专题04牛顿运动定律拓展及其应用

专题04牛顿运动定律拓展及其应用
专题04牛顿运动定律拓展及其应用

专题04 牛顿运动定律拓展及其应用

重点难点

1.牛顿第二定律的理解:

①瞬时性:牛顿第二定律反映了力的瞬时作用效果的规律,力是产生加速度的原因,故

加速度与力同时存在、同时变化、同时消失.

②矢量性:牛顿第二定律是一个矢量方程,加速度与合外力方向相同,故合外力方向就

是加速度方向;反过来也有,加速度方向就是合外力方向.

③独立性:也叫做力的独立作用原理,当物体受几个力的作用时,每一个力分别产生的

加速度只与此力有关,与其它力无关,这些加速度的矢量和即物体运动的加速度.

2.求瞬时加速度:

应注意两种不同的物理模型.

①刚性绳(不可伸长)或接触面:这是一种不发生明显形变就能产生弹力的物体,若剪

断或脱离后,其中弹力立即消失或仍接触但可以突变,不需要恢复、改变形变的时间.

②弹簧或橡皮绳:这些物体的形变量大,形变改变、恢复需要较长时间,故在瞬时问题

中,其弹力的大小往往可以看成是不变的.

3.动力学中两类基本问题:

①已知受力情况求运动情况

②已知物体的运动情况求受力情况

4.分析复杂问题的基本思路:

①仔细审题,分析物体的受力及受力的变化情况,确定并划分出物体经历的每个不同的

过程;

②逐一分析各个过程中的受力情况和运动情况,以及总结前一过程和后一过程的状态有

何特点;

③前一个过程的结束就是后一个过程的开始,两个过程的交接点受力的变化、状态的特

点,往往是解题的关键.

规律方法

【例1】如图质量为m 的小球用水平弹簧系住,并用倾角为30°的光滑木

板AB 托住,小球恰好处于静止状态.当木板AB 突然向下撤离的瞬间,小球的

加速度为 ( C )

A .0

B .大小为233g ,方向竖直向下

C .大小为233g ,方向垂直于木板向下

D .大小为33g ,方向水平向右

【解析】未撤离木板前,小球受到重力G ,弹簧拉力F ,木板支持力F N ,

如图所示,三力平衡于是有:F N cos θ = mg ,F N = mg cos θ

当撤离木板的瞬间,G 和F 保持不变(弹簧的弹力不能突变),

木板支持力F N 立即消失小球受G 和F 的合力大小等于撤之前

的F N (三力平衡),方向与F N 的方向相反,故加速度方向为垂

直木板向下,大小为:

a = F N m = g cos θ = 233g

训练题 物块A 1、A 2、B 1和B 2的质量均为m ,A 1、A 2用刚性轻杆连接,B 1、B 2用轻质

弹簧连结,两个装置都放在水平的支托物上,处于平衡状态,如图今突然撤去

支托物,让物块下落,在除去支托物的瞬间,A 1、A 2受到的合力分别为1f F 和2f F ,

B 1、B 2受到的合力分别为F 1和F 2,则 ( B )

A .1f F = 0,2f F = 2mg ,F 1 = 0,F 2 = 2mg

B .1f F = mg ,2f F = mg ,F 1 = 0,F 2 = 2mg

C .1f F = mg ,2f F = 2mg ,F 1 = mg ,F 2 = mg

D .1f F = mg ,2f F = mg ,F 1 = mg ,F 2 = mg

【例2】如图所示,质量相同的木块A 、B ,用轻质弹簧连接处于静止状态,现用水

平恒力推木块A ,则弹簧在第一次压缩到最短的过程中 ( D )

A .A 、

B 速度相同时,加速度a A = a B

B .A 、B 速度相同时,加速度a A >a B

C .A 、B 加速度相同时,速度υA <υB

D .A 、B 加速度相同时,速度υA >υB

训练题 雨滴在下落过程中,由于水汽的凝聚,雨滴质量将逐渐增大,同时由于下落速

度逐渐增大,所受阻力也将越来越大,最后雨滴将以某一速度匀速下降,在雨

滴下降的过程中,下列说法中正确的是 ( C )

A .雨滴受到的重力逐渐增大,重力产生的加速度也逐渐增大

B .雨滴质量逐渐增大,重力产生的加速度逐渐减小

C .由于雨滴受空气阻力逐渐增大,雨滴下落的加速度将逐渐减小

D .雨滴所受重力逐渐增大,雨滴下落的加速度不变

【例3】如图所示,质量分别为m A 、m B 的两个物体A 、B ,用细绳相

连跨过光滑的滑轮,将A 置于倾角为θ的斜面上,B 悬空.设

A 与斜面、斜面与水平地面间均是光滑的,A 在斜面上沿斜面加速

下滑,求斜面受到

高出地面的竖直挡壁的水平方向作用力的大小.

【解析】设绳中张力为F T ,A 、B 运动的加速度的大小为a ,对A 在沿斜面方向由牛顿第二

定律有:m A g sin θ-F T = m A a

对B 在竖直方向由牛顿第二定律有:F T -m B g = m B a

联立上两式得:a = (m A sin θ-m B )g m A +m B ,F T = m A m B (1+sin θ)g m A +m B

此时A 对斜面的压力为F N1 = m A g cos θ,斜面体的受力如图所示

在水平方向有:F +F T cos θ = F N1sin θ

得:F = m A (m A sin θ-m B )g m A +m B

训练题 如图所示,质量M = 10kg 的木楔静置于粗糙的水平地面上,木楔与地面间的动

摩擦因数μ = 0.02.在木楔的倾角为θ = 30°的斜面上,有一质量m = 1.0kg 的物

块由静止开始沿斜面下滑,当滑行路程s = 1.4m 时,其速度υ = 1.4m/s

在这个

过程中木楔没有移动,求地面对木楔的摩擦力的大小和方向(取

g = 10m/s 2).

答案:f=0.61N ,方向水平向左

【例4】如图所示,质量M = 8kg 的小车放在水平光滑的平面上,在小车左端加一水平

恒力F ,F = 8N ,当小车向右运动的速度达到1.5m/s 时,在小车前端轻轻地放

上一个大小不计,质量为m = 2kg 的小物块,物块与小车间的动

摩擦因数μ =

0.2,小车足够长.求从小物块放上小车开始,经过t = 1.5s

小物块通过的位移大小为多少?(取g = 10m/s 2).

【解析】开始一段时间,物块相对小车滑动,两者间相互作用的滑动摩擦力的大小为

F f = μmg = 4N 物块在Ff 的作用下加速,加速度为a m = m F f

= 2m/s 2,从

静止开始运动.小车在推力F 和f 的作用下加速,加速度为a M =

M F F f =

0.5m/s 2,初速度为υ0 = 1.5m/s

设经过时间t 1,两者达到共同速度υ,则有:υ = a m t 1 = υ0+a M t 1

代入数据可得:t 1 = 1s ,υ= 2m/s

在这t 1时间内物块向前运动的位移为s 1 = 12a m t 21 = 1m 以后两者相对静止,相互作用的摩擦力变为静摩擦力将两者作为一个整体,在 F 的作用下运动的加速度为a ,则F =(M +m )a 得a = 0.8m/s 2

在剩下的时间t 2 = t -t 1 = 0.5s 时间内,物块运动的位移为s 2 =υt 2+12at 2,得s 2 = 1.1m .

可见小物块在总共1.5s 时间内通过的位移大小为s = s 1+s 2 = 2.1m .

