感应加热设备的不锈钢焊接工艺

合集下载

不锈钢焊接工艺技术要点与焊接工艺规程完整

不锈钢焊接工艺技术要点与焊接工艺规程完整

不锈钢焊接工艺技术要点及焊接工艺规程焊接时,为保证焊接质量,必须选择合理的工艺参数,所选定的焊接工艺参数总称为焊接工艺规范。

例如,手工电弧焊的焊接工艺规范包括:焊接电流、焊条直径、焊接速度、电弧长度(电压)和多层焊焊接层数等,其中电弧长度和焊接速度一般由操作者在操作中视实际情况自行掌握,其他参数均在焊接前确定。

1.焊条直径焊条直径根据焊件的厚度和焊接位置来选择。

一般,厚焊件用粗焊条,薄焊件用细焊条。

立焊、横焊和仰焊的焊条应比平焊细。

平焊对接时焊条直径的选择如表4-3所示:表4-3焊条直径的选择(mm)工件厚度2 3 4~7 8~12 ≥13焊条直径1.6~2.0 2.5~3.2 3.2~4.0 4.0~5.0 4.0~5.82.焊接电流和焊接速度焊接电流是影响焊接接头质量和生产率的主要因素。

电流过大,金属熔化快,熔深大、金属飞溅大,同时易产生烧穿、咬边等缺陷;电流过小,易产生未焊透、夹渣等缺陷,而且生产率低。

确定焊接电流时,应考虑到焊条直径、焊件厚度、接头型式、焊接位置等因素,其中主要的是焊条直径。

一般,细焊条选小电流,粗焊条选大电流。

焊接低碳钢时,焊接电流和焊条直径的关系可由下列经验公式确定:I=(30~60)d ( 4-3 )式中:I为焊接电流(A),d为焊条直径(mm)。

焊接速度是指焊条沿焊缝长度方向单位时间移动的距离,它对焊接质量影响很大。

焊速过快,易产生焊缝的熔深浅、熔宽小及未焊透等缺陷;焊速过慢,焊缝熔深、熔宽增加,特别是薄件易烧穿。

确定焊接电流和焊接速度的一般原则是:在保证焊接质量的前提下,尽量采用较大的焊接电流值,在保证焊透且焊缝成形良好的前提下尽可能快速施焊,以提高生产率。

手工电弧焊重要的工艺及参数1.焊条直径主要依据焊件的厚度,焊接位置,焊道层数及接头形式来决定。

焊接件厚度较大时,选用较大直径焊条。

平焊时,可采用较大电流焊接。

焊条直径也相应选大。

横焊、立焊或仰焊时,因焊接电流比平焊小,焊条直径也相应小些。

5千瓦电磁感应加热炉制作方法

5千瓦电磁感应加热炉制作方法

5千瓦电磁感应加热炉制作方法全文共四篇示例,供读者参考第一篇示例:5千瓦电磁感应加热炉是一种高效的加热设备,运用电磁感应原理将电能转化为热能,广泛应用于金属加热、熔炼、焊接等工业领域。

下面将介绍一种制作5千瓦电磁感应加热炉的方法,希望能够对您有所帮助。

我们需要准备以下材料和工具:1. 电磁感应加热线圈2. 电磁感应加热器控制器3. 电源线4. 绝缘胶带5. 小型金属容器6. 不锈钢管7. 绝缘材料8. 电动工具接下来,我们可以按照以下步骤进行制作:第一步:制作电磁感应加热线圈将不锈钢管捆绑在一起形成一个圆圈,确保每根管子之间的间距均匀。

