220KV变电站初步设计方案
220kv变电站设计 (2)

220kv变电站设计1.引言本文档旨在介绍对于22OkV变电站的设计方案。
22OkV变电站是电力系统中的重要组成部分,用于将电能从发电厂传输到配电网中。
本文档将涵盖变电站的布局、设备选型以及相关安全措施等方面内容。
2.变电站布局2.1.地理位置选择在选择变电站的地理位置时,需要考虑以下因素:•离主要的发电厂和负荷中心较近,以便更好地传输电能•地面稳定,以满足设备的安装和基础的需求•周围环境条件合适,例如无洪水、无地震等自然灾害2.2.变电站布局示意图以下为一个典型的220kv变电站布局示意图:2.3.变电站主要区域变电站主要分为以下几个区域:•进线区:用于接收电能从发电厂传输过来的进线设备,通常包括断路器、隔离开关等设备。
•主变区:用于进行电能的变压、升压或降压,通常包括主变压器、熔断器等设备。
•配电区:用于将变压之后的电能分配到各个用电负荷中心,通常包括开关设备、配电柜等设备。
•控制区:用于监控和控制变电站的运行状态,通常包括自动化设备、继电器等设备。
3.设备选型3.1.断路器选型断路器是变电站中最重要的设备之一。
在选型时,需要考虑以下几个因素:•额定电流:根据变电站的负荷需求确定断路器的额定电流,一般会留有一定的余量以应对负荷波动。
•短路电流承受能力:断路器需要能够承受变压器场景下的短路电流,因此需要选择适当的短路电流承受能力。
•断开能力:断路器需要能够可靠地断开故障电流,因此选择具有较高断开能力的断路器。
3.2.主变压器选型主变压器是变电站中另一个重要的设备。
在选型时,需要考虑以下几个因素:•额定容量:根据变电站的负荷需求确定主变压器的额定容量,一般会留有一定的余量以应对负荷增长。
•额定电压比:根据变电站的变压或降压需求确定主变压器的额定电压比。
•效率:选择具有高效率的主变压器可以降低能量损耗、提高传输效率。
3.3.其他设备选型除了断路器和主变压器外,变电站还需选型其他设备,如配电柜、开关设备、自动化设备等,根据具体需求进行选择。
220KV变电站电气一次部分初步设计说明书

220KV变电站电气一次部分初步设计说明书第一章电气主接线设计1.1主接线设计要求电气主接线又称为电气一次接线,它是将电气设备以规定的图形和文字符号,按电能生产、传输、分配顺序及相关要求绘制的单相接线图。
主接线代表了变电站高电压、大电流的电器部分主体结构,是电力系统网络结构的重要组成部分。
它直接影响电力生产运行的可靠性、灵活性,同时对电气设备选择、配电装置布置、继电保护、自动装置和控制方式等诸多方面都有决定性的关系。
因此,主接线设计必须经过技术与经济的充分论证比较,综合考虑各个方面的影响因素,最终得到实际工程确认的最终方案。
电气主接线设计的基本要求,概况地说应包括可靠性、灵活性和经济性三方面。
1.可靠性安全可靠是电力生产的首要任务,保证供电可靠是电气主接线最基本的要求,而且也是电力生产和分配的首要要求。
主接线可靠性的基本要求通常包括以下几个方面。
(1)断路器检修时,不宜影响对系统供电。
(2)线路、断路器或母线故障时,以及母线或母线隔离开关检修时,尽量减少停运出线回路数和停电时间,并能保证对全部I类及全部或大部分II 类用户的供电。
(3)尽量避免变电站全部停电的可能性。
(4)大型机组突然停运时,不应危及电力系统稳定运行。
2.灵活性电气主接线应能适应各种运行状态,并能灵活地进行运行方式的转换。
灵活性包括以下几个方面。
(1)操作的方便性。
电气主接线应该在服从可靠性的基本要求条件下,接线简单,操作方便,尽可能地使操作步骤少,以便于运行人员掌握,不至在操作过程中出差错。
(2)调度的方便性。
可以灵活地操作,投入或切除某些变压器及线路,调配电源和负荷能够满足系统在事故运行方式,检修方式以及特殊运行方式下的调度要求。