训练题如图所示,将一物体A 轻放在匀速传

送的传送带的a 点,已知传送带速度大小υ= 2m/s ,

ab = 2m ,bc = 4m ,A 与传送带之间的动摩擦因素μ

= 0.25.假设物体在b 点不平抛而沿皮带运动,且没

有速度损失.求物体A 从a 点运动到c 点共需多长时间?(取g = 10m/s 2,sin37°

= 0.6,cos37° = 0.8)

答案:t =2.4s

能力训练

1.弹簧秤挂在升降机的顶板上,下端挂一质量为2kg 的物体当升降机

在竖直方向上运动时,弹簧秤的示数始终是16N .如果从升降机的速度为3m/s 时开始

计时,则经过1s ,升降机的位移可能是(g 取10m/s 2) ( AC )

A .2m

B .3m

C .4m

D .8m

2.物体从粗糙斜面的底端,以平行于斜面的初速度υ0沿斜面向上 ( B )

A .斜面倾角越小,上升的高度越大

B .斜面倾角越大,上升的高度越大

C .物体质量越小,上升的高度越大

D .物体质量越大,上升的高度越大

3.在粗糙水平面上放着一个箱子,前面的人用水平方向成仰角θ1的力F 1拉

箱子,同时后面的人用与水平方向成俯角θ2的推力F 2推箱子,如图所示,

此时箱子的加速度为a ,如果此时撤去推力F 2,则箱子的加速度 ( C )

A .一定增大

B .一定减小

C .可能不变

D .不是增大就是减小,不可能不变

4.如图一物体恰能在一个斜面体上沿斜面匀速下滑,可以证明

出此时斜面不受地面的摩擦力作用,若沿斜面方向用力向下推此物体,使

物体加速下滑,则斜面受地面的摩擦力是 ( D )

A .大小为零

B .方向水平向右

C .方向水平向左

D .无法判断大小和方向

5.放在水平地面上的一物块,受到方向不变的水平推力F 作用,力F 的大小

与时间t 的关系、物块速度υ与时间t 的关系如图所示.取g = 10m/s 2.试利用两图线求 出物块的质量及物块与地面间的动摩擦因数

答案:μ=0.4

6.一辆客车在某高速公路上行驶,在经过某直线路段时,司机驾车作匀速

直线运动。司机发现其正要通过正前方高山悬崖下的隧道,遂鸣笛,5s 后听到回声;听 到回声后又行驶10s 司机第二次鸣笛,3s 后听到回声。请根据以上数据帮助司机计算一 下客车的速度,看客车是否超速行驶,以便提醒司机安全行驶。已知此高速公路的最高 限速为120km/h ,声音在空气中的传播速度为340m/s 。

答案:设客车行驶速度为v 1,声速为v 2,客车第一次鸣笛时客车离悬崖的距离为L 。 由题意:在第一次鸣笛到听到回声的过程中,应有:55221?=?-v v L

当客车第二次鸣笛时,客车距离悬崖的距离为151?-='v L L

同理:33221?=?-'v v L 即:33)15(2211?=?-?-v v v L

得:3.2414

21==

v v (m/s) v 1=24.3m/s=87.5km/h ,小于120km/h ,故客车未超速。

7.如图所示,物体B 放在物体A 的水平表面上,已知A 的质量为M ,B 的质量为m ,

物体B 通过劲度系数为k 的弹簧跟A 的右侧相连当A 在外力作用下以

加速度a 0向右做匀加速运动时,弹簧C 恰能保持原长l 0不变,增大加速

度时,弹簧将出现形变.求:

(1)当A 的加速度由a 0增大到a 时,物体B 随A 一起前进,此时弹簧

的伸长量x 多大?

(2)若地面光滑,使A 、B 一起做匀加速运动的外力F 多大?

答案:(1)x=m (a-a 0)/k

(2)F=(M+m )a 0

8.一圆环A 套在一均匀圆木棒B 上,A 的高度相对B 的长度来说

可以忽略不计。A 和B 的质量都等于m ,A 和B 之间的滑动摩擦力为f (f < mg )。 开始时B 竖直放置,下端离地面高度为h ,A 在B 的顶端,如图所示。让它 们由静止开始自由下落,当木棒与地面相碰后,木棒以竖直向上的速度反向 运动,并且碰撞前后的速度大小相等。设碰撞时间很短,不考虑空气阻力, 问:在B 再次着地前,要使A 不脱离B ,B 至少应该多长?

答案:释放后A 和B 相对静止一起做自由落体运动,

B 着地前瞬间的速度为gh v 21=

B 与地面碰撞后,A 继续向下做匀加速运动,B 竖直向上做匀减速运动。 它们加速度的大小分别为:m f mg a A -= 和 m

f m

g a B += B 与地面碰撞后向上运动到再次落回地面所需时间为 B a v t 12=

在此时间内A 的位移 212

1t a t v x A += 要在B 再次着地前A 不脱离B ,木棒长度L 必须满足条件 L ≥ x

联立以上各式,解得 L ≥

h f mg g m 222)(8+

h A B

高考物理牛顿运动定律专题训练答案

高考物理牛顿运动定律专题训练答案 一、高中物理精讲专题测试牛顿运动定律 1.如图所示,一足够长木板在水平粗糙面上向右运动。某时刻速度为v 0=2m/s ,此时一质量与木板相等的小滑块(可视为质点)以v 1=4m/s 的速度从右侧滑上木板,经过1s 两者速度恰好相同,速度大小为v 2=1m/s ,方向向左。重力加速度g =10m/s 2,试求: (1)木板与滑块间的动摩擦因数μ1 (2)木板与地面间的动摩擦因数μ2 (3)从滑块滑上木板,到最终两者静止的过程中,滑块相对木板的位移大小。 【答案】(1)0.3(2) 120(3)2.75m 【解析】 【分析】 (1)对小滑块根据牛顿第二定律以及运动学公式进行求解; (2)对木板分析,先向右减速后向左加速,分过程进行分析即可; (3)分别求出二者相对地面位移,然后求解二者相对位移; 【详解】 (1)对小滑块分析:其加速度为:2221114/3/1 v v a m s m s t --===-,方向向右 对小滑块根据牛顿第二定律有:11mg ma μ-=,可以得到:10.3μ=; (2)对木板分析,其先向右减速运动,根据牛顿第二定律以及运动学公式可以得到: 0121 2v mg mg m t μμ+?= 然后向左加速运动,根据牛顿第二定律以及运动学公式可以得到: 21222v mg mg m t μμ-?= 而且121t t t s +== 联立可以得到:2120μ= ,10.5s t =,20.5t s =; (3)在10.5s t =时间内,木板向右减速运动,其向右运动的位移为: 01100.52 v x t m +=?=,方向向右; 在20.5t s =时间内,木板向左加速运动,其向左加速运动的位移为:

