x ≤-3,-3-x +1-x >4,解得x <-3或x >1,所以不等式的解集为{x |x <-3或x >1}. 解法二:|x +3|+|x -1|≥|x +3-(x -1)|=4, 当且仅当(x +3)(x -1)≤0,即-3≤x ≤1时,等号成立. 所以不等式的解集为{x |x <-3或x >1}. (2)依题意可知f (x )min ≥g (x )max , 由(1)知f (x )min =4,因为g (x )=-x 2+2mx =-(x -m )2+m 2,经典教育资源经典教育资源(一) 所以g (x )max =m 2.由m 2≤4得m 的取值范围是-2≤m ≤2.4.(2018·西安一模)设a 、b 为正实数,且1a +1b=2 2. (1)求a 2+b 2的最小值;(2)若(a -b )2≥4(ab )3,求ab 的值.[解] (1)由22=1a +1b ≥21ab 得ab ≥12, 当a =b =22时取等号. 故a 2+b 2≥2ab ≥1,当a =b =22时取等号. 所以a 2+b 2的最小值是1. (2)由1a +1b =22可得a +b =22ab , ∵(a -b )2=(a +b )2-4ab =8a 2b 2-4ab ≥4(ab )3,∴(ab )2-2ab +1≤0,即(ab -1)2≤0,∴ab -1=0,即ab =1.。
高考数学二轮复习重点保分专题八选修45不等式选讲课件文

≥33 a+b3b+c3c+a3=3(a+b)(b+c)(c+a)
分析法
12/11/2021
考点(一) 含绝对值不等式的解法 [典例] (2019·昆明诊断测试)已知函数f(x)=|2x+1|-|x-1|. (1)求不等式f(x)>1的解集; (2)若不等式f(x)<x2+x+m的解集为R ,求实数m的取值范 围.
12/11/2021
[解] (1)原不等式等价于|2x+1|-|x-1|>1,
-x2-2x-2,x<-12, g(x)=-x2+2x,-12≤x≤1,
-x2+2,x>1, 作出其图象如图所示,由图象知g(x)max=1. 所以m>1,即m的取值范围为(1,+∞).
12/11/2021
[解题方略] 解不含参数的绝对值不等式的基本思想是去掉绝对值.一 般步骤是:求零点(确定每个绝对值的零点),定区间(按零点将 数轴分成几段),去绝对值(去掉原不等式中各个绝对值的符 号),解不等式(解去掉绝对值符号后的不等式),取并集(对自变 量x分类,最后必须取所有分类结果的并集).
12/11/2021
[对点训练] (2018·全国卷Ⅱ)设函数f(x)=5-|x+a|-|x-2|. (1)当a=1时,求不等式f(x)≥0的解集; (2)若f(x)≤1,求a的取值范围.
12/11/2021
2x+4,x<-1, 解:(1)当a=1时,f(x)=2,-1≤x≤2,
2019高考数学二轮复习专题八选考4系列选讲第二讲选考4-5不等式选讲学案理

第二讲 不等式选讲考点一 含绝对值不等式的解法1.|ax +b |≤c ,|ax +b |≥c 型不等式的解法(1)若c >0,则|ax +b |≤c ⇔-c ≤ax +b ≤c ,|ax +b |≥c ⇔ax +b ≥c 或ax +b ≤-c ,然后根据a ,b 的取值求解即可;(2)若c <0,则|ax +b |≤c 的解集为∅,|ax +b |≥c 的解集为R . 2.|x -a |+|x -b |≥c ,|x -a |+|x -b |≤c (c >0)型不等式的解法 (1)零点分段讨论法. (2)绝对值的几何意义. (3)数形结合法.[解] (1)当a =1时,f (x )=|x +1|-|x -1|, 即f (x )=⎩⎪⎨⎪⎧-2,x ≤-1,2x ,-1<x <1,2,x ≥1.故不等式f (x )>1的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >12. (2)当x ∈(0,1)时|x +1|-|ax -1|>x 成立等价于当x ∈(0,1)时|ax -1|<1成立.若a ≤0,则当x ∈(0,1)时|ax -1|≥1;若a >0时,则|ax -1|<1的解集为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫0<x <2a .所以2a≥1,故0<a ≤2.用零点分段讨论法解绝对值不等式的4步(1)令每个绝对值符号的代数式为零,并求出相应的根; (2)将这些根按从小到大排列,把实数集分为若干个区间;(3)由所分区间去掉绝对值符号得若干个不等式,解这些不等式,求出解集; (4)取各个不等式解集的并集就是原不等式的解集.