浅谈菲波纳契数列的内涵和应用价值
斐波那契数列的内涵和应用价值

斐波那契数列的内涵和应用价值作者:杨顺祥来源:《学校教育研究》2017年第02期一、斐波那契数列的由来澳大利亚、新西兰本来是没有兔子的。
1859年,澳大利亚的墨尔本动物园从英国运来24只兔子供人观赏。
不料,1864年的一天,动物园失火,幸免于难的兔子逃到草原上。
一望无垠的大草原,不仅饲草丰美,没有天敌,野兔的繁殖非常快。
到1928年,兔子数量狂增至40亿只,遍及澳大利亚的2/3地区。
它们吃庄稼,毁坏新播下的种子,啃嫩树皮和牙,并且打地洞损坏田地和河堤。
它们消耗了牧场牧草和大量灌木,使畜牧业面临着灭顶之灾。
问题还在于兔子破坏了植被,又引起了水土流失。
一时,兔灾成害,人民遭殃。
新西兰也引进了兔子,32年兔成灾。
这些地区从实践中体悟到兔子繁殖的神奇速度问题,其实,早在630年以前,意大利数学家斐波那契就从理论上论述了这个问题,只是那时没有引起注意,在他的《算盘书》一书中,就说到了兔子繁殖问题。
题意是:假设一对刚出生的小兔一个月后就能长成大兔,再过一个月就能生下一对小兔,并且此后每个月都生一对小兔,一年内没有发生死亡,问:一对兔子,一年内繁殖成多少对兔子?对于n=1,2,……12,令表示第n个月开始时兔子的总对数,分别是未成年和成年的兔子(简称小兔和大兔)的对数,则显然,F1=1,F2=2,而且从第三个月开始,每月的兔子总数恰好等于它前面两个月的兔子总数之和,按照这个规律写下去,就得:1,2,3,5,8,13,21,34,55,89,144,233。
这就是斐波那契数列的通常定义,也就是数列1,1,2,3,5,8,13,21,34,55,89,……,这个数列又叫黄金数列。
列昂那多又名斐波那契,所以这个数列称作斐波那契数列,其中每一项称作斐波那契数。
二、斐波那契数列的内涵1.在斐波那契数列中,前后两项的比值是以黄金数0.618为极限的。
2.斐波那契数列的任意相邻四项满足。
3.在斐波那契数列中或根据数列后一项是前两项之和形成的类斐波那契数列中,有前十项之和等于第七项的11倍。
浅谈斐波那契数列的真善美

浅谈斐波那契数列的真善美小七怪小组摘要自斐波那契数列产生至今,人们对其研究的热情经久不衰。
本文探究斐波那契数列的真、善、美,简单介绍斐波那契数列到底真在何处、善在何处、美在何处,并且得出斐波那契数列真、善、美三者之间的联系。
关键词斐波那契数列真善美一、斐波那契数列的由来13 世纪意大利数学家斐波那契在他的《算盘书》的修订版中增加了一道著名的兔子繁殖问题。
问题是这样的:如果每对兔子(一雄一雌) 每月能生殖一对小兔子( 也是一雄一雌,下同)每对兔子第一个月没有生殖能力,但从第二个月以后便能每月生一对小兔子假定这些兔子都没有死亡现象,那么从第一对刚出生的兔子开始,12个月以后会有多少对兔子呢?这个问题的解释如下:第一个月只有一对兔子;第二个月仍然只有一对兔子;第三个月这对兔子生了一对小兔子,共有1+l =2 对兔子;第四个月最初的一对兔子又生一对兔子,共有2+l =3对兔子;则由第一个月到第十二个月兔子的对数分别是: l , l , 2 , 3 , 5 , 8 ,13 , 21 , 34 , 55 ,89,144 , …… , 后人为了纪念提出兔子繁殖问题的斐波那契,将这个兔子数列称为斐波那契数列,学术界又称为黄金分割数列。
二、斐波那契数列与真何为真?“真有两个含义, 一是指客观世界存在的客观物质, 二是指客观世界的本质规律。
”[1]在自然界中,许多事物本身蕴含的规律都跟斐波那契数列有关。
例如树木的生长,由于新生的枝条,往往需要一段“休息”时间,供自身生长,之后才萌发新枝。