高考物理牛顿运动定律的应用练习题及答案

高考物理牛顿运动定律的应用练习题及答案 一、高中物理精讲专题测试牛顿运动定律的应用 1.如图所示,倾角α=30°的足够长传送带上有一长L=1.0m ,质量M=0.5kg 的薄木板,木板的最右端叠放质量为m=0.3kg 的小木块.对木板施加一沿传送带向上的恒力F ,同时让传送带逆时针转动,运行速度v=1.0m/s 。已知木板与物块间动摩擦因数μ1=3 ,木板与传送带间的动摩擦因数μ2= 3 4 ,取g=10m/s 2,最大静摩擦力等于滑动摩擦力。 (1)若在恒力F 作用下,薄木板保持静止不动,通过计算判定小木块所处的状态; (2)若小木块和薄木板相对静止,一起沿传送带向上滑动,求所施恒力的最大值F m ; (3)若F=10N ,木板与物块经过多长时间分离?分离前的这段时间内,木板、木块、传送带组成系统产生的热量Q 。 【答案】(1)木块处于静止状态;(2)9.0N (3)1s 12J 【解析】 【详解】 (1)对小木块受力分析如图甲: 木块重力沿斜面的分力:1 sin 2 mg mg α= 斜面对木块的最大静摩擦力:13 cos 4 m f mg mg μα== 由于:sin m f mg α> 所以,小木块处于静止状态; (2)设小木块恰好不相对木板滑动的加速度为a ,小木块受力如图乙所示,则 1cos sin mg mg ma μαα-=

木板受力如图丙所示,则:()21sin cos cos m F Mg M m g mg Ma αμαμα--+-= 解得:()9 9.0N 8 m F M m g = += (3)因为F=10N>9N ,所以两者发生相对滑动 对小木块有:2 1cos sin 2.5m/s a g g μαα=-= 对长木棒受力如图丙所示 ()21sin cos cos F Mg M m g mg Ma αμαμα--+-'= 解得24.5m/s a =' 由几何关系有:221122 L a t at =-' 解得1t s = 全过程中产生的热量有两处,则 ()2121231cos cos 2Q Q Q mgL M m g vt a t μαμα?? =+=+++ ??? 解得:12J Q =。 2.如图所示,有1、2、3三个质量均为m =1kg 的物体,物体2与物体3通过不可伸长轻绳连接,跨过光滑的定滑轮,设长板2到定滑轮足够远,物体3离地面高H =5.75m , 物体1与长板2之间的动摩擦因数μ=O .2.长板2在光滑的桌面上从静止开始释放,同时物体1(视为质点)在长板2的左端以v =4m/s 的初速度开始运动,运动过程中恰好没有从长板2的右端掉下.(取g =10m/s2)求: (1)长板2开始运动时的加速度大小;

专题三牛顿运动定律知识点总结归纳

精心整理 专题三牛顿三定律 1.牛顿第一定律(即惯性定律) 一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。 (1 (2 ③由牛顿第二定律定义的惯性质量m=F/a和由万有引力定律定义的引力质量 2/严格相等。 m Fr GM ④惯性不是力,惯性是物体具有的保持匀速直线运动或静止状态的性质。力是物体对物体的作用,惯性和力是两个不同的概念。 2.牛顿第二定律

(1)定律内容 成正比,跟物体的质量m成反比。 物体的加速度a跟物体所受的合外力F 合 (2)公式:F ma = 合 理解要点: 是产生加速度a的原因,它们同时产生,同时变化,同时存在,同时①因果性:F 合 3. (1 4. 分析物体受力情况,应用牛顿第二定律列方程。(隔离法) 一般两种方法配合交替应用,可有效解决连接体问题。 5.超重与失重 视重:物体对竖直悬绳(测力计)的拉力或对水平支持物(台秤)的压力。(测力计或台秤示数)

物体处于平衡状态时,N=G,视重等于重力,不超重,也不失重,a=0 当N>G,超重,竖直向上的加速度,a↑ 当N<G,失重,竖直向下的加速度,a↓ 注:①无论物体处于何状态,重力永远存在且不变,变化的是视重。 ②超、失重状态只与加速度方向有关,与速度方向无关。(超重可能:a↑,v↑,向 例 度为 f1- h1= 在t1到t=t2=5s的时间内,体重计的示数等于mg,故电梯应做匀速上升运动,速度为t1时刻电梯的速度,即 v1=a1t1,③ 在这段时间内电梯上升的高度 h2=v2(t2-t1)。④

在t2到t=t3=6s的时间内,体重计的示数小于mg,故电梯应做向上的减速运动。设这段时间内体重计作用于小孩的力为f1,电梯及小孩的加速度为a2,由牛顿第二定律,得 mg-f2=ma2,⑤ 在这段时间内电梯上升的高度 h3=2 h=h h= 例B。它 A m A 令x2 定律可知 kx2=m B gsinθ② F-m A gsinθ-kx2=m A a ③ 由②③式可得a=④ 由题意d=x1+x2⑤

牛顿运动定律专题精修订

牛顿运动定律专题集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#

牛顿运动定律专题 一、基础知识归纳 1、牛顿第一定律:一切物体总保持匀速直线运动状态或静止状态,除非作用在它上面的力迫使它改变这种状态为止。 理解要点: (1)运动是物体的一种属性,物体的运动不需要力来维持; (2)它定性地揭示了运动与力的关系,即力是改变物体运动状态的原因,(运动状态指物体的速度)又根据加速度定义:t v a ??=,有速度变化就一定有加速度,所以 可以说:力是使物体产生加速度的原因。(不能说“力是产生速度的原因”、“力是维持速度的原因”,也不能说“力是改变加速度的原因”。); (3)定律说明了任何物体都有一个极其重要的属性——惯性;一切物体都有保持原有运动状态的性质,这就是惯性。惯性反映了物体运动状态改变的难易程度(惯性大的物体运动状态不容易改变)。质量是物体惯性大小的量度。 (4)牛顿第一定律描述的是物体在不受任何外力时的状态。而不受外力的物体是不存在的,牛顿第一定律不能用实验直接验证,但是建立在大量实验现象的基础之上,通过思维的逻辑推理而发现的。它告诉了人们研究物理问题的另一种方法,即通过大量的实验现象,利用人的逻辑思维,从大量现象中寻找事物的规律; (5)牛顿第一定律是牛顿第二定律的基础,物体不受外力和物体所受合外力为零是有区别的,所以不能把牛顿第一定律当成牛顿第二定律在F =0时的特例,牛顿第一定律定性地给出了力与运动的关系,牛顿第二定律定量地给出力与运动的关系。 2、牛顿第二定律:物体的加速度跟作用力成正比,跟物体的质量成反比。公式F=ma. 理解要点:

应用牛顿运动定律解决“四类”热点问题

专题强化三应用牛顿运动定律解决“四类”热点问题 专题解读 1.本专题是应用动力学方法分析动力学图象问题、连接体问题、临界和极值问题以及多运动过程问题.在高考中主要以选择题形式考查,且每年都有命题. 2.学好本专题可以培养同学们的分析推理能力、应用数学知识和方法解决物理问题的能力. 3.本专题用到的规律和方法有:整体法和隔离法、牛顿运动定律和运动学公式、临界条件和相关的数学知识. 1.常见图象 v-t图象、a-t图象、F-t图象、F-a图象等. 2.题型分类 (1)已知物体受到的力随时间变化的图线,要求分析物体的运动情况. (2)已知物体的速度、加速度随时间变化的图线,要求分析物体的受力情况. (3)由已知条件确定某物理量的变化图象. 3.解题策略 (1)分清图象的类别:即分清横、纵坐标所代表的物理量,明确其物理意义,掌握物理图象所反映的物理过程,会分析临界点. (2)注意图线中的一些特殊点所表示的物理意义:图线与横、纵坐标的交点,图线的转折点,两图线的交点等. (3)明确能从图象中获得哪些信息:把图象与具体的题意、情景结合起来,应用物理规律列出与图象对应的函数方程式,进而明确“图象与公式”“图象与物体”间的关系,以便对有关物理问题作出准确判断. 例1(多选)(2019·全国卷Ⅲ·20)如图1(a),物块和木板叠放在实验台上,物块用一不可伸长的细绳与固定在实验台上的力传感器相连,细绳水平.t=0时,木板开始受到水平外力F的作用,在t=4 s时撤去外力.细绳对物块的拉力f随时间t变化的关系如图(b)所示,木板的速度v与时间t的关系如图(c)所示.木板与实验台之间的摩擦可以忽略.重力加速度取10 m/s2.由题给数据可以得出() A.木板的质量为1 kg B.2~4 s内,力F的大小为0.4 N C.0~2 s内,力F的大小保持不变 D.物块与木板之间的动摩擦因数为0.2