[对点训练](2018·湖北黄冈模拟)已知函数f (x )=|2x -a |+|2x -1|(a ∈R ). (1)当a =-1时,求f (x )≤2的解集.(2)若f (x )≤|2x +1|的解集包含集合⎣⎢⎡⎦⎥⎤12,1,求实数a 的取值范围. [解] (1)当a =-1时,f (x )=|2x +1|+|2x -1|,由f (x )≤2得⎪⎪⎪⎪⎪⎪x +12+⎪⎪⎪⎪⎪⎪x -12≤1. 上述不等式化为数轴上点x 到两点-12,12的距离之和小于等于1,则-12≤x ≤12,即原不等式的解集为⎣⎢⎡⎦⎥⎤-12,12.(2)∵f (x )≤|2x +1|的解集包含⎣⎢⎡⎦⎥⎤12,1, ∴当x ∈⎣⎢⎡⎦⎥⎤12,1时,不等式f (x )≤|2x +1|恒成立, ∴|2x -a |+2x -1≤2x +1,即|2x -a |≤2,∴2x -2≤a ≤2x +2在x ∈⎣⎢⎡⎦⎥⎤12,1上恒成立, ∴(2x -2)max ≤a ≤(2x +2)min ,∴0≤a ≤3.考点二 含绝对值不等式的综合问题1.定理1:如果a ,b 是实数,则|a +b |≤|a |+|b |,当且仅当ab ≥0时,等号成立. 2.定理2:如果a ,b ,c 是实数,那么|a -c |≤|a -b |+|b -c |,当且仅当(a -b )(b -c )≥0时,等号成立.[解] (1)当a =1时,f (x )=⎩⎪⎨⎪⎧2x +4,x ≤-1,2,-1<x ≤2,-2x +6,x >2.可得f (x )≥0的解集为{x |-2≤x ≤3}. (2)f (x )≤1等价于|x +a |+|x -2|≥4.而|x +a |+|x -2|≥|a +2|,且当x =2时等号成立. 故f (x )≤1等价于|a +2|≥4.由|a +2|≥4可得a ≤-6或a ≥2.角度2:含绝对值不等式的恒成立问题[解] (1)由题意得,当a =2018时,f (x )=⎩⎪⎨⎪⎧2x -2018,x ≥2018,2018,x <2018,因为f (x )在[2018,+∞)上单调递增,所以f (x )的值域为[2018,+∞).(2)由g (x )=|x +1|,不等式g (x )-2>x -f (x )恒成立,知|x +1|+|x -a |>2恒成立,即(|x +1|+|x -a |)min >2.而|x +1|+|x -a |≥|(x +1)-(x -a )|=|1+a |, 所以|1+a |>2,解得a >1或a <-3.绝对值恒成立问题应关注的3点(1)巧用“||a |-|b ||≤|a ±b |≤|a |+|b |”求最值. (2)f (x )<a 恒成立⇔f (x )max <a ,f (x )>a 恒成立⇔f (x )min >a . (3)f (x )<a 有解⇔f (x )min <a ,f (x )>a 有解⇔f (x )max >a .[对点训练]1.[角度1](2018·山东淄博模拟)设函数f (x )=|x +4|. (1)若y =f (2x +a )+f (2x -a )的最小值为4,求a 的值; (2)求不等式f (x )>1-12x 的解集.[解] (1)因为f (x )=|x +4|,所以y =f (2x +a )+f (2x -a )=|2x +a +4|+|2x -a +4|≥|2x +a +4-(2x -a +4)|=|2a |,又y =f (2x +a )+f (2x -a )的最小值为4, ∴|2a |=4, ∴a =±2.(2)f (x )=|x +4|=⎩⎪⎨⎪⎧x +4(x >-4),0(x =-4),-4-x (x <-4),∴不等式f (x )>1-12x 等价于⎩⎪⎨⎪⎧x +4>1-12x (x >-4),0>1-12x (x =-4),-4-x >1-12x (x <-4),解得x >-2或x <-10,故不等式f (x )>1-12x 的解集为{x |x >-2或x <-10}.2.[角度2](2018·河南郑州二模)已知函数f (x )=|2x +1|,g (x )=|x |+a . (1)当a =0时,解不等式f (x )≥g (x );(2)若存在x ∈R ,使得f (x )≤g (x )成立,求实数a 的取值范围.