然后,将绝缘材料包裹在管子外部,用绝缘胶带固定。

将电磁感应加热线圈连接到电磁感应加热器控制器。

第二步:安装电磁感应加热线圈将电磁感应加热线圈安装在金属容器底部或侧面,确保线圈与容器之间的距离适当,以便加热效果更好。

第三步:连接电源线将电源线连接到电磁感应加热器控制器,并将另一端插入电源插座,注意接线的正确性和稳固性。

第四步:测试在启动电磁感应加热炉之前,需要进行一次简单的测试。

将容器中放入一些金属材料,启动电磁感应加热器控制器,观察加热效果和加热速度是否符合要求。

第五步:使用和维护在使用电磁感应加热炉时,需要注意安全,避免触碰加热器控制器和线圈。

定期检查设备运行状况,保持设备清洁,确保设备正常使用。

通过以上步骤,我们就可以制作一台5千瓦电磁感应加热炉了。

这种加热设备具有加热速度快、效率高、节能环保等优点,适用于许多工业领域的加热需求。

希望这份制作方法对您有所启发,欢迎尝试制作并应用于实际生产中。

【如果想了解更多详细制作方法,还可以参考相关资料或咨询专业人士】。

第二篇示例:5千瓦电磁感应加热炉是一种高效节能的加热设备,广泛应用于工业生产和材料加工领域。

本文将介绍一种简便易行的5千瓦电磁感应加热炉制作方法,希望能为您提供一些参考。

一、所需材料及工具准备1. 5千瓦电磁感应加热炉主体:加热线圈、电容器、电容器放电电阻、电源控制器等。

超高频感应加热设备原理

超高频感应加热设备原理

超高频感应加热设备原理超高频感应加热是一种现代化的加工技术,广泛应用于工业生产中。

它利用高频电流在导体中产生的涡流损耗和焦耳热来实现加热目标物体。

本文将介绍超高频感应加热设备的原理及其应用。

一、超高频感应加热设备的基本原理超高频感应加热设备是由发生器、感应线圈、电容器、传输电缆以及加热工作台等组成。

其基本工作原理是通过感应线圈在高频交流电磁场中产生涡流,并将电能转化为热能。

涡流产生的能量主要用于加热金属或其它导电材料。

具体而言,当高频电流通过感应线圈时,感应线圈内部产生高频交流电磁场。

当被加热的目标物体进入感应线圈的磁场内时,目标物体中的电子会受到磁场的影响,进而引发电子的运动。

根据法拉第电磁感应定律,运动的电子会在导体内产生涡流。

由于涡流的阻力,电能会被转化为热能,从而使目标物体产生加热效应。

二、超高频感应加热设备的优点和应用超高频感应加热设备具有以下几个优点:1. 高效加热:超高频感应加热设备加热速度快,加热效率高。

因为其主要通过涡流损耗和焦耳热产生加热效应,能够迅速将能量传递到目标物体中,无需预热过程,大大提高了生产效率。

2. 精确控制:超高频感应加热设备可以根据需要精确控制加热温度和时间。

通过调节发生器的频率和功率,可以实现对加热过程的精确控制,确保产品的质量和稳定性。

3. 环保节能:超高频感应加热设备使用电能进行加热,无燃烧产生的废气、废水和废渣等污染物,相比传统的燃烧加热方式更加环保。

由于加热速度快,没有能量损失,能够有效节约能源。

超高频感应加热设备在工业生产中有广泛应用,例如:1. 金属加工:超高频感应加热设备可用于金属熔炼、锻造和淬火等工艺。

它可以实现快速加热和精确控制,提高金属加工的效率和质量。

2. 焊接和烧结:超高频感应加热设备可用于焊接和烧结工艺。

它能够实现局部加热和快速加热,可将热量集中在焊接接头或烧结颗粒上,提高焊接或烧结的质量和强度。

3. 粉末冶金:超高频感应加热设备可用于粉末冶金工艺。

自动化焊接技术及应用

自动化焊接技术及应用

自动化焊接技术及应用引言概述:自动化焊接技术是利用计算机、机器人等自动化设备完成焊接过程的一种现代化焊接方法。

随着工业自动化水平的不断提升,自动化焊接技术在各个领域得到了广泛的应用。

本文将重点介绍自动化焊接技术的原理及其在工业生产中的应用。

一、自动化焊接技术的原理1.1 焊接机器人焊接机器人是一种能够代替人工完成焊接操作的自动化设备。

它通过预先编程的程序控制焊接枪的移动轨迹和焊接参数,实现高效、精准的焊接作业。

1.2 感应加热焊接感应加热焊接是利用感应加热器对焊接件进行加热,使焊缝处达到焊接温度,从而实现焊接的技术。

它具有加热均匀、节能高效等优点。

1.3 激光焊接激光焊接是利用高能量激光束对焊接件进行熔化和连接的技术。

它具有焊接速度快、变形小等优点,适用于对焊接质量要求高的场合。

二、自动化焊接技术在汽车制造中的应用2.1 车身焊接在汽车制造过程中,大量的焊接工作需要完成车身的组装。

采用自动化焊接技术可以提高焊接质量和效率,保证车身的稳定性和安全性。

2.2 焊接机器人在汽车工业中的应用汽车制造中的焊接机器人可以实现对车身各个部件的焊接作业,包括车身框架、车门、车窗等部件的焊接。

它可以根据不同车型的要求进行自动化调整,提高生产效率。

2.3 感应加热焊接在汽车制造中的应用感应加热焊接技术在汽车制造中广泛应用于焊接车身结构件、车轮等部件。

它能够提高焊接速度和质量,减少焊接变形,保证汽车的整体质量。

三、自动化焊接技术在航空航天领域的应用3.1 飞机结构焊接航空航天领域对焊接质量和安全性要求极高,采用自动化焊接技术可以保证焊接接头的牢固性和密封性,提高飞机结构的整体性能。