因此,一株树苗在一段时间间隔后,例如一年,会长出一条新枝;第二年新枝“休息”,老枝依旧萌发;此后,老枝与“休息”过一年的枝同时萌发,当年生的新枝则次年“休息”。
这样,一株树木各个年份的枝桠数,便构成斐波那契数列。
这就是图1 树木生长与斐波那契数列生物学上著名的“鲁德维格定律”。
或许有人会说树木生长符合斐波那契数列的规律是一个巧合,其实不仅仅是树木的生长问题,植物的花瓣、叶子、花蕊的数目都和这斐波那契数列有关。
浅谈斐波那契数列在生活中的应用

浅谈斐波那契数列在生活中的应用摘要:数学是一门来自生活又高于生活的科学,数学研究是人类社会进步的动力。
数列知识在生活中也有着广泛的应用,例如生物种群数量的变化,银行的利息计算,人口增长,粮食增长、住房建设等,都会用到数学知识。
本文介绍斐波那契数列的简单情况,可以帮助学生提高对数列的知识。
数列是数学学习中一个非常重要的分支,并且因为数列的研究和计算与社会经济和资源生活紧密相关,加上灵活多变的计算,有趣的问题等,都使得对于数列的研究受到越来越多人的关注。
关键词:斐波那契数列应用黄金分割1 引言数列在我们的生活中具有广泛的应用,例如资源计算等问题,并且在解决诸如投资分配,汇率计算和资源利用分配等问题方面具有无可比拟的优势。
本文将简要介绍数列广泛应用,分析斐波那契数在上述几个生活领域中的应用。
斐波那契数列在现实生活中被广泛使用,研究它以使其服务于我们的生活具有很大的意义。
人类很早就看到了大自然的数学特征:蜜蜂的繁殖规律,树枝、钢琴音阶的排列以及花瓣在花托边缘的对称分布、整个花朵几乎完美无缺地呈现出辐射对称性……,所有这一切向我们展示了许多美丽的数学模式。
对自然、社会和生活中的许多现象的解释,通常可归因于斐波那契数列上来。
斐波那契数列在数学理论中有许多有趣的特性,似乎在自然界中也存在着这个性质,都被斐波那契数列支持。
2 斐波那契数列的应用(1)斐波那契数列和花瓣数花瓣数是极有特征的。
多数情况下,花瓣的数目都是3,5,8,13,21,34,55,…这些数恰好是斐波那契数列的某些项,例如,海棠2瓣花瓣,铁栏、百合花和兰花以及茉莉花都有3瓣花瓣,洋紫荆、黄蝉和蝴蝶兰是5瓣花瓣。
万寿菊的花瓣有13瓣;至良属的植物有5瓣花瓣;许多翠雀属植物有8瓣花瓣;雏菊属植物有89、55或者34个瓣花瓣。
(2)斐波那契数列和仙人掌的结构在仙人掌的结构中有这一数列的特征。
研究人员分析了仙人掌的形状、叶片的厚度以及控制仙人掌情况的其他因素,并将数据输入计算机,结果发现仙人掌的斐波那契序列结构使仙人掌能够最大限度地减少能量消耗并适应干旱沙漠中的生长环境。
谈斐波那契数列的由来及其应用

谈斐波那契数列的由来及其应用永德二中 王冬梅摘要:斐波那契数列是一个广为人知的数列,然而在自然界中,在科学界中却有着匪夷所思的应用,如植物的花瓣数,菠萝的鳞片以及树枝的生长等大自然的现象都与斐波那契数列有关,甚至由古至今数学史上鼎鼎大名的黄金分割、黄金比也都与斐波那契数列有着密切的关系.本文介绍了斐波那契数列的来源以及其通项公式,介绍了斐波那契数列在自然界中的体现,并通过斐波那契数列与黄金比(0.618…)的关系来叙述了斐波那契数列在建筑以及艺术中频频出现的原因.关键词:斐波那契数列;斐波那契数;黄金比;黄金矩形1 斐波那契数列的简介斐波那契数列指的是这样一个数列:1 1 2 3 5 8 13 21 34 ……,它的特点是:从第三项开始,每一项都等于前两项之和,也就是有一个递推关系.即:(1)(2)1F F == ()(1)(2)F n F n F n =-+-,其中3n ≥且n Z ∈.{}()F n 即为斐波那契数列.