[解] (1)当a =0时,由f (x )≥g (x )得|2x +1|≥|x |,两边平方整理得3x 2+4x +1≥0,解得x ≤-1或x ≥-13,∴原不等式的解集为(-∞,-1]∪⎣⎢⎡⎭⎪⎫-13,+∞. (2)由f (x )≤g (x )得a ≥|2x +1|-|x |, 令h (x )=|2x +1|-|x |,则h (x )=⎩⎪⎨⎪⎧-x -1,x ≤-12,3x +1,-12<x <0,x +1,x ≥0,故h (x )min =h ⎝ ⎛⎭⎪⎫-12=-12,所以实数a 的取值范围为a ≥-12.考点三 不等式的证明定理1:设a ,b ∈R ,则a 2+b 2≥2ab .当且仅当a =b 时,等号成立. 定理2:如果a ,b 为正数,则a +b2≥ab ,当且仅当a =b 时,等号成立.定理3:如果a ,b ,c 为正数,则a +b +c3≥3abc ,当且仅当a =b =c 时,等号成立.[证明] (1)(a +b )(a 5+b 5) =a 6+ab 5+a 5b +b 6=(a 3+b 3)2-2a 3b 3+ab (a 4+b 4) =4+ab (a 2-b 2)2≥4.(2)因为(a +b )3=a 3+3a 2b +3ab 2+b 3=2+3ab (a +b ) ≤2+3(a +b )24(a +b )=2+3(a +b )34,所以(a +b )3≤8,因此a +b ≤2.证明不等式的方法和技巧(1)如果已知条件与待证明的结论直接联系不明显,可考虑用分析法;如果待证的命题以“至少”“至多”等方式给出或是否定性命题、唯一性命题,则考虑用反证法.(2)在必要的情况下,可能还需要使用换元法、构造法等技巧简化对问题的表述和证明.尤其是对含绝对值不等式的解法或证明,其简化的基本思路是化去绝对值号,转化为常见的不等式(组)求解.多以绝对值的几何意义或“找零点、分区间、逐个解、并起来”为简化策略,而绝对值三角不等式,往往作为不等式放缩的依据.[对点训练]已知实数a ,b ,c 满足a >0,b >0,c >0,且abc =1. (1)证明:(1+a )(1+b )(1+c )≥8; (2)证明:a +b +c ≤1a +1b +1c.[证明] (1)∵1+a ≥2a ,1+b ≥2b ,1+c ≥2c , ∴(1+a )(1+b )(1+c )≥2a ·2b ·2c =8abc , ∵abc =1,∴(1+a )(1+b )(1+c )≥8. (2)∵ab +bc ≥2ab 2c =2b ,ab +ac ≥2a 2bc =2a , bc +ac ≥2abc 2=2c ,上面三式相加得,2ab +2bc +2ca ≥2a +2b +2c , 即ab +bc +ca ≥a +b +c . 又1a +1b +1c=ab +bc +ac ,∴a +b +c ≤1a +1b +1c.1.(2017·全国卷Ⅰ)已知函数f (x )=-x 2+ax +4,g (x )=|x +1|+|x -1|. (1)当a =1时,求不等式f (x )≥g (x )的解集;(2)若不等式f (x )≥g (x )的解集包含[-1,1],求a 的取值范围.[解] (1)当a =1时,不等式f (x )≥g (x )等价于x 2-x +|x +1|+|x -1|-4≤0.① 当x <-1时,①式化为x 2-3x -4≤0,无解;当-1≤x ≤1时,①式化为x 2-x -2≤0,从而-1≤x ≤1; 当x >1时,①式化为x 2+x -4≤0,从而1<x ≤-1+172.所以f (x )≥g (x )的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-1≤x ≤-1+172. (2)解法一(等价转化法):当x ∈[-1,1]时,g (x )=2.所以f (x )≥g (x )的解集包含[-1,1]等价于当x ∈[-1,1]时f (x )≥2.又f (x )在[-1,1]的最小值必为f (-1)与f (1)之一,所以f (-1)≥2且f (1)≥2,得-1≤a ≤1.所以a 的取值范围为[-1,1].解法二(分类讨论法):当x ∈[-1,1]时,g (x )=2,所以f (x )≥g (x )的解集包含[-1,1]等价于x ∈[-1,1]时f (x )≥2,即-x 2+ax +4≥2,当x =0时,-x 2+ax +4≥2成立;当x ∈(0,1]时,-x 2+ax +4≥2可化为a ≥x -2x ,而y =x -2x在(0,1]单调递增,最大值为-1,所以a ≥-1;当x ∈[-1,0)时,-x 2+ax +4≥2可化为a ≤x -2x ,而y =x -2x在[-1,0)单调递增,最小值为1,所以a ≤1.综上,a 的取值范围为[-1,1].2.