3.2 激光焊接在航空航天领域的应用激光焊接技术在航空航天领域的应用日益广泛,可以实现对航空发动机、飞机机身等部件的高精度焊接。

它能够减少焊接变形、提高焊接质量。

3.3 焊接机器人在航空航天领域的应用航空航天领域对焊接精度和稳定性要求极高,焊接机器人可以实现对复杂结构件的精确焊接,保证飞行器的安全性和可靠性。

高频感应加热焊接实验

高频感应加热焊接实验

高频感应加热焊接实验一、实验目的(一)了解高频感应加热焊接方法,并实际施焊。

(二)熟悉高频感应焊接头的焊缝及焊接热影响区组织变化规律,金相观察和分析。

二、实验内容1.高频感应加热焊接工艺试验。

2.高频感应加热焊接规范参数调节和采集。

3.高频感应焊接接头金相组织观察。

三、实验装置及实验材料1.国产感应加热焊接系统2.焊接试样、辅助材料3.粗、细金相砂纸、玻璃平板、机械抛光机、抛光粉4.无水乙醇、4%硝酸酒精溶液、氢氧化钠水溶液、王水、吹风机、脱脂棉5.金相显微镜,计算机图像处理系统四、实验原理感应加热的原理:工件放到感应器内,高频大电流流向被绕制成环状或其它形状的加热线圈(通常是用紫铜管制作)。

由此在线圈内产生极性瞬间变化的强磁束,将金属等被加热物体放置在线圈内,磁束就会贯通整个被加热物体,在被加热物体的内部与加热电流相反的方向,便会产生相对应的很大涡电流。

由于被加热物体内存在着电阻,所以会产生很多的焦耳热,使物体自身的温度迅速上升。

达到对所有金属材料加热的目的。

感应器一般是输入中频或高频交流电(300-300000Hz或更高)的空心铜管。

产生交变磁场在工件中产生出同频率的感应电流,这种感应电流在工件的分布是不均匀的,在表面强,而在内部很弱,到心部接近于0,利用这个集肤效应,可使工件表面迅速加热,在几秒钟内表面温度上升到800-1000ºC,而心部温度升高很小。

感应加热的芯部温度是通过一定的时间渗透进去的,因此在选用感应加热设备时,必须考虑温度渗透时间,选用合适的感应加热频率。

感应加热多数用于工业金属零件表面淬火、金属熔炼、棒料透热等多个领域,是使工件表面产生一定的感应电流,迅速加热零件表面,达到表面迅速加热,甚至透热融化的效果。

感应加热是遵循电磁感应、集肤效应、热传导三个基本原则。

实验原理:用一个模拟的单匝短路次级线圈来说明。

以圆柱体加热的方式为例,工件和感应器的组合可以看做是一台具有多匝初级线圈(感应器线圈)和单匝短路次级线圈(圆柱体工件)的变压器,初级线圈和次级线圈彼此间由较小的空气间隙隔开。