斐波那契数列是一个广为人知的数列,然而在自然界中,在科学界中却有着匪夷所思的应用,如植物的花瓣数,菠萝的鳞片以及树枝的生长等大自然的现象都与斐波那契数列有关,甚至由古至今数学史上鼎鼎大名的黄金分割、黄金比也都与斐波那契数列有着密切的关系.斐波那契数列也是一个非常美丽、和谐的数列,它的形状可以用排成螺旋的一系列正方形来说明(如图1所示):起始的正方形(图中用实心表示)的边长为1,在它左边的那个正方形的边长也是1,在这两个正方形的上方再放一个正方形,其边长为2,以后顺次加上边长为3、5、8、13、21、34……等等的正方形,这些数字每一个都等于前面两个数之和,它们正好构成了斐波那契数列.图12 斐波那契数列的出现(生小兔问题)[1]公元1202年,一位意大利比萨的商人斐波那契(Fibonacci )在他的《算盘全书》(这里的“算盘”指的是计算用沙盘)中提出过一个“养兔问题”.这道题说的是:兔子出生以后两个月就能生小兔,若每次不多不少恰好生一对(一雌一雄),假如养了初生的小兔一对,试问一年以后共有多少对兔子.(假设生下的小兔都存活)我们来推算一下,如图2所示:第一个月:只有一对小兔;第二个月:小兔不会生殖,仍然只有一对兔子;第三个月:这对兔子生了一对小图,这时共有两对兔子;第四个月:老兔子又生了一对小兔,而上月出生的小兔还未成熟,这时共有三对兔子;第五个月:已有两对兔子可以生殖(原来的老兔和第三个月出生的小兔),于是生了两对小兔,这时共有五对兔子;……如此推算下去,便有:。
斐波那契数列的作用

斐波那契数列的作用斐波那契数列的作用数学是一门绝妙的学科,在我们的日常生活中,有很多数学理论被运用于实际问题中,其中就包括了斐波那契数列。
斐波那契数列是一个非常独特且有趣的数列,它有着广泛的应用场景,可以应用到多个领域,这篇文章将从不同的角度来探讨斐波那契数列的作用。
一、自然现象中的斐波那契数列斐波那契数列以1,1,2,3,5,8......的形式呈现。
这个数列具有独特的美感和规律性,而这种规律性也存在于许多自然现象中。
例如,植物叶片排列的方式、贝壳的旋转方式、旋转涡流的形态等等都符合斐波那契数列规律。
这些不同的现象和形态的发生,被解读为自然规律的深刻体现,表明了斐波那契数列在自然界中的存在与重要性。
二、金融领域中的斐波那契数列斐波那契数列在金融领域中也有着广泛的应用。
在投资领域,一些特定领域的专业人员会运用斐波那契数列来预测股票或汇率的变化趋势。
此外,斐波那契序列也被用于量化市场波动及预测市场走势的情况,为交易算法的编写提供基础。
三、信息技术中的斐波那契数列在计算机科学领域中,斐波那契数列常常被用于优化算法。
例如,在动态规划算法中,使用斐波那契数列来减小比较次数,提高算法的效率。
斐波那契数列也能被应用于诸如密码学和分布式计算等领域,表明它在现代信息技术领域的应用前景十分广阔。
斐波那契数列无疑是一种十分神奇而有用的数列,它在许多领域都有着广泛的应用价值。
不论是数学、气象、医学还是经济、物理等其他领域,斐波那契数列都能对其进行有用的拓展,它的重要性在于它所表达的是一些普遍的规律。
希望未来能有更多的人爱上数学,去探究斐波那契数列的奥秘,并把它更广泛地用于实践中。
介绍斐波那契数列及其运用

介绍斐波那契数列及其运用斐波那契数列(Fibonacci Sequence)又称黄金分割数列,是一组特殊的数字序列,全部数字相加,当前项为其前两项之和。
它以著名意大利数学家莱昂纳多·斐波那契(Leonardio Fibonacci)的名字命名,因他在《尼罗河数字》(1202)中提出了它的组成规律。
一、斐波那契数列的定义斐波那契数列定义为:一列数字,从第三项开始,每一项都等于前两项之和。