(3)扩建的方便性。
可以容易地从初期过渡到其最终接线,使在扩建过渡时,无论在一次和二次设备装置等所需的改造为最小。
3.经济性主接线在满足可靠性、灵活性要求的前提下做到经济合理。
(1)投资省。
主接线应简单清晰,并要适当采用限制短路电流的措施,以节省开关电器数量、选用价廉的电器或轻型电器,以便降低投资。
220kV变电站初步设计——毕业设计

第一篇设计说明书1 设计有关内容1.1 原始资料拟建变电所的概况(1)建所的目的:由于某地区电力系统的发展和负荷的增长,拟建一个220kV变电所,向该地区用110kV和10kV电压供电。
(2)与系统接线情况(见图1—1):图1—1:系统接线简图(3)地区自然条件:年最高气温:40℃,年最低气温:-5℃,年平均气温:18℃。
(4)出线方向:220kV向北,110kV向西,10kV向东南。
负荷资料(1)220kV线路5回,其中1回备用。
(2)110kV线路10回,其中2回备用(见表1—1)。
续表1-1注:上述各负荷间的同时系数为0.85。
(3)10KV线路14回,其中2回备用(见表1—2)。
注:上述各负荷间的同时系数为0.8;且110kV负荷与10kV负荷同时系数为0.85。
(4)所用负荷资料(见表1—3)。
2 变电所电气主接线初步设计变电所电气主接线是根据电能输送和分配的要求表示主要电气设备相互之间的连接关系,以及本变电所与电力系统的电气连接关系。
因此,电气主接线是构成电力系统的重要环节,是电力系统设计和发电厂、变电站设计的主要部分。
主接线的确定对电力系统整体及发电厂、变电站本身运行的可靠性、灵活性和经济性密切相关,并且对电气设备选择、配电装置布置、继电保护和控制方式的拟定有较大影响。
因此,必须正确处理好各方面的影响,全面分析有关影响因素,通过技术经济比较,合理确定主接线方案。
本章主要从电气主接线的方式及特点等方面分析,确定220kV、110kV、及10kV母线采用的主接线方式,确保该变电所满足可靠性、灵活性和经济性三大要求。
2.1 变电所电气主接线设计的基本要求在选择发电厂或变电所的电气主接线时,应注意其在系统中的地位、回路数、设备特点及负荷性质等条件,并考虑下列基本要求:供电的可靠性当个别设备发生事故或需要停电检修时不宜影响对系统供电;断路器、母线等故障,母线检修时尽量减少停运回路数和停运时间,并保证对一级负荷或大部分二级负荷的供电。
220KV变电站一次系统初步设计

发电厂电气部分课程设计设计题目:220KV变电站一次系统初步设计指导教师:贾红芳设计人:梁玮龙学号: 2009904215学院:信息科学与技术学院专业:电气工程及其自动化班级: 09级2班目录引言 (3)第1章原始资料及分析 (4)第2章变电站电气主接线的确定 (5)主接线选择 (6)第3章主变压器选择 (8)3.1.1主变容量及台数的确定 (8)3.1.2变压器形式的选择 (9)3.1.3 用普通型还是自耦型 (10)第4章短路计算 (11)4.1 短路点的选择 (12)4.2 计算短路电流 (12)第5章主要电气设备清单 (15)5.1变电站变压器的选择 (15)5.2 电抗器的选择 (15)5.3主要电气设备的选择 (16)5.3.1断路器的选择 (16)5.3.2 隔离开关的选择 (16)5.3.3 母线及主变出线的选择 (17)5.3.4 电压互感器的选择 (17)5.3.5 电流互感器的选择 (18)5.3.6 避雷器的选择 (18)5.3.7 高压熔断器的选择 (19)参考文献 (20)课程设计心得 (20)引言本课程设计是在2009级电气工程及其自动化专业完成本专业发电厂电气部分课程后的一次考核。