(2018·全国卷Ⅲ)设函数f (x )=|2x +1|+|x -1|.(1)画出y =f (x )的图象;(2)当x ∈[0,+∞)时,f (x )≤ax +b ,求a +b 的最小值.[解] (1)f (x )=⎩⎪⎨⎪⎧-3x ,x <-12,x +2,-12≤x <1,3x ,x ≥1.y =f (x )的图象如图所示.(2)由(1)知,y =f (x )的图象与y 轴交点的纵坐标为2,且各部分所在直线斜率的最大值为3,故当且仅当a ≥3且b ≥2时,f (x )≤ax +b 在[0,+∞)成立,因此a +b 的最小值为5.1.不等式选讲是高考的选考内容之一,考查的重点是不等式的证明、绝对值不等式的解法等,命题的热点是绝对值不等式的求解,以及绝对值不等式与函数的综合问题的求解.2.此部分命题形式单一、稳定,难度中等,备考本部分内容时应注意分类讨论思想的应用.专题跟踪训练(三十三)1.(2018·广州二模)设函数f (x )=|2x +3|+|x -1|. (1)解不等式f (x )>4;(2)若∀x ∈⎝ ⎛⎭⎪⎫-∞,-32,不等式a +1<f (x )恒成立,求实数a 的取值范围. [解] (1)∵f (x )=|2x +3|+|x -1|,∴f (x )=⎩⎪⎨⎪⎧-3x -2,x <-32,x +4,-32≤x ≤1,3x +2,x >1,f (x )>4⇔⎩⎪⎨⎪⎧ x <-32,-3x -2>4或⎩⎪⎨⎪⎧-32≤x ≤1,x +4>4或⎩⎪⎨⎪⎧x >1,3x +2>4⇔x <-2或0<x ≤1或x >1.∴不等式f (x )>4的解集为(-∞,-2)∪(0,+∞). (2)由(1)知,当x <-32时,f (x )=-3x -2,∵当x <-32时,f (x )=-3x -2>52,∴a +1≤52,即a ≤32.∴实数a 的取值范围为⎝⎛⎦⎥⎤-∞,32.2.(2018·河南新乡二模)已知函数f (x )=|x -4|+|x -1|-3.(1)求不等式f (x )≤2的解集;(2)若直线y =kx -2与函数f (x )的图象有公共点,求k 的取值范围.[解] (1)由f (x )≤2,得⎩⎪⎨⎪⎧ x ≤1,2-2x ≤2或⎩⎪⎨⎪⎧ 1<x <4,0≤2或⎩⎪⎨⎪⎧ x ≥4,2x -8≤2,解得0≤x ≤5,故不等式f (x )≤2的解集为[0,5].(2)f (x )=|x -4|+|x -1|-3=⎩⎪⎨⎪⎧2-2x ,x≤1,0,1<x <4,2x -8,x ≥4,作出函数f (x )的图象,如图所示,易知直线y =kx -2过定点C (0,-2),当此直线经过点B (4,0)时,k =12;当此直线与直线AD 平行时,k =-2.故由图可知,k ∈(-∞,-2)∪⎣⎢⎡⎭⎪⎫12,+∞.3.(2018·大庆二模)已知f (x )=|x +3|+|x -1|,g (x )=-x 2+2mx .(1)求不等式f (x )>4的解集;(2)若对任意的x 1,x 2,f (x 1)≥g (x 2)恒成立,求m 的取值范围.[解] (1)解法一:不等式f (x )>4即|x +3|+|x -1|>4.可得⎩⎪⎨⎪⎧ x ≥1,x +3+x -1>4或⎩⎪⎨⎪⎧-3<x <1,x +3+1-x >4或⎩⎪⎨⎪⎧x ≤-3,-3-x +1-x >4, 解得x <-3或x >1,所以不等式的解集为{x |x <-3或x >1}. 解法二:|x +3|+|x -1|≥|x +3-(x -1)|=4,当且仅当(x +3)(x -1)≤0,即-3≤x ≤1时,等号成立. 所以不等式的解集为{x |x <-3或x >1}.(2)依题意可知f (x )min ≥g (x )max ,由(1)知f (x )min =4,因为g (x )=-x 2+2mx =-(x -m )2+m 2,所以g (x )max =m 2.由m 2≤4得m 的取值范围是-2≤m ≤2.4.(2018·西安一模)设a 、b 为正实数,且1a +1b =2 2.(1)求a 2+b 2的最小值;(2)若(a -b )2≥4(ab )3,求ab 的值.[解] (1)由22=1a +1b ≥21ab 得ab ≥12,当a =b =22时取等号.故a 2+b 2≥2ab ≥1,当a =b =22时取等号.所以a 2+b 2的最小值是1.(2)由1a +1b =22可得a +b =22ab ,∵(a -b )2=(a +b )2-4ab =8a 2b 2-4ab ≥4(ab )3, ∴(ab )2-2ab +1≤0,即(ab -1)2≤0,∴ab -1=0,即ab =1.。