通常用斐波那契数列的记法表示,用两个不同的数字作为起点,从而可以确定整个数列。
第一、第二项均为1,因此数列的起点为(1,1),前三项分别是:1,1,2。
二、斐波那契数列基本性质1. 通项公式斐波那契数列的通项公式为:an=an-1+an-2,即使用递推公式,可以求出斐波那契数列的任意一项。
其中an代表第n项,an-1代表第n-1项,an-2代表第n-2项。
2. 黄金比例斐波那契数列中数字的总和可以表示为黄金比例,即:a1/a2=a2/a3=a3/a4….=0.618,它表示任意斐波那契数列中,数字相加的比值都处于0.618左右。
三、斐波那契数列的应用1. 密码中的应用加密技术是用来保护信息在传输过程中不被窃取的一种技术,其中一种最常用的加密技术称为基于斐波那契数列的加密技术,该技术是一种有规律性的序列及规则的加密技术,使用起来既安全又直观,经常用来进行信息传输加密,以及用于制作密码、密钥保护等。
2. 算法中的应用斐波那契数列也常在算法中使用,如在算法中求解动态最优解,优先查找网络最短路等,比较容易使用其中的比例来解决各种规划问题,am是an-1+bn-2模式的了解,这种模式在很多分支处理方面都有着较好的应用,特别是网络路由最短路,及生物群降纬等,都是用户非常喜欢的算法。
3. 图形中的应用很多形象,如螺旋、花环、蜂窝等,在很多设计中都有着广泛的应用,但这些形象的基础其实都是斐波那契数列,在空间几何中,大多数螺旋线形状,都可以用fibonacci数列进行模拟,这样就可以简化模型,使其形状更加精确,便于使用,比如说螺旋道路、凸透镜和周期传播都是这类应用。
数学之美斐波那契数列

数学之美斐波那契数列数学之美:斐波那契数列斐波那契数列是一种奇妙而美丽的数学序列,它以其独特的规律和特性闻名于世。
从古至今,斐波那契数列一直是数学中备受研究和探索的重要对象。
本文将深入探讨斐波那契数列的定义、性质以及其在数学和实际生活中的应用。
一、斐波那契数列的定义斐波那契数列最初由13世纪的意大利数学家莱昂纳多·斐波那契(Leonardo Fibonacci)提出。
该数列以0和1开始,随后的每个数字都是前两个数字的和。
具体地,斐波那契数列的定义如下:F(0) = 0F(1) = 1F(n) = F(n-1) + F(n-2) (n ≥ 2)通过这一简单的定义,我们可以得到斐波那契数列的前几个数:0、1、1、2、3、5、8、13、21、34、55... 以此类推。
二、斐波那契数列的性质斐波那契数列独特的性质使其成为了数学界一个备受关注的对象。
下面将介绍几个斐波那契数列的重要性质。
1. 黄金分割比例斐波那契数列中的相邻两个数之间,其比值逐渐趋近于一个固定的数值,即黄金分割比例(Golden Ratio),通常用希腊字母φ(phi)表示。
黄金分割比例约等于1.6180339887。
2. 黄金矩形与黄金螺旋基于黄金分割比例,可以构造出一系列特殊的矩形,即黄金矩形。
黄金矩形的长和宽之比等于黄金分割比例。
而当这些黄金矩形排列时,可以形成一种优美且对称的螺旋形态,即黄金螺旋。
3. 数学规律性与递推关系斐波那契数列所展现的数学规律性极其有趣。
每个数都可以由前两个数通过加法获得,这种递推关系使得数列中的个数无穷无尽。
三、斐波那契数列的应用除了在数学领域中引发了广泛的研究外,斐波那契数列还在现实生活中发现了一些有趣的应用。
1. 自然界中的斐波那契数列斐波那契数列的规律在自然界中也能找到许多身影。
例如,很多植物的花朵、树叶、果实等呈现出斐波那契数列的分布规律。
同样,许多动物的身体结构也符合斐波那契数列的比例。
认识斐波那契数列:什么是斐波那契数列?有何特点?