通过对原始资料的分析,1.完成电气一次主接线形式比较、选择;2.完成主变压器容量计算、台数和型号的选择;3.进行必要的短路计算以完成部分电气设备的选择;4、主要电气设备的设备清单;5、线路图的绘制以及避雷器针高度的选择等步骤;6、最终确定了220kV变电站所需的主要电器设备;通过本次毕业设计,达到了巩固“发电厂电气部分”课程的理论知识,掌握变电站电气部分设计的基本方法,体验和巩固我们所学的专业基础和专业知识的水平和能力,培养我们运用所学知识去分析和解决与本专业相关的实际问题,培养我们独立分析和解决问题的能力的目的。
务求使我们更加熟悉电气主接线,电力系统的潮流及短路计算以及各种电力手册及其电力专业工具书的使用,掌握变电站电气部分设计的基本方法,并在设计中增新、拓宽。
220kV降压变电站电气部分初步设计书

220kV降压变电站电气部分初步设计书第一章原始资料及分析一、原始资料及分析1.根据电力系统规划需新建一座220kV区域变电所。
该所建成后与110kV和220kV电网相连,并供给近区用户,按规划该所装设两台容量为120MVA主变压器2.计划新建变电站为220kV降压变电所,其性质为地区变电所。
该所有220kV、110kV和10kV三个电压等级。
其中220kV出线6回,110kV出线8回,10kV出线12回。
3.该变电所建成后于110kV和220kV电网相连。
4.110kV侧有两回出线供给远方大型冶炼厂,其容量为40MVA,其他作为一些地区变电所进线,10kV侧总负荷为30MVA,Ⅰ、Ⅱ类用户占60%,最大一回出线负荷为3000kVA。
5.各级电压侧功率因数和最大负荷利用小时数为:220kV侧 cosφ=0.9 T max=3800小时/年110kV侧 cosφ=0.9 T max=4200小时/年10kV侧 cosφ=0.85 T max=4500小时/年6.系统阻抗:220kV侧电源近似为无穷大系统,归算至本所220kV母线侧阻抗为0.32(S j=100MVA),110kV侧电源容量为1000MVA,归算至本所110kV母线侧阻抗为0.64(S j= 100 MVA)。
7.该地区最热月平均温度为28℃,年平均气温16℃,绝对最高气温为40℃,土壤温度为18℃,海拔153m。
8.该变电所位于市郊生荒土地上,地势平坦、交通便利、环境无污染。
二、设计容及要求:1.主接线设计:分析原始资料,根据任务书的要求拟出各级电压母线接线方式,选择变压器型号及连接方式,通过技术经济比较选择主接线最优方案。
2.短路电流计算:根据所确定的主接线方案,选择适当的计算短路点计算短路电流并列表表示出短路电流计算结果。
3.主要电气设备选择:a.选择220kV变压器回路、110 kV变压器回路的断路器及隔离开关。
b.选择10kV出线断路器及隔离开关。
220kv变电站通信部分初步设计

220kv变电站通信部分初步设计220kV变电站通信部分初步设计一、引言该文档旨在对220kV变电站的通信部分进行初步设计。
电力变电站的通信系统是保障电力系统运行的重要组成部分,其设计必须符合相关技术标准和规范,同时考虑到实际应用的可行性。
二、系统概述220kV变电站通信系统主要包括以下几个部分:1. 电力监控通信系统:用于实时监测和控制变电站内各设备运行状态的通信系统。
2. 保护通信系统:用于实现变电设备保护功能的通信系统,确保变电站设备在故障时能够及时切除故障区域。
3. 辅助通信系统:用于变电站内部各部门之间的通信,如语音通信、数据传输等。
三、通信网络设计针对220kV变电站的通信系统,拟设计一个兼具可靠性和高效性的通信网络,包括以下基本要素:1. 传输介质:采用光纤作为主要的传输介质,以保证高速、低延迟的数据传输。
2. 网络拓扑结构:建议采用星型拓扑结构,以实现各设备之间的直接通信。
3. 网络设备:引入路由器、交换机等网络设备,以提供可靠的数据传输和交换功能。