高考二轮复习专题(物理-牛顿运动定律)

高考二轮复习专题三:牛顿运动定律 (一)牛顿第一定律(即惯性定律) 一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。 (1)理解要点: ①运动是物体的一种属性,物体的运动不需要力来维持。 ②它定性地揭示了运动与力的关系:力是改变物体运动状态的原因,是使物体产生加速度的原因。 ③第一定律是牛顿以伽俐略的理想斜面实验为基础,总结前人的研究成果加以丰富的想象而提出来的;定律成立的条件是物体不受外力,不能用实验直接验证。 ④牛顿第一定律是牛顿第二定律的基础,不能认为它是牛顿第二定律合外力为零时的特例,第一定律定性地给出了力与运动的关系,第二定律定量地给出力与运动的关系。 (2)惯性:物体保持原来的匀速直线运动状态或静止状态的性质叫做惯性。 ①惯性是物体的固有属性,与物体的受力情况及运动状态无关。 ②质量是物体惯性大小的量度。 ③由牛顿第二定律定义的惯性质量m=F/a 和由万有引力定律定义的引力质量mF r G M =2 /严格相等。 ④惯性不是力,惯性是物体具有的保持匀速直线运动或静止状态的性质、力是物体对物体的作用,惯性和力是两个不同的概念。 (二)牛顿第二定律 1. 定律内容 物体的加速度a 跟物体所受的合外力F 合成正比,跟物体的质量m 成反比。 2. 公式:F m a 合= 理解要点: ①因果性:F 合是产生加速度a 的原因,它们同时产生,同时变化,同时存在,同时消失; ②方向性:a 与F 合都是矢量,方向严格相同; ③瞬时性和对应性:a 为某时刻某物体的加速度,F 合是该时刻作用在该物体上的合外力。 (三)力的平衡 1. 平衡状态 指的是静止或匀速直线运动状态。特点:a =0 。 2. 平衡条件 共点力作用下物体的平衡条件是所受合外力为零,即∑=F 0。 3. 平衡条件的推论 (1)物体在多个共点力作用下处于平衡状态,则其中的一个力与余下的力的合力等大反向; (2)物体在同一平面内的三个不平行的力作用下,处于平衡状态,这三个力必为共点力; (3)物体在三个共点力作用下处于平衡状态时,图示这三个力的有向线段必构成闭合三角形。 (四)牛顿第三定律 两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在一条直线上,公式可写为F F =-'。 (五)力学基本单位制:k g m s 、、(在国际制单位中) 1. 作用力与反作用力的二力平衡的区别 内容 作用力和反作用力 二力平衡 受力物体 作用在两个相互作用的物体上 作用在同一物体上 依赖关系 同时产生,同时消失相互依存,不可单独存在 无依赖关系,撤除一个、另一个可依 然存在,只是不再平衡 叠加性 两力作用效果不可抵消,不可叠加,不可求合力 两力运动效果可相互抵消,可叠加, 可求合力,合力为零;形变效果不能 抵消 力的性质 一定是同性质的力 可以是同性质的力也可以不是同性质 的力 2. 应用牛顿第二定律解题的一般步骤 ①确定研究对象; ②分析研究对象的受力情况画出受力分析图并找出加速度方向; ③建立直角坐标系,使尽可能多的力或加速度落在坐标轴上,并将其余分解到两坐标轴上; ④分别沿x 轴方向和y 轴方向应用牛顿第二定律列出方程; ⑤统一单位,计算数值。

牛顿运动定律-经典习题汇总

牛顿运动定律经典练习题 一、选择题 1.下列关于力和运动关系的说法中,正确的是 ( ) A .没有外力作用时,物体不会运动,这是牛顿第一定律的体现 B .物体受力越大,运动得越快,这是符合牛顿第二定律的 C .物体所受合外力为0,则速度一定为0;物体所受合外力不为0,则其速度也一定不为0 D .物体所受的合外力最大时,速度却可以为0;物体所受的合外力为0时,速度却可以最大 2.升降机天花板上悬挂一个小球,当悬线中的拉力小于小球所受的重力时,则升降机的运动情况可能是 ( ) A .竖直向上做加速运动 B .竖直向下做加速运动 C .竖直向上做减速运动 D .竖直向下做减速运动 3.物体运动的速度方向、加速度方向与作用在物体上合力方向的关系是 ( ) A .速度方向、加速度方向、合力方向三者总是相同的 B .速度方向可与加速度方向成任何夹角,但加速度方向总是与合力方向相同 C .速度方向总是和合力方向相同,而加速度方向可能和合力相同,也可能不同 D .速度方向与加速度方向相同,而加速度方向和合力方向可以成任意夹角 4.一人将一木箱匀速推上一粗糙斜面,在此过程中,木箱所受的合力( ) A .等于人的推力 B .等于摩擦力 C .等于零 D .等于重力的下滑分量 5.物体做直线运动的v-t 图象如图所示,若第1 s 内所受合力为F 1,第2 s 内所受合力为F 2,第3 s 内所受合力为F 3, 则( ) A .F 1、F 2、F 3大小相等,F 1与F 2、F 3方向相反 B .F 1、F 2、F 3大小相等,方向相同 C .F 1、F 2是正的,F 3是负的 D .F 1是正的,F 1、F 3是零 6.质量分别为m 和M 的两物体叠放在水平面上如图所示,两物体之间及M 与 水平面间的动摩擦因数均为μ。现对M 施加一个水平力F ,则以下说法中不正确的是( ) A .若两物体一起向右匀速运动,则M 受到的摩擦力等于F B .若两物体一起向右匀速运动,则m 与M 间无摩擦,M 受到水平面的摩擦力大小为μmg C .若两物体一起以加速度a 向右运动,M 受到的摩擦力的大小等于F -M a D .若两物体一起以加速度a 向右运动,M 受到的摩擦力大小等于μ(m+M )g+m a 7.用平行于斜面的推力,使静止的质量为m 的物体在倾角为θ的光滑斜面上,由底端向顶端做匀加速运动。当物体运动到斜面中点时,去掉推力,物体刚好能到达顶点,则推力的大小为 ( ) A .mg(1-sin θ) B .2mgsin θ C .2mgcos θ D .2mg(1+sin θ) 8.从不太高的地方落下的小石块,下落速度越来越大,这是因为 ( ) A .石块受到的重力越来越大 B .石块受到的空气阻力越来越小 C .石块的惯性越来越大 D .石块受到的合力的方向始终向下 9.一个物体,受n 个力的作用而做匀速直线运动,现将其中一个与速度方向相反的力逐渐减小到零,而其他的力保持不变,则物体的加速度和速度 ( ) A .加速度与原速度方向相同,速度增加得越来越快 B .加速度与原速度方向相同,速度增加得越来越慢 C .加速度与原速度方向相反,速度减小得越来越快 D .加速度与原速度方向相反,速度减小得越来越慢 10.下列关于超重和失重的说法中,正确的是 ( ) 第 5 题 第 6 题