斐波那契数列,又被称为黄金分割数列或兔子数列,是一种在数学上极为著名且有趣的数列。
它由意大利数学家莱昂纳多·斐波那契在《计算之书》(Liber Abaci)中首次提出。
斐波那契数列不仅是数学领域的研究对象,更在日常生活中、自然界以及科学研究中展现出其独特魅力和重要性。
下面,我们将深入探讨斐波那契数列的定义、特点、以及其广泛的应用。
一、斐波那契数列的定义斐波那契数列是这样一组数列:1,1,2,3,5,8,13,21,34,……,其中每一个数字都是前两个数字的和。
具体来说,斐波那契数列的定义如下:F(0) = 0F(1) = 1F(n) = F(n-1) + F(n-2),其中n≥2二、斐波那契数列的特点1. 递推公式:斐波那契数列的每一项都是其前两项的和,这是其最显著的特点。
这一特点使得斐波那契数列可以通过递推的方式轻松地计算出来。
2. 黄金分割率:斐波那契数列与黄金分割率(φ = (√5 - 1) / 2 ≈ 0.618)有着密切的联系。
当斐波那契数列的项数趋于无穷大时,相邻两项的比值会趋近于黄金分割率。
这一性质使得斐波那契数列在美学、建筑、艺术等领域具有广泛的应用。
3. 对称性:斐波那契数列具有一种神奇的对称性。
具体来说,对于任意正整数n,都有F(n) = F(n-1) + F(n-2) = F(n+1) - F(n-1)。
这种对称性使得斐波那契数列在数学上具有独特的美感。
4. 递归性质:斐波那契数列是一种递归数列,这意味着每一项都可以通过递归的方式来表示。
例如,F(5) = F(4) + F(3) = (F(3) + F(2)) + F(3) = 2F(3) + F(2) = 2(F(2) + F(1)) + F(2) = 3F(2) + 2F(1) = 3×1 + 2×1 = 5。
这种递归性质使得斐波那契数列在计算上具有较大的灵活性。
三、斐波那契数列的应用斐波那契数列作为一种重要的数学概念,其在各个领域都有着广泛的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浅谈菲波纳契数列的内涵和应用价值99数学本四班莫少勇指导教师孙丽英摘要本文从菲波那契数列出发,通过探究其数学内涵和它在实际生活中的应用,提高学生对数学的欣赏能力,初步建立数学建模的思想,从而提高用数学知识分析实际问题的能力。
关键词 Fibonacci数列黄金数优选法数学美不仅有形式的和谐美,而且有内容的严谨美;不仅有语言的简明、精巧美,而且有公式、定理的结构整体美;不仅有逻辑、抽象美,而且有创造应用美。
古希腊的毕达哥拉斯学派,首先从数的比例中求出美的形式,发现了黄金数。
神奇的菲波纳契数列正是黄金数之后的一大发现,它又被誉为“黄金数列”。
一.Fibonacci数列的由来Fibonacci数列的提出,当时是和兔子的繁殖问题有关的,它是一个很重要的数学模型。
这个问题是:有小兔一对,若第二个月它们成年,第三个月生下小兔一对,以后每月生产一对小兔,而所生小兔亦在第二个月成年,第三个月生产另一对小兔,以后亦每月生产小兔一对,假定每产一对小兔必为一雌一雄,且均无死亡,试问一年后共有小兔几对?对于n=1,2,……,令F n 表示第n 个月开始时兔子的总对数,B n 、A n 分别是未成年和成年的兔子(简称小兔和大兔)的对数,则F n = A n +B n根据题设,有显然,F 1=1,F 2=1,而且从第三个月开始,每月的兔子总数恰好等于它前面两个月的兔子总数之和,于是按此规律我们得到一个带有初值的递推关系式:⎩⎨⎧==∈≥+=1F 1,FZ)n 3,(n F F F 212-n 1-n n若我们规定F 0=1,则上式可变为⎩⎨⎧==∈≥+=1F 1,FZ)n 2,(n F F F 102-n 1-n n这就是Fibonacci 数列的通常定义,也就是数列1,1,2,3,5,8,13,21,34,55,89,……,这串数列的特点是:其中任一个数都是前两数之和。
这个兔子问题是意大利数学家梁拿多(Leomardo )在他所著的《算盘全集》中提出的,而梁拿多又名菲波纳契(Fibonacci ),所以这个数列称作菲波纳契数列,其中每一项称作Fibonacci 数。
它的通项是F n =51[(251+)n+1-(251-)n+1],由法国数学家比内(Binet )求出的。