4. 安全保护机制:采用防火墙、入侵检测系统等安全设备,以保护通信系统的安全性和可靠性。
四、系统集成与测试在设计完成后,应进行系统集成与测试,以验证通信系统的性能和可靠性。
集成测试应包括以下方面:1. 通信设备互联测试:测试各设备之间的互联情况,确保通信链路畅通。
2. 通信速率测试:测试通信系统的数据传输速率,确保满足实际需求。
3. 安全性测试:对通信系统的安全性进行测试,发现并修复潜在的漏洞和安全隐患。
4. 故障恢复测试:模拟故障情况,测试通信系统的故障恢复能力。
五、系统运维与管理为确保通信系统的正常运行,应建立完善的运维与管理机制,包括以下几个方面:1. 定期巡检与维护:定期对通信设备进行巡检和维护,保证其正常工作。
2. 故障处理与排除:及时响应通信设备故障,在最短的时间内排除故障。
3. 日志记录与备份:记录通信系统的运行日志,并定期进行备份,以便追溯和故障恢复。
精品(施工组织设计方案)某220KV区域性变电所一次系统初步设计3

设计任务书某220KV区域性变电所一次系统初步设计本设计变电所以110KV向地区负荷供电,除220KV电压与系统联络之外,110KV电压的部分出线也与系统有联系.一、变电所的规模近期设主变为2×120MV A,电压比为220/121/10.5KV,容量比为100/100/50,本期工程一次建成,设计中留有扩建的余地:调相机为2×60MVAR,本期先建成一台。
220KV出线本期5回,最终8回;110KV出线共10回,一次建成所用电按调相机的拖动设备为主来考虑。
二、系统负荷功率因数为0.9,最大负荷利用小时数为5300小时,同时率为0.9,每回最大负荷为:第一回(九江I)输送200MW第二回(九江II)输送200MW第三回(柘林)输送180MW第四回(昌东)输送150MW第五回(南昌电厂)输送100MW第六回(西效I)第七回(西效II)第八回(备用)1、110KV的最大地区负荷,近期为200MW,远期300MW,负荷功率因数为0.85,最大负荷利用小时数为5300小时,同时率为0.9,每回最大负荷为:第一回(每岭)输送80MW第二回(乐化)输送80MW第三回(新期周)输送40MW第四回(象山)输送45MW第五回(水泥厂)输送60MW第六回(双港澳)输送60MW第七回(南电)输送60MW第八回(化工区备用I)输送40MW第八回(化工区备用II)输送40MW第八回(化工区备用III)输送40MW三、系统计算粢资料系统阻抗,当取基准容量SJ =100MVA,基准电压UJ为各级电压平均值(230,115,37,10.5……)时,两级电系统的远景阻抗标值如下图所示四、 所址情况变电所所在地为平原地区,无高产农作物,土壤电阻率为0.8×104Ω.cm,年雷暴日为65天,历年最高气温为38.5。
C 。
变电所在系统中的地理位置如下,220KV 用虚线所示,110KV 用实线表示:五、 系统和保护要求220KV 各线在B、C相有载波通道,在A、B相有保护通道。
【精品】220KV变电站电气部分初步设计

【精品】220KV变电站电气部分初步设计
220KV 变电站电气部分初步设计
1 变电站总体设计
一般情况下220KV变电站包括变电站厂房、现场操作室、变电设备等组成,其中变电站厂房包括变电站母线室,主变室,原动机室,配电变压室,监控室,支柱、楼梯等。
2 母线室
母线室是220KV变电站重要的组成部分,母线室内要安装护栏和门,同时装备上必要的安全设备与监控设备,及静电排放装置和防眩光罩。
4 原动机室
原动机室的设计与主变室的设计差不多,除了安装门、护栏及其它防护措施外,还要安装消除静电的设备,一般也需要安装有《红外热成像技术》的保护装置,以确保变电站的安全。
5 配电变压室