专题 牛顿运动定律的综合应用

专题1牛顿运动定律的综合应用 动力学中的图象问题 1.常见的动力学图象及问题类型 2.解题策略——数形结合解决动力学图象问题 (1)在图象问题中,无论是读图还是作图,都应尽量先建立函数关系,进而明确“图象与公式”“图象与规律”间的关系;然后根据函数关系读取图象信息或描点作图。 (2)读图时,要注意图线的起点、斜率、截距、折点以及图线与横坐标轴包围的“面积”等所表示的物理意义,尽可能多地提取有效信息。 考向动力学中的v-t图象 【例1】(多选)(2015·全国Ⅰ卷,20)如图1甲,一物块在t=0时刻滑上一固定斜面,其运动的v-t图线如图乙所示。若重力加速度及图中的v0、v1、t1均为已知量,则可求出() 图1 A.斜面的倾角 B.物块的质量 C.物块与斜面间的动摩擦因数 D.物块沿斜面向上滑行的最大高度 解析由v-t图象可求物块沿斜面向上滑行时的加速度大小为a=v0 t1 ,根据牛顿

第二定律得mg sin θ+μmg cos θ=ma ,即g sin θ+μg cos θ=v 0t 1。同理向下滑行时g sin θ-μg cos θ=v 1t 1,两式联立得sin θ=v 0+v 12gt 1,μ=v 0-v 12gt 1 cos θ,可见能计算出斜面的倾斜角度θ以及动摩擦因数,选项A 、C 正确;物块滑上斜面时的初速度v 0已知, 向上滑行过程为匀减速直线运动,末速度为0,那么平均速度为v 02,所以沿斜面向上滑行的最远距离为s =v 02t 1,根据斜面的倾斜角度可计算出向上滑行的最大高 度为s sin θ=v 02t 1×v 0+v 12gt 1 =v 0(v 0+v 1)4g ,选项D 正确;仅根据v -t 图象无法求出物块的质量,选项B 错误。 答案 ACD 考向 动力学中的F -t 图象 【例2】 (多选)(2019·全国Ⅲ卷,20)如图2(a),物块和木板叠放在实验台上,物块用一不可伸长的细绳与固定在实验台上的力传感器相连,细绳水平。t =0时,木板开始受到水平外力F 的作用,在t =4 s 时撤去外力。细绳对物块的拉力f 随时间t 变化的关系如图(b)所示,木板的速度v 与时间t 的关系如图(c)所示。木板与实验台之间的摩擦可以忽略。重力加速度取10 m/s 2。由题给数据可以得出( ) 图2 A.木板的质量为1 kg B.2 s ~4 s 内,力F 的大小为0.4 N C.0~2 s 内,力F 的大小保持不变 D.物块与木板之间的动摩擦因数为0.2

牛顿运动定律专题

第 1 页 牛顿运动定律经典题解析 一、夯实基础知识 1、牛顿第一定律:一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。 对牛顿第一定律的理解要点:(1)运动是物体的一种属性,物体的运动不需要力来维持;(2)它定性地揭示了运动与力的关系,即力是改变物体运动状态的原因,是使物体产生加速度的原因;(3)定律说明了任何物体都有一个极其重要的属性——惯性;(4)不受力的物体是不存在的,牛顿第一定律不能用实验直接验证,但是建立在大量实验现象的基础之上,通过思维的逻辑推理而发现的。它告诉了人们研究物理问题的另一种方法,即通过大量的实验现象,利用人的逻辑思维,从大量现象中寻找事物的规律;(5)牛顿第一定律是牛顿第二定律的基础,不能简单地认为它是牛顿第二定律不受外力时的特例,牛顿第一定律定性地给出了力与运动的关系,牛顿第二定律定量地给出力与运动的关系。 2、牛顿第二定律:物体的加速度跟所受的外力的合力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同。公式F ma =. 对牛顿第二定律的理解要点:(1)牛顿第二定律定量揭示了力与运动的关系,即知道了力,可根据牛顿第二定律研究其效果,分析出物体的运动规律;反过来,知道了运动,可根据牛顿第二定律研究其受力情况,为设计运动,控制运动提供了理论基础;(2)牛顿第二定律揭示的是力的瞬时效果,即作用在物体上的力与它的效果是瞬时对应关系,力变加速度就变,力撤除加速度就为零,注意力的瞬时效果是加速度而不是速度;(3)牛顿第二定律是矢量关系,加速度的方向总是和合外力的方向相同的,可以用分量式表示,x x F ma =, y y F ma =,z z F ma =;(4)牛顿第二定律F ma =定义了力的基本单位——牛顿(定义使质量为1kg 的物体产生1m/s 2的加速度的作用力为1N ,即211/N kg m s =?. 3、牛顿第三定律:两个物体之间的作用力与反作用力总是大小相等,方向相反,作用在同一 直线上。 对牛顿第三定律的理解要点:(1)作用力和反作用力相互依赖性,它们是相互依存,互以对方作为自已存在的前提;(2)作用力和反作用力的同时性,它们是同时产生、同时消失,同时变化,不是先有作用力后有反作用力;(3)作用力和反作用力是同一性质的力;(4)作用力和反作用力是不可叠加的,作用力和反作用力分别作用在两个不同的物体上,各产生其效果,不可求它们的合力,两个力的作用效果不能相互抵消,这应注意同二力平衡加以区别。 4.物体受力分析的基本程序:(1)确定研究对象;(2)采用隔离法分析其他物体对研究对象的作用力;(3)按照先重力,然后环绕物体一周找出跟研究对象接触的物体,并逐个分析这些物体对研究对象的弹力和摩擦力,最后分析其他场力;(4)画物体受力图,没有特别要求,则画示意图即可。 5.超重和失重:(1)超重:物体有向上的加速度称物体处于超重。处于失重的物体的物体对支持面的压力F (或对悬挂物的拉力)大于物体的重力,即F mg ma =+.;(2)失重:物体有向下的加速度称物体处于失重。处于失重的物体对支持面的压力F N (或对悬挂物的拉力)小于物体的 重力mg ,即N F mg ma =-,当a g =时,0N F =,即物体处于完全失重。 6、牛顿定律的适用范围:(1)只适用于研究惯性系中运动与力的关系,不能用于非惯性系;(2)只适用于解决宏观物体的低速运动问题,不能用来处理高速运动问题;(3)只适用于宏观物体,一般不适用微观粒子。 二、解析典型问题 问题1:必须弄清牛顿第二定律的矢量性。 牛顿第二定律F ma =是矢量式,加速度的方向与物体所受合外力的方向相同。在解题时,可以利用正交分解法进行求解。 1. 如图1所示,电梯与水平面夹角为300,当电梯加速向上运动时, 人对梯面压力是其重力的65,则人与梯面间的摩擦力是其重力的多 少倍? 分析与解:对人受力分析,他受到重力mg 、支持力F N 和摩擦力F f 作用,如图所示.取水平向右为x 轴正向,竖直向上为y 轴正向,此时只需分解加速度,据牛顿第二定律可得: cos30f F ma =?, sin30N F mg ma -=? 因为 65 N F mg = ,解得f F mg =. 问题2:必须弄清牛顿第二定律的瞬时性。 牛顿第二定律是表示力的瞬时作用规律,描述的是力的瞬时作用效果—产生加速度。物体在某一时刻加速度的大小和方向,是由该物体在这一时刻所受到的合外力的大小和方向来决定的。当物体所受到的合外力发生变化时,它的加速度随即也要发生变化,F=m a 对运动过程的每一瞬间成立,加速度与力是同一时刻的对应量,即同时产生、同时变化、同时消失。 2. 如图2(a )所示,一质量为m 的物体系于长度分别为l 1、l 2的两根细线 上,l 1的一端悬挂在天花板上,与竖直方向夹角为θ,l 2水平拉直,物体处于平衡状态。现将l 2线剪断,求剪断瞬时物体的加速度。 (l )下面是某同学对该题的一种解法: 分析与解:设l 1线上拉力为T 1,l 2线上拉力为T 2,重力为mg ,物体在三力作用下保持平衡,有 T 1cosθ=mg , T 1sinθ=T 2, T 2=mgt a nθ 剪断线的瞬间,T 2突然消失,物体即在T 2反方向获得加速度。因为tan mg ma θ=,所以加速度tan a g θ=,方向在T 2反方向。 你认为这个结果正确吗?请对该解法作出评价并说明理由。 a a 图θ 1 l θ 2 l 2 l 1 l b 图