中频焊接原理

中频焊接原理

中频焊接原理概述中频焊接是一种常用的金属焊接技术,通过在金属接头上施加电流和压力来实现金属的连接。

中频焊接原理主要涉及电流的感应和导热传导,是一种快速高效的焊接方法。

中频感应加热原理中频感应加热是中频焊接的关键步骤,它通过将高频交流电通过感应线圈传导到焊件上,使焊件产生感应电流,通过感应效应达到加热的目的。

具体步骤如下:1.感应加热线圈通电:将感应加热线圈与电源连接,并通电。

2.电流感应:通过感应线圈中的交流电流,产生交变磁场。

3.焊件感应电流:交变磁场穿过焊件时,会产生感应电流。

4.焊件加热:感应电流在焊件中产生阻抗加热,使焊件温度升高。

中频导热传导原理中频导热传导是中频焊接的另一个重要步骤,它通过焊接头两端的金属接触来传导焊接热量。

具体步骤如下:1.电流加热焊接头:通过中频感应加热,焊接头升温。

2.加压接触导热:焊接头两端的金属接触,通过加压使焊接头产生导热效应。

3.热量传导:加热后的焊接头会释放热量,通过导热传导到焊接部分。

中频焊接的优势中频焊接具有以下优势:1.高效快速:中频感应加热和导热传导使焊接迅速完成,节省时间。

2.焊接质量高:由于焊接速度快,焊接过程中产生的热影响区域小,焊接质量高。

3.适用范围广:中频焊接适用于多种金属材料,如铝、不锈钢等。

4.即时焊接:中频焊接不需要预热,可实现即时焊接。

5.焊接强度高:中频焊接产生的焊接头连接性能强、韧性好。

中频焊接的应用领域中频焊接在各个行业具有广泛应用,例如:1.汽车制造:中频焊接常用于汽车制造中,用于焊接汽车车架、发动机零部件等。

2.电子设备:中频焊接可用于焊接电子器件,如电路板和电子组件等。

3.家具制造:中频焊接可用于焊接家具金属部件,提高生产效率。

4.包装行业:中频焊接可用于焊接包装容器,如食品盒、药品瓶等。

中频焊接的操作要点在进行中频焊接时,需要注意以下操作要点:1.选择合适的焊接参数:根据不同的焊接材料和焊接要求,选择合适的焊接电流和焊接时间等参数。

感应加热表面淬火基本原理

感应加热表面淬火基本原理

感应加热表面淬火基本原理感应加热表面淬火的应用及基本原理分析。

一、应用承受扭转、弯曲等交变负荷作用的工件,要求表面层承受比心部更高的应力或耐磨性,需对工件表面提出强化要求,适于含碳量We=0.40~ 0.50%钢材。

二、工艺法快速加热与立即淬火冷却相结合。

通过快速加热使待加工钢件表面达到淬火温度,不等热量传到中心即迅速冷却,仅使表层淬硬为马氏体,中心仍为未淬火的原来塑性、韧性较好的退火(或正火及调质)组织。

三、主要法感应加热表面淬火(高频、中频、工频),火焰加热表面淬火,电接触加热表面淬火,电解液加热表面淬火,激光加热表面淬火,电子束加热表面淬火。

四、感应加热表面淬火(一)基本原理:将工件放在用空心铜管绕成的感应器,通入中频或高频交流电后,在工件表面形成同频率的的感应电流,将零件表面迅速加热(几秒钟即可升温800~ 1000 度,心部仍接近室温)后立即喷水冷却(或浸油淬火),使工件表面层淬硬。