备战近年高考数学大二轮复习专题八选考4系列专题能力训练23不等式选讲理(2021年整理)

备战2019高考数学大二轮复习专题八选考4系列专题能力训练23 不等式选讲理编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(备战2019高考数学大二轮复习专题八选考4系列专题能力训练23 不等式选讲理)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为备战2019高考数学大二轮复习专题八选考4系列专题能力训练23 不等式选讲理的全部内容。
专题能力训练23 不等式选讲(选修4-5)一、能力突破训练1。
设a>0,|x—1|<,|y-2|<,求证:|2x+y—4|<a.2。
已知函数f(x)=|x-1|+|x+3|,x∈R.(1)解不等式f(x)≤5;(2)若不等式t2+3t〉f(x)在x∈R上有解,求实数t的取值范围.3。
设函数f(x)=+|x—a|(a〉0).(1)证明:f(x)≥2;(2)若f(3)〈5,求a的取值范围。
4.(2018全国Ⅲ,理23)设函数f(x)=|2x+1|+|x—1|。
(1)画出y=f(x)的图象;(2)当x∈[0,+∞)时,f(x)≤ax+b,求a+b的最小值。
5.已知函数f(x)=,M为不等式f(x)〈2的解集.(1)求M;(2)证明:当a,b∈M时,|a+b|<|1+ab|。
6.设关于x的不等式|2x—a|+|x+3|≥2x+4的解集为A.(1)若a=1,求A;(2)若A=R,求a的取值范围。
7。
已知函数f(x)=|2x-1|+|x-a|,a∈R.(2)若f(x)=|x-1+a|,求x的取值范围。
二、思维提升训练8.已知函数f(x)= g(x)=af(x)—|x—2|,a∈R。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.8.2 不等式选讲
1.(2017·全国卷Ⅰ)已知函数f (x )=-x 2+ax +4,g (x )=|x +1|+|x -1|.
(1)当a =1时,求不等式f (x )≥g (x )的解集;
(2)若不等式f (x )≥g (x )的解集包含[-1,1],求a 的取值范围.
[解] (1)当a =1时,不等式f (x )≥g (x )等价于x 2-x +|x +1|+|x -1|-4≤0.①当x <-1时,①式化为x 2-3x -4≤0,无解;
当-1≤x ≤1时,①式化为x 2-x -2≤0,从而-1≤x ≤1;
当x >1时,①式化为x 2+x -4≤0,从而1<x ≤.-1+172所以f (x )≥g (x )的解集为Error!.
(2)解法一(等价转化法):当x ∈[-1,1]时,g (x )=2.
所以f (x )≥g (x )的解集包含[-1,1]等价于当x ∈[-1,1]时f (x )≥2.
又f (x )在[-1,1]的最小值必为f (-1)与f (1)之一,所以f (-1)≥2且f (1)≥2,得-1≤a ≤1.
所以a 的取值范围为[-1,1].
解法二(分类讨论法):当x ∈[-1,1]时,g (x )=2,所以f (x )≥g (x )的解集包含[-1,1]等价于x ∈[-1,1]时f (x )≥2,
即-x 2+ax +4≥2,
当x =0时,-x 2+ax +4≥2成立;
当x ∈(0,1]时,-x 2+ax +4≥2可化为a ≥x -,而y =x -在(0,1]单调递增,最大值2x 2x
为-1,所以a ≥-1;
当x ∈[-1,0)时,-x 2+ax +4≥2可化为a ≤x -,而y =x -在[-1,0)单调递增,最2x 2x
小值为1,所以a ≤1.
综上,a 的取值范围为[-1,1].
2.(2018·全国卷Ⅲ)设函数f (x )=|2x +1|+|x -1|.
(1)画出y=f(x)的图象;
(2)当x∈[0,+∞)时,f(x)≤ax+b,求a+b的最小值.
[解] (1)f(x)=Error!
y=f(x)的图象如图所示.
(2)由(1)知,y=f(x)的图象与y轴交点的纵坐标为2,且各部分所在直线斜率的最大值为3,故当且仅当a≥3且b≥2时,f(x)≤ax+b在[0,+∞)成立,因此a+b的最小值为5.
1.不等式选讲是高考的选考内容之一,考查的重点是不等式的证明、绝对值不等式的解法等,命题的热点是绝对值不等式的求解,以及绝对值不等式与函数的综合问题的求解.
2.此部分命题形式单一、稳定,难度中等,备考本部分内容时应注意分类讨论思想的应用.。