上海高三物理复习牛顿运动定律专题

第三章牛顿运动定律专题 考试内容和要求 一.牛顿运动定律 1.牛顿第一定律 (1)第一定律的内容:任何物体都保持或的状态,直到有迫使它改变这种状态为止。牛顿第一定律指出了力不是产生速度的原因,也不是维持速度的原因,力是改变的原因,也就是产生的原因。 (2)惯性:物体保持的性质叫做惯性。牛顿第一定律揭示了一切物体都有惯性,惯性是物体的固有性质,与外部条件无关,因此该定律也叫做惯性定律。 【典型例题】 1.(2005广东)一汽车在路面情况相同的公路上直线行驶,下面关于车速、惯性、质量和滑行路程的讨论,正确的是() (A)车速越大,它的惯性越大

(B)质量越大,它的惯性越大 (C)车速越大,刹车后滑行的路程越长 (D)车速越大,刹车后滑行的路程越长,所以惯性越大 2.(2006广东)下列对运动的认识不正确的是() (A)亚里士多德认为物体的自然状态是静止的,只有当它受到力的作用才会运动 (B)伽利略认为力不是维持物体速度的原因 (C)牛顿认为力的真正效应总是改变物体的速度,而不仅仅是使之运动 (D)伽利略根据理想实验推论出,如果没有摩擦,在水平面上的物体,一旦具有某一个速度,将保持这个速度继续运动下去 3.(2003上海理综)科学思维和科学方法是我们 认识世界的基本手段。在研究和解决问题过程中, 不仅需要相应的知识,还要注意运用科学的方法。 理想实验有时更能深刻地反映自然规律。伽利略 设想了一个理想实验,如图所示,其中有一个是经验 事实,其余是推论。 ①减小第二个斜面的倾角,小球在这斜面上仍然要达到原来的高度; ②两个对接的斜面,让静止的小球沿一个斜面滚下,小球将滚上另一个斜面; ③如果没有摩擦,小球将上升到原来释放的高度; ④继续减小第二个斜面的倾角,最后使它成水平面,小球要沿水平面做持续的匀速运动。 请将上述理想实验的设想步骤按照正确的顺序排列(只要填写序号即可)。在上述的设想步骤中,有的属于可靠的事实,有的则是理想化的推论。 下列关于事实和推论的分类正确的是() (A)①是事实,②③④是推论 (B)②是事实,①③④是推论 (C)③是事实,①②④是推论 (D)④是事实,①②③是推论 2.牛顿第二定律 (1)第二定律的内容:物体运动的加速度同成正比,同成反比,而且加速度方向与力的方向一致。ΣF=ma (2)1牛顿=1千克·米/秒2

高考物理牛顿运动定律的应用专题训练答案及解析

高考物理牛顿运动定律的应用专题训练答案及解析 一、高中物理精讲专题测试牛顿运动定律的应用 1.一长木板置于粗糙水平地面上,木板左端放置一小物块,在木板右方有一墙壁,木板右端与墙壁的距离为4.5m ,如图(a )所示.0t =时刻开始,小物块与木板一起以共同速度向右运动,直至1t s =时木板与墙壁碰撞(碰撞时间极短).碰撞前后木板速度大小不变,方向相反;运动过程中小物块始终未离开木板.已知碰撞后1s 时间内小物块的v t -图线如图(b )所示.木板的质量是小物块质量的15倍,重力加速度大小g 取10m/s 2.求 (1)木板与地面间的动摩擦因数1μ及小物块与木板间的动摩擦因数2μ; (2)木板的最小长度; (3)木板右端离墙壁的最终距离. 【答案】(1)10.1μ=20.4μ=(2)6m (3)6.5m 【解析】 (1)根据图像可以判定碰撞前木块与木板共同速度为v 4m/s = 碰撞后木板速度水平向左,大小也是v 4m/s = 木块受到滑动摩擦力而向右做匀减速,根据牛顿第二定律有24/0/1m s m s g s μ-= 解得20.4μ= 木板与墙壁碰撞前,匀减速运动时间1t s =,位移 4.5x m =,末速度v 4m/s = 其逆运动则为匀加速直线运动可得212 x vt at =+ 带入可得21/a m s = 木块和木板整体受力分析,滑动摩擦力提供合外力,即1g a μ= 可得10.1μ= (2)碰撞后,木板向左匀减速,依据牛顿第二定律有121()M m g mg Ma μμ++= 可得214 /3 a m s = 对滑块,则有加速度2 24/a m s = 滑块速度先减小到0,此时碰后时间为11t s = 此时,木板向左的位移为2111111023x vt a t m =- =末速度18 /3 v m s =

专题三牛顿运动定律知识点总结

专题三牛顿三定律 1. 牛顿第一定律(即惯性定律) 一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。 (1)理解要点: ①运动是物体的一种属性,物体的运动不需要力来维持。 ②它定性地揭示了运动与力的关系:力是改变物体运动状态的原因,是使物体产生加速度的原因。 ③第一定律是牛顿以伽俐略的理想斜面实验为基础,总结前人的研究成果加以丰富的想象而提出来的;定律成立的条件是物体不受外力,不能用实验直接验证。 ④牛顿第一定律是牛顿第二定律的基础,不能认为它是牛顿第二定律合外力为零时的特例,第一定律定性地给出了力与运动的关系,第二定律定量地给出力与运动的关系。 (2)惯性:物体保持原来的匀速直线运动状态或静止状态的性质叫做惯性。 ①惯性是物体的固有属性,与物体的受力情况及运动状态无关。 ②质量是物体惯性大小的量度。 ③由牛顿第二定律定义的惯性质量m=F/a和由万有引力定律定义的引力质量 2/严格相等。 m Fr GM ④惯性不是力,惯性是物体具有的保持匀速直线运动或静止状态的性质。力是物体对物体的作用,惯性和力是两个不同的概念。 2. 牛顿第二定律 (1)定律内容 物体的加速度a跟物体所受的合外力F 成正比,跟物体的质量m成反比。 合