配电变压室的设计与主变室异曲同工,室内要安装门、护栏等装饰及防护措施,同时装置上必要的安全设备以便于测量、监控及自动调整。
6 监控室
变电站的监控室主要负责对变电站设备状态及运行情况的监控,同时要安装视频监控设备以便于远程操作,内部还要安放有必要的监控设备及防护措施。
7 支柱、楼梯
支柱和楼梯在220KV变电站的建设中也是不可或缺的部分,支柱主要是用来支撑地上的配线,楼梯主要用来变电站内各个部分之间的连接,必须采取坚固可靠的架构以保证台风等损坏变电站正常运行。
8 综上
220KV变电站电气部分初步设计,主要包括:母线室、主变室、原动机室、配电变压室、监控室、支柱、楼梯等。
根据使用的平台和类型,采取恰当的安全及技术设置,确保变电站的安全可靠运行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
220KV变电站初步设计方案第1章概述1.1 概述随着社会的发展,电能被日益广泛的应用于工农业生产以及人民的日常生活中。
电能可以方便的转化为期他形式的能源,例:机械能、热能、光能、磁能等,并且电能的输送和分配易于实现,可以输送到需要它的人和工作场所和生活场所。
电能的应用规模也很灵活以电能作为动力,可以促进工农业的机械化和自动化。
保证产品质量大幅度提高劳动生产率。
同时提高电气化程度以电能代替其它形式的能源,是节约能源消耗的一个重要的途径电力工业电能的生产、输送、分配和消费与其它工业的区别在于:(一)、与国民经济各部门的关系非常密切。
(二)、电力系统从一种运行方式过度到另一种运行方式的过度,过程非常短促。
(三)、电能的生产、输送、分配和消费实际上同时完成的不能大量储存。
变电站是联系发电厂和电力用户的重要纽带,是将电能从产品变成商品的中间环节。
它担负着电能转换和电能重新分配的重要任务。
对国家经济的发展有着极其重要的作用。
本次所设计变电站担负着向开发区的炼钢厂供电及变电所附近的地区负荷供电,承担着该市的输变电任务。
根据《电力系统技术规程》中的有关部分,特别是:第1.0.2条:系统设计应在国家计划经济的指导下,在审议后的中期、长期电力规划的基础上,从电力系统整体出发,进一步研究提出系统设计的具体方案;应合理利用能源,合理布局电源和网络,使发、输、变电及无功建设配套协调,并为系统的继电保护设计,系统自动装置设计及下一级电压的系统等创造条件。
设计方案应技术先进、过度方便、运行灵活、切实可行,以经济、可靠、质量合格和充足的电能来满足国民经济各部门与人民生活不断增长的需要。
第1.0.6条:系统设计的设计水平可为今后第五年至第十年的某一年,并应对过度年进行研究(五年内逐年研究),远景水平可为第十年至第十五年的某一年,且宜与国民经济计划的年份相一致。
系统设计经审查后,二至三年进行编制,但有重大变化时,应及时修改。
该市郊220KV变电站是地区性城市变电站,它由系统同时向炼钢厂和地区负荷供电,系统总容量为:S1=200MW,S2=40MW,S3=2100MW,同时向变电站供电,变电站与系统联系较为紧密,在整个系统中占有重要地位。
1.2 本次设计的内容变电所是联系发电厂和用户的中间环节,起着变换和分配电能的作用。
这就要求变电所的一次部分经济合理,二次部分安全可靠,只有这样变电所才能正常的运行工作,为国民经济服务。
故本次220KV变电站设计主要为电气一次部分设计。
电气一次部分设计主要包括变电所总体分析、电力系统分析、主接线的选择、主变的选择、所用变的选择、无功补偿的设计、短路电流的计算、电气设备的选择、配电装置和防雷保护等内容。
本部分设计主要参考了《电气一次部分设计手册》、《电气一次部分设备手册》等,按照有关的技术规程和工程实例进行的。
1.3 本次设计的任务本次设计的主要任务是220KV的变电站的设计,设计的内容包括电气的一次部分的设计和计算。