(如下图所示)(二)加热频率的选用室温时感应电流流入工件表层的深度 5 (mm)与电流频率f (HZ)的关系为频率升高,电流透入深度降低,淬透层降低。

常用的电流频率有:1、高频加热:100〜500KHZ常用200〜300KHZ为电子管式高频加热,淬硬层深为0.5〜2.5mm,适于中小型零件。

2、中频加热:电流频率为500〜10000HZ 常用2500〜8000HZ 电源设备为机械式中频加热装置或可控硅中频发生器。

淬硬层深度〜10m m。

适于较大直径的轴类、齿轮等。

3、工频加热:电流频率为50H乙采用机械式工频加热电源设备,淬硬层深可达10〜20mm,适于大直径工件的表面淬火。

(三)、感应加热表面淬火的应用与普通加热淬火比较具有:1、加热速度极快,可扩大A 体转变温度围,缩短转变时间。

2、淬火后工件表层可得到极细的隐晶马氏体,硬度稍高(2〜3HRC。

脆性较低及较高疲劳强度。

3、经该工艺处理的工件不易氧化脱碳,甚至有些工件处理后可直接装配使用。

不锈钢焊管生产工艺

不锈钢焊管生产工艺

不锈钢焊管生产工艺
1.原料处理
不锈钢焊管生产的原料是不锈钢锭,一般采用机械方法破碎,再经除铁和磁选后,将大块的铁制品和杂质除去。

经破碎的原料应先过60目筛。

一般情况下,原料中含铁量不大于1%。

1.加热
为了防止不锈钢管在焊接过程中产生裂纹和变形,一般采用水冷或空冷,也可以两者兼用。

不锈钢管的加热方式有电阻加热、蒸汽加热和电炉加热等,而电感应加热是最常用的一种方式。

3.锻造
对于一般的不锈钢焊管,其生产工艺一般为锻造,其生产方法有手工锻造、机械锻造和液压锻造三种。

4.锻造后的毛坯
锻件通过压力加工处理后,其原始组织将被破坏,使材料力学性能下降。

所以锻后毛坯在使用前要进行热处理。

热处理的方法有正火、淬火和回火等三种。

5.冷轧
冷轧是在热轧之后进行的。

冷轧时为了防止钢带产生冷脆性而发生裂纹,要用马氏体不锈钢带经退火处理后进行冷轧。

冷轧的主
— 1 —
要设备有冷轧机和冷轧退火炉等。

6.冲压
冲压是把半成品或成品金属板(带)坯料在外力作用下通过模具冲成各种形状的过程。

— 2 —。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

感应加热设备的不锈钢焊接工艺
感应加热设备中的不锈钢按金相组织的不同可分为铁素体不锈钢、马氏体不锈钢和奥氏体不锈钢。

能抵抗大气腐蚀的钢称为不锈钢。

不锈钢中,因奥氏体不锈钢比其他不锈钢具有更优良的耐腐蚀性、耐热性和塑性,可焊性良好,是目前应用最广的钢种。

不锈钢的焊接性
1)焊接接头的抗腐蚀性
(l)整体腐蚀。

任何不锈钢在腐蚀性介质作用下,其工作表面总会有腐蚀现象产生,这种腐蚀叫整体腐蚀。

(2)晶间腐蚀易发生在奥氏体不锈钢中。

晶间腐蚀发生于晶粒边界,所以叫晶间腐蚀。

这种腐蚀可以发生在热影响区、焊缝或焊合线上,是奥氏体金属最危险的破坏形式之一。

2)热裂纹
热裂纹是不锈钢焊接时比较容易产生的一种缺陷,包括焊缝的纵向和横向裂纹、弧坑裂纹、打底焊的焊根裂纹和多层焊的层间裂纹等。

奥氏体不锈钢更易产生热裂纹。

不锈钢的焊接工艺
1)手工电弧焊
(l)焊前准备。

当板厚≥3mm时要开坡口,坡口两侧20~30mm此刀内用丙酮擦净清理,并涂石灰粉,防止飞溅损伤金属表面。

(2)焊条的选用
(3)常采用的焊接工艺:采用小规范可防止晶间腐蚀、热裂纹及变形的产生,焊接电流比低碳钢低20%;为保证电弧稳定燃烧,采用直流反接;短弧焊收弧要慢,填满弧坑,与介质接触的面最后焊接;多层焊时要控制层间温度,焊后可采取强制冷却;不要在坡口以外的地方起弧,地线要接好;焊后变形只能用冷加工矫正。

2)氩弧焊
不锈钢采用氩弧焊时,由于保护作用好,合金元素不易烧损,过渡系数较高,故焊缝成形好,没有渣壳,表面光洁,因此焊成的接头具有较高的耐热性和良好的力学性能。

目前在氩弧焊中应用较广的是手工钨极氩弧焊,用于焊接0.5~3mm的不锈钢薄板,焊丝的成分一般与焊件相同,保护气体一般采用工业纯氩气,焊接时速度应适当地快些,尽量避免横向摆动。

对于厚度大于3mm的不锈钢,可采用熔化极氩弧焊。

熔化极氩弧焊的优点是生产率高,焊缝的热影响区小,焊件的变形小和耐腐蚀性好,并易于自动化操作。

3)气焊
由于气焊方便灵活,可焊各种空间位置的焊缝,对一些薄板结构和薄壁管等不锈钢部件,在没有耐腐蚀要求下有时可采用气焊。

为防止过热,焊嘴一般比焊接同样厚度的低碳钢时要小,气焊火焰要使用中性焰,焊丝根据焊件成分和性能选择,气焊粉用气剂101,焊接时最好用左焊法,焊接时焊炬焊嘴与焊件倾角成40~50°,焰芯距熔池应不小于2mm,焊丝端头与熔池接触,并与火焰一起沿焊缝移动,焊炬不作横向摆动,焊速要快,并尽量避免中断。

4)不锈钢的焊后处理
为增加不锈钢的耐腐蚀性,焊后应进行表面处理,处理的方法有抛光法和钝化法。

焊接参数:包括焊接电流,钨极直径,弧长,电弧电压,焊接速度,保护气流,喷嘴直径等。

1,焊接电流是决定焊缝成形的关键因素。

通常根据焊件材料,厚度,及坡口形状来决定的。

2,焊极直径根据焊接电流大小决定,电流越大,直径也越大。

3,焊弧和电弧电影,弧长范围约0.5到3mm,对应的电弧电压为8~10V。

4,焊速:选择时要考虑到电流大小,焊件材料敏感度,焊接位置及操作方式等因素决定。

以上本文由河北恒远()提供。

相关文档
最新文档