二.Fibonacci 数列的内涵(1)Fibonacci 数列的通项的证明我们可以通过求解常系数线性齐次递推关系或者利用生成函数法来实现。
证法一:∵菲波纳契数列是一个2阶的线性齐次递推关系,它的递推方程是x 2-x-1=0,特征根是251± ∴通解是F n =C 1(251+)n+C 2(251-)n代入初值来确定C 1、C 2,得方程组⎪⎩⎪⎨⎧=-++=+125125112121C C C C 解这个方程组得 C 1=51251+, C 2=51-251- ∴原递推关系的解是 F n =51[(251+)n+1-(251-)n+1]证法二:设F n 的生成函数为 F(x) ,则有F(x)=F 0+F 1x+F 2x 2+……+F n x n+…… x(F(x)-F 0)= F 1x 2+F 2x 3+…F n-1x n+…… x 2F(x)= F 0x 2+F 1x 3+…… 把以上式子的两边由上而下作差得F(x)(1-x-x 2)+x=F 0+F 1x+(F 2-F 1-F 0)x 2+(F 3-F 2-F 1)x 3+…… =1+x+0+0+…… ∴F(x)=211x x --=)2511)(2511(1x x --+-=x A2511+-+xB2511--由⎪⎩⎪⎨⎧=++-=+0)251()251(1B A B A 解得A=5251+,B=5215-∴F(x)=5251+k k k x )251(0∑∞=+-5215-kk k x )251(0∑∞=-∴取x=1,k=n ,则F n =51[(251+)n+1-(251-)n+1](2)在Fibonacci 数列中,前后两项的比值1+n n F F 是以黄金数0.618为极限的。
记b n=1+n n F F ,则有b 0=10F F =1 b 1=21F F =21b 2=32F F =32 b 3=43F F =53b 4=54F F =85 b 5=65F F =138 ………… b n =1111-+n b在求数列{}n b 的极限之前我们首先来证明以下两个命题: (i )引理:Fibonacci 数列的任意相邻四项满足 F n-2F n+1-F n F n-1=(-1)n, n ≥3证明:根据行列式与线性方程组的关系,方程组⎪⎪⎩⎪⎪⎨⎧-=+++=-+++11)251(251)251(251n n y x y x 的解是 x=25112511251)251(251)251(11+-++--++n n =51[(251+)n-(251-)n]=F n-1y=25112511)251(1)251(111+-+-++n n =51[(251+)n+1-(251-)n+1]=F n∴F n-1、F n 满足原方程组,于是有⎪⎪⎩⎪⎪⎨⎧-=+++=-++-+1111-n )251(251)251(251n n n n n F F F F 把以上方程组的两边对应相乘,得 [n n F F 2511-+-][n n F F 2511++-]=1)251(+-n 1)251(++n 整理得, F n-12+F n F n-1-F n 2=(-1)n+1(F n -F n-1)(F n +F n+1)-F n F n-1=(-1)nF n-2F n+1-F n F n-1=(-1)n证毕。
(ii )数列{}n b 存在极限。
证明:由引理可知,当n=2k+1,F k-2F k+1-F k F k-1=-1<0:当n=2k ,F k-2F k+1-F k F k-1=1>0因此分别有kk F F 212-<2212++k k F F ,kk F F 212->2212++k k F F 即数列⎭⎬⎫⎩⎨⎧-n n F F 212递增,数列⎭⎬⎫⎩⎨⎧+122n n F F 递减。
显然,10,0≤<≠∀n b n , ∴数列{}n b 有界。
根据“单调有界数列必有极限”可知{}n b 2、{}12-n b 存在极限。
设n n b 2lim ∞→=A, 12lim -∞→n n b =B ,分别对b 2n =12111-+n b 及b 2n+1=nb 2111+两边取极限有A=B111+,与B=A111+即有B A 111+=与AB 111+= ∴BABA AB AB A B -=-=-11,则必有 A=B ≠0 ∴数列{}n b 极限的存在性可证。