(2)公式:F ma = 合 理解要点: 是产生加速度a的原因,它们同时产生,同时变化,同时存在,同时消 ①因果性:F 合 失; 都是矢量,方向严格相同; ②方向性:a与F 合 ③瞬时性和对应性:a为某时刻某物体的加速度,F 是该时刻作用在该物体上的合外 合 力。 3. 牛顿第三定律 两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在一条直线上,公式可写为F F =-'。 (1)作用力和反作用力与二力平衡的区别 4. 牛顿定律在连接体中的应用 在连接体问题中,如果不要求知道各个运动物体间的相互作用力,并且各个物体具有相同加速度,可以把它们看成一个整体。分析受到的外力和运动情况,应用牛顿第二定律求出整体的加速度。(整体法) 如果需要知道物体之间的相互作用力,就需要把物体隔离出来,将内力转化为外力,分析物体受力情况,应用牛顿第二定律列方程。(隔离法) 一般两种方法配合交替应用,可有效解决连接体问题。 5. 超重与失重 视重:物体对竖直悬绳(测力计)的拉力或对水平支持物(台秤)的压力。(测力计或台秤示数)

牛顿运动定律专题(一)

牛顿运动定律专题(一) 知识达标: 1、下列说法正确的是…………………………………() A、甲主动推乙,甲对乙的作用力的发生先于乙对甲的作用力 B、施力物体必然也是受力物体 C、地球对人的吸引力显然要比人对地球的吸引力大得多 D、以卵击石,卵破碎,说明石块对卵的作用力大于卵对石块的作用力 2、关于惯性下列说法中正确的是…………………………………………() A、物体不受力或所受的合外力为零才能保持匀速直线运动状态或静止状态,因此只有此时物体才有惯性 B、物体加速度越大,说明它的速度改变得越快,因此加速度大的物体惯性小; C、行驶的火车速度大,刹车后向前运动距离长,这说明物体速度越大,惯性越大 D、物体惯性的大小仅由质量决定,与物体的运动状态和受力情况无关 3、一小球用一细绳悬挂于天花板上,以下几种说法正确的是………………………() A、小球所受的重力和细绳对它的拉力是一对作用力和反作用力 B、小球对细绳的拉力就是小球所受的重力 C、小球所受的重力的反作用力作用在地球上 D、小球所受重力的反作用力作用在细绳上 4、当作用在物体上的合外力不为零时,下面结论正确的是……………………() A、物体的速度大小一定发生变化 B、物体的速度方向一定发生变化 C、物体的速度不一定发生变化 D、物体的速度一定发生变化 5、关于超重和失重的说法中正确的是…………………………………() A、超重就是物体受到的重力增加了 B、失重就是物体受到的重力减少了 C、完全失重就是物体的重力全部消失了 D、不论超重、失重还是完全失重,物体所受重力不变 6、在升降机内,一人站在磅秤上,发现自己的体重减少了20%,于是他作出了下列判断,你认为正确的是() A、升降机以0.8g的加速度加速上升 B、升降机以0.2g的加速度加速下降 C、升降机以0.2g的加速度减速上升 D、升降机以0.8g的加速度减速下降 7、2001年1月,我国又成功进行“神舟二号”宇宙飞船的航行,失重实验是至关宇宙员生命安全的重要实验,宇宙飞船 在下列哪种状态下会发生失重现象………………………() A、匀速上升 B、匀速圆周运动 C、起飞阶段 D、着陆阶段 经典题型: 一、牛顿第二定律结合正交分解 例:1、细线悬挂的小球相对于小车静止,并与竖直方向成θ角,求小车运动的加速度。 2、如图,斜面固定,物体在水平推力F作用下沿斜面上滑,已知物体质量m,斜面倾角 θ,动摩擦因数μ和物体小球加速度a,求水平推力F的大小。 练习:1、如图,已知θ=300,斜杆固定,穿过斜杆的小球质量m=1kg,斜杆与小球动摩擦因数μ= √3/6,竖直向上的力F=20N,求小球的加速度a=?

高中物理牛顿运动定律的应用专题训练答案

高中物理牛顿运动定律的应用专题训练答案 一、高中物理精讲专题测试牛顿运动定律的应用 1.在一个水平面上建立x 轴,在过原点O 垂直于x 轴的平面的右侧空间有一个匀强电场,场强大小E=6.0×105 N/C ,方向与x 轴正方向相同,在原点O 处放一个质量m=0.01 kg 带负电荷的绝缘物块,其带电荷量q = -5×10- 8 C .物块与水平面间的动摩擦因数μ=0.2,给 物块一个沿x 轴正方向的初速度v 0=2 m/s.如图所示.试求: (1)物块沿x 轴正方向运动的加速度; (2)物块沿x 轴正方向运动的最远距离; (3)物体运动的总时间为多长? 【答案】(1)5 m/s 2 (2)0.4 m (3)1.74 s 【解析】 【分析】 带负电的物块以初速度v 0沿x 轴正方向进入电场中,受到向左的电场力和滑动摩擦力作用,做匀减速运动,当速度为零时运动到最远处,根据动能定理列式求解;分三段进行研究:在电场中物块向右匀减速运动,向左匀加速运动,离开电场后匀减速运动.根据运动学公式和牛顿第二定律结合列式,求出各段时间,即可得到总时间. 【详解】 (1)由牛顿第二定律可得mg Eq ma μ+= ,得25m/s a = (2)物块进入电场向右运动的过程,根据动能定理得:()2101 02 mg Eq s mv μ-+=-. 代入数据,得:s 1=0.4m (3)物块先向右作匀减速直线运动,根据:00111??22 t v v v s t t +==,得:t 1=0.4s 接着物块向左作匀加速直线运动:221m/s qE mg a m =μ-=. 根据:21221 2 s a t = 得220.2t s = 物块离开电场后,向左作匀减速运动:232m/s mg a g m μμ=-=-=- 根据:3322a t a t = 解得30.2t s = 物块运动的总时间为:123 1.74t t t t s =++= 【点睛】 本题首先要理清物块的运动过程,运用动能定理、牛顿第二定律和运动学公式结合进行求解.

高中物理牛顿运动定律的应用专题训练答案及解析

高中物理牛顿运动定律的应用专题训练答案及解析 一、高中物理精讲专题测试牛顿运动定律的应用 1.如图,质量为m =lkg 的滑块,在水平力作用下静止在倾角为θ=37°的光滑斜面上,离斜面末端B 的高度h =0. 2m ,滑块经过B 位置滑上皮带时无机械能损失,传送带的运行速度为v 0=3m/s ,长为L =1m .今将水平力撤去,当滑块滑 到传送带右端C 时,恰好与传送带速度相同.g 取l0m/s 2.求: (1)水平作用力F 的大小;(已知sin37°=0.6 cos37°=0.8) (2)滑块滑到B 点的速度v 和传送带的动摩擦因数μ; (3)滑块在传送带上滑行的整个过程中产生的热量. 【答案】(1)7.5N (2)0.25(3)0.5J 【解析】 【分析】 【详解】 (1)滑块受到水平推力F . 重力mg 和支持力F N 而处于平衡状态,由平衡条件可知,水平推力F=mg tan θ, 代入数据得: F =7.5N. (2)设滑块从高为h 处下滑,到达斜面底端速度为v ,下滑过程机械能守恒, 故有: mgh = 212 mv 解得 v 2gh ; 滑块滑上传送带时的速度小于传送带速度,则滑块在传送带上由于受到向右的滑动摩擦力而做匀加速运动; 根据动能定理有: μmgL = 2201122 mv mv 代入数据得: μ=0.25 (3)设滑块在传送带上运动的时间为t ,则t 时间内传送带的位移为: x=v 0t 对物体有: v 0=v ?at