在一次部分中,要对电力系统和变电站进行总体分析,然后确定变电站电气主接线的型式,并在此过程中进行系统的无功补偿、调压计算、短路电流计算以及电气设备的选择。
在具体计算后,还要为建造变电站进行配电装置及电气总平面的布置设计,使建站合理化,并进行防雷设计,保证安全。
第2章变电站分析2.1 变电站总体分析水力、火力及核能等发电站发出的的电能,由于经济上的原因把电压升高,用输电线送到变电站,在这里把电压降低,用输电线再送到其他变电站,或通过输电线和配电线路送到用户。
这样,在变电站除了把输电线送来的电压和电流进行变换,集中和分配外,为了使电能的质量良好以及设备安全,进行电压调整、电力潮流控制以及输配电线和变电站的保护。
2.2 变电站设计要求1.变电站的设计应根据工程的5—10年发展规划进行做到远,近期结合。
以近期为主,正确处理近期建设与远期发展的关系,适当考虑扩建的可能。
2.变电站的设计,必须以全出发,统筹兼顾。
按照负荷性质,用电容量,工程特点和地区供电条件,综合国情合理地确定设计方案。
3.变电站的设计,必须坚持节约用地的原则。
4.变电站设计除应执行本规范外,尚应符合现行的国家有关标准和规范的规定。
该变电所是一个220KV地区性城市变电所,向市区的炼钢厂及附近地区负荷供电,它由系统1(容量为200MVA)和系统2(容量为40MVA)和系统3(容量为2100MVA)供电,同时向变电站供电,与系统联系紧密。
(1)建设的必要性该所位于市郊的工矿企业集中区的中心,为满足该地区经济发展及人民生活需要,决定再此建设此区域性变电所。
(2)建设规模根据电力系统规划,本变电所的规模如下:电压等级:220/110/10KV线路回数:220KV近期3回,远景发展2回;110KV 近期2回,远景发展2回;10KV 近期10回,远景发展2回。
2.3 电力系统接线图图2-12.4 负荷分析根据负荷允许停电程度的不同,可以将负荷分为三个等级,即一级负荷、二级负荷、三级负荷。
负荷等级不同,对电力系统供电可靠性与稳定性的要求也不同。
如果停电,一级负荷将造成人身伤亡或会引起对周围环境严重污染;对工厂将造成经济上的巨大损失,如重要的大型的设备损坏,重要产品或用重要原料生产的产品大量报废,还可能引起社会秩序混乱或严重的政治影响。
二级负荷会造成较大的经济损失,如生产的主要设备损坏、产品大量报废或减产;还可能引起社会秩序混乱或较严重的政治影响。
三级负荷造成的损失不大或不会造成直接经济损失。
由此可知,供电的稳定性直接影响经济的发展,负荷等级不同,对供电的要求也不相同:对于一级负荷,必须有二个独立电源供电,且任何一个电源失去后,能保证对全部一级负荷不间断供电。
对特别重要的一级负荷应该由二个独立电源点供电。
对于二级负荷,一般要有两个独立电源供电,且任何一个电源失去后,能保证全部或大部分二级负荷供电。
对于三级负荷,一般只需一个电源供电。
在110kv负荷中炼钢厂的一类负荷比较大,发生断电时,会造成生产机械的寿命缩短和一定的经济损失.因此要尽可能保证其供电可靠性。
在10kv负荷中,汽车厂,电机厂,炼油厂一类负荷比较大;若发生停电对企业造成出现次品,机器损坏,甚至出现事故,严重时造成重大经济损失和人员伤亡,必须保证其供电可靠性。
第3章主变的选择3.1 主变选择变压器是变电所中最重要的和最贵重的是设备,变压器的选择在变电所中是比较重要的。
它是变电站中关键的一次设备,其主要功能是升高或降低电压,以利于电能的合理输送,分配和利用。
变压器的分类方法比较多,按功能分有升压变压器和降压变压器,按相数分有单相和三相变压器,按绕组导体的材质分有铜绕组和铝绕组变压器,按冷却方式和绕组绝缘分有油浸式,干式两大类,其中油浸式变压器又有油浸自冷式,油浸风冷式,油浸水冷式和强迫油循环冷却式等。