于是由(ii )我们可求n n b ∞→lim 。
根据Fibonacci 数列的通项以及251-<1得, n n b ∞→lim =1lim+∞→n nn F F =22n 11n )251()251()251()251(lim++++∞→--+--+n n n =2511lim +∞→n =251-≈0.618三.Fibonacci 数列的应用价值科学家发现无论在数学领域还是在自然界中都有很多有趣的现象与Fibonacci 数列有关,现在举例如下:例1.杨辉三角对角线上各数之和构成Fibonacci 数列,即F n =⎪⎩⎪⎨⎧+⋯++++⋯+++-+----为奇数时当为偶数时当)(n C C C C n C C C C n n nn n n nn n n 212)1(222211022110例2.多米诺牌(可以看作一个2×1大小的方格)完全覆盖一个n×2的棋盘,覆盖的方案数等于Fibonacci数。
例3.从蜜蜂的繁殖来看,雄峰只有母亲,没有父亲,因为蜂后产的卵,受精的孵化为雌蜂,未受精的孵化为雄峰。
人们在追溯雄峰的祖先时,发现一只雄峰的第n代祖先的数目刚好就是Fibonacci数列的第n项Fn。
例4.钢琴的13个半音阶的排列完全与雄峰第六代的排列情况类似,说明音调也与Fibonacci数列有关。
例5.自然界中一些花朵的花瓣数目符合于Fibonacci 数列,也就是说在大多数情况下,一朵花花瓣的数目都是3,5,8,13,21,34,……。
例6.如果一根树枝每年长出一根新枝,而长出的新枝两年以后,每年也长出一根新枝,那么历年的树枝数,也构成一个Fibonacci数列。
Fibonacci数列的重要价值还在于它能作为一些实际问题的数学模型,从而使复杂的实际问题转化到我们熟悉的数学问题的解决上。
问题一:有一条n 级楼梯,如果每步只能跨上一级或两级,问欲登上去,共有几种走法?分析:由于登上n 级台阶可以从第n-2直接上来,也可以通过第n-1级分步上来,这样登上n 级台阶的走法不仅与登上n-1级走法有关,且也与登上n-2级台阶的走法有关,故这里可以考虑通过二阶递推式来进行求解。
解:登上第一级只有一种走法,记a 1=1, 登上第二级,有两种走法,记a 2=2,如果要登上第n 级,那么可能是第n-1级走上来,也可能是第n-2级跨上两级上来的,故有 a n =a n-1+a n-2显然这是缺了F 0项的Fibonacci 数列,它的通项为 F n =51[(251+)n+1-(251-)n+1]所以要登上第n 级楼梯,共有F n 种不同的走法。
问题二:某一种产品的质量取决于它的温度,这个温度估计在10000C —15000C 之间,怎样试验才能找到最好的温度?有人从10010C 开始做试验,一直做到14990C ,共做499次试验,找到了最好温度,这叫均分法。
显然这是一种很笨的方法。
若我们利用Fibonacci 数列的知识只须做13次实验就可达到同样的效果。
这里我们利用Fibonacci 数列中1+n n F F 的极限251-,因为它是无理数不好计算,所以取它的三位不足近似值0.618来代替它。
我们用一张有刻度的纸条上写上10000C —15000C ,在15000C 的点记为F n ,第一次试验在纸条总长的0.618处即13090C 处取第一个试验点记为F n-1,使得nn F F1-=0.618第二次试验,将纸条对折,找到与13090C (即F n-1)相重合的点,即11910C 点记为F n-2,显然F n-2=F n -F n-1,取F n-2作第二个试验点,比较F n-1和F n-2,如果F n-2处比F n-1处好,就将F n-1的右边的纸条剪去(反之,剪去F n-2左边的一段)。
第三次试验,将剩下的纸条再对折,在与11910C (F n-2)1000n n-11000nn-1中点n-21000n-1n-2中点n-3重合的点,即在11180C (F n-3)点处做,做完后进行比较,如仍是11910C 处好,则剪去11180C 左边的一段(反之,剪去11910C 右边的一段)第四次试验,将11180C —13090C 这段纸条再对折,又可找到与11910C 重合的点12360C(F n-4),在12360C 处做第四次试验。