ma=μmg 滑块相对传送带滑动的位移为: △x=L?x 相对滑动产生的热量为: Q=μmg△x 代值解得: Q=0.5J 【点睛】 对滑块受力分析,由共点力的平衡条件可得出水平作用力的大小;根据机械能守恒可求滑块滑上传送带上时的速度;由动能定理可求得动摩擦因数;热量与滑块和传送带间的相对位移成正比,即Q=fs,由运动学公式求得传送带通过的位移,即可求得相对位移. 2.如图所示,倾角α=30°的足够长传送带上有一长L=1.0m,质量M=0.5kg的薄木板,木板的最右端叠放质量为m=0.3kg的小木块.对木板施加一沿传送带向上的恒力F,同时让传送 带逆时针转动,运行速度v=1.0m/s。已知木板与物块间动摩擦因数μ1= 3 2 ,木板与传送 带间的动摩擦因数μ2=3 ,取g=10m/s2,最大静摩擦力等于滑动摩擦力。 (1)若在恒力F作用下,薄木板保持静止不动,通过计算判定小木块所处的状态; (2)若小木块和薄木板相对静止,一起沿传送带向上滑动,求所施恒力的最大值F m; (3)若F=10N,木板与物块经过多长时间分离?分离前的这段时间内,木板、木块、传送带组成系统产生的热量Q。 【答案】(1)木块处于静止状态;(2)9.0N(3)1s 12J 【解析】 【详解】 (1)对小木块受力分析如图甲:

牛顿运动定律试题及标准答案

高一物理牛顿运动定律测试 一、选择题:(每题5分,共50分)每小题有一个或几个正确选项。 1.下列说法正确的是 A.力是物体运动的原因B.力是维持物体运动的原因 C.力是物体产生加速度的原因D.力是使物体惯性改变的原因 2.下列说法正确的是 A.加速行驶的汽车比它减速行驶时的惯性小 B.静止的火车启动时速度变化缓慢,是因为火车静止时惯性大 C.已知月球上的重力加速度是地球上的1/6,故一个物体从地球移到月球惯性减小为1/6 D.为了减小机器运转时振动,采用螺钉将其固定在地面上,这是为了增大惯性 3.在国际单位制中,力学的三个基本单位是 A.kg 、m 、m / s2 B.kg 、 m / s 、 N C.kg 、m 、 s D.kg、 m / s2 、N 4.下列对牛顿第二定律表达式F=ma及其变形公式的理解,正确的是()A.由F=ma可知,物体所受的合外力与物体的质量成正比,与物体的加速度成正比 B.由m=F/a可知,物体的质量与其所受合外力成正比,与其运动加速度成反比 C.由a=F/m可知,物体的加速度与其所受合外力成正比,与其质量成反比 D.由m=F/a可知,物体的质量可以通过测量它的加速度和它受到的合外力而求得 5.大小分别为1N和7N的两个力作用在一个质量为1kg的物体上,物体能获得的最小加速度和最大加速度分别是 A.1 m / s2和7 m / s2 B.5m / s2和8m / s2 C.6 m / s2和8 m / s2 D.0 m / s2和8m / s2 6.弹簧秤的秤钩上挂一个物体,在下列情况下,弹簧秤的读数大于物体重力的是A.以一定的加速度竖直加速上升B.以一定的加速度竖直减速上升 C.以一定的加速度竖直加速下降D.以一定的加速度竖直减速下降 7.一物体以 7 m/ s2的加速度竖直下落时,物体受到的空气阻力大小是 ( g取10 m/ s2 ) A.是物体重力的0.3倍 B.是物体重力的0.7倍 C.是物体重力的1.7倍 D.物体质量未知,无法判断

高考物理牛顿运动定律基础练习题

高考物理牛顿运动定律基础练习题 一、高中物理精讲专题测试牛顿运动定律 1.如图所示,质量M=0.4kg 的长木板静止在光滑水平面上,其右侧与固定竖直挡板问的距离L=0.5m ,某时刻另一质量m=0.1kg 的小滑块(可视为质点)以v 0=2m /s 的速度向右滑上长木板,一段时间后长木板与竖直挡板发生碰撞,碰撞过程无机械能损失。已知小滑块与长木板间的动摩擦因数μ=0.2,重力加速度g=10m /s 2,小滑块始终未脱离长木板。求: (1)自小滑块刚滑上长木板开始,经多长时间长木板与竖直挡板相碰; (2)长木板碰撞竖直挡板后,小滑块和长木板相对静止时,小滑块距长木板左端的距离。 【答案】(1)1.65m (2)0.928m 【解析】 【详解】 解:(1)小滑块刚滑上长木板后,小滑块和长木板水平方向动量守恒: 解得: 对长木板: 得长木板的加速度: 自小滑块刚滑上长木板至两者达相同速度: 解得: 长木板位移: 解得: 两者达相同速度时长木板还没有碰竖直挡板 解得: (2)长木板碰竖直挡板后,小滑块和长木板水平方向动量守恒: 最终两者的共同速度: 小滑块和长木板相对静止时,小滑块距长木板左端的距离: 2.某物理兴趣小组设计了一个货物传送装置模型,如图所示。水平面左端A 处有一固定挡板,连接一轻弹簧,右端B 处与一倾角37o θ=的传送带平滑衔接。传送带BC 间距 0.8L m =,以01/v m s =顺时针运转。两个转动轮O 1、O 2的半径均为0.08r m =,半径

O 1B 、O 2C 均与传送带上表面垂直。用力将一个质量为1m kg =的小滑块(可视为质点)向左压弹簧至位置K ,撤去外力由静止释放滑块,最终使滑块恰好能从C 点抛出(即滑块在C 点所受弹力恰为零)。已知传送带与滑块间动摩擦因数0.75μ=,释放滑块时弹簧的弹性势能为1J ,重力加速度g 取210/m s ,cos370.8=o ,sin 370.6=o ,不考虑滑块在水平面和传送带衔接处的能量损失。求: (1)滑块到达B 时的速度大小及滑块在传送带上的运动时间 (2)滑块在水平面上克服摩擦所做的功 【答案】(1)1s (2)0.68J 【解析】 【详解】 解:(1)滑块恰能从C 点抛出,在C 点处所受弹力为零,可得:2 v mgcos θm r = 解得: v 0.8m /s = 对滑块在传送带上的分析可知:mgsin θμmgcos θ= 故滑块在传送带上做匀速直线运动,故滑块到达B 时的速度为:v 0.8m /s = 滑块在传送带上运动时间:L t v = 解得:t 1s = (2)滑块从K 至B 的过程,由动能定理可知:2f 1 W W mv 2 -=弹 根据功能关系有: p W E =弹 解得:f W 0.68J = 3.如图所示.在距水平地面高h =0.80m 的水平桌面一端的边缘放置一个质量m =0.80kg 的木块B ,桌面的另一端有一块质量M =1.0kg 的木块A 以初速度v 0=4.0m/s 开始向着木块B 滑动,经过时间t =0.80s 与B 发生碰撞,碰后两木块都落到地面上,木块B 离开桌面后落到地面上的D 点.设两木块均可以看作质点,它们的碰撞时间极短,且已知D 点距桌面边缘的水平距离s =0.60m ,木块A 与桌面间的动摩擦因数μ=0.25,重力加速度取g =10m/s 2.求:

相关文档
最新文档