而干式变压器又有浇注式,开启式,充气压(SF6)等。
按用途又可分为普通变压器和特种变压器,按调压方式分有无载调压变压器和有载调压变压器。
安装在总降压变电所的变压器通常被称为主变压器,6~10KV/0.4KV的变压器常被叫做配电变压器。
在选择变压器时,应选用低损耗节能型变压器,如S9系列或S10系列。
高损耗变压器已被淘汰,不在采用,在多尘或有腐蚀性气体严重影响变压器安全的场所,应选择密闭型变压器或防腐型变压器,供电系统中没有特殊要求和民用建筑独立变电所常采用三相油浸自冷电力变压器(S9,S10-M,S11,S11-M等);对于高建筑,地下建筑,发电厂化工等单位对消防要求较高的场所,宜采用干式电力变压器(SC,SCZ,SG3,SG10,SC6等);对电网电压波动较大的,为改善电能质量应采用有载调压电力变压器(SZ7,SFSZ。
SGZ3等)降压变电所主变压器台数和容量的确定。
主变压器的选择原则选择主变压器台数时应考率下列原则:应满足用电负荷对供电可靠性的要求,对供有大量一、二级负荷的变电所,应采用两台变压器,以便当一台变压器发生故障或检修时,另一台变压器对一二级负荷继续供电.对只有二级负荷而无一级负荷的变电所,也可以只采一台变压器,但必须在低压侧敷设与其他变电所相连的联络线作为备用电源或另有自备电源。
(1)对季节性负荷或昼夜负荷变动较大而宜于采用经济运行方式的变电所也可以考虑采用两台变压器。
(2)除上述两种情况外,一般车间变电所宜采用一台变压器.但是负荷集中且容量相当大的变电所,虽为三级负荷,也可以采用两台变压器。
(3)在确定变电所主要变压器台数时,应适当考虑负荷的发展留有一定的余地。
3.1.1 变压器容量的选择主变容量选择应考虑:(参考《电力工程电气设计手册》一中的第五章214P)(1)主变容量选择一般应按变电所建成后5-10年的规划负荷选择,并适当考虑到远期几年发展,对城郊变电所,主变容量应与城市规划相结合。
(2)根据变电所带负荷性质和电网结构来确定主变容量,对有重要负荷的变电站应考虑一台主变压器停运时,其余主变压器容量在计及过负荷能力后的允许时间内,应保证用户的一、二级负荷;对一般性变电站,当一台主变停运时,其余主变压器应能保证全部负荷的60%。
(3)同级电压的单台降压变压器容量的级别不宜太多,应从全网出发,推行系列化,标准化。
(主要考虑备用品,备件及维修方便。
)由计算结果得知应选择容量为SSP-360000/220型。
3.1.2 主变台数的考虑原则及台数的选择:(1)对大城市的一次变,在中、低压侧构成环网情况下,装两台主变为宜。
(2)对地区性孤立的一次变或大型的工业专用变电所,设计时应考虑装三台的可能性。
(3)对规划只装两台主变的变电所,其主变基础宜大于变压器容量的1-2级设计,以便负荷发展时更换主变。
由以上分析知应选择两台主变。
3.2 变压器型式的选择3.2.1 相数的选择由相应规程规定,若站址地势开阔,交通运输方便,也不是由于容量过大而无法解决制造问题宜采用三相变压器,结合以上分析,此变电所应采用三相变压器。
3.2.2 绕组数和绕组连接方式的选择参考《电力工程电气设计手册》和相应的规程中指出:在具有三种电压的变电所中,如果通过主变各绕组的功率达到该变压器容量的15%以上,或在低压侧虽没有负荷,但是在变电所的实际情况,由主变容量选择部分的计算数据,明显满足上述情况。
故该市郊变电所主变选择三绕组变压器。
参考《电力工程电气设计手册》和相应规程指出:变压器绕组的连接方式必须和系统电压一致,否则不能并列运行。
电力系统中变压器绕组采用的连接方式有Y 和△型两种,而且为保证消除三次谐波的影响,必须有一个绕组是△型的,我国110KV 及以上的电压等级均为大电流接地系统,为取得中型点,所以都需要选择0Y 的连接方式。
而6-10KV 侧采用△型的连接方式。