线性代数重要知识点及典型例题问题详解
线性代数重要知识点及典型例题问题详解

线性代数重要知识点及典型例题问题详解线性代数知识点总结第⼀章⾏列式⼆三阶⾏列式N 阶⾏列式:⾏列式中所有不同⾏、不同列的n 个元素的乘积的和n nn nj j j j j j j j j nij a a a a ...)1(21212121)..(∑-=τ(奇偶)排列、逆序数、对换⾏列式的性质:①⾏列式⾏列互换,其值不变。
(转置⾏列式T D D =)②⾏列式中某两⾏(列)互换,⾏列式变号。
推论:若⾏列式中某两⾏(列)对应元素相等,则⾏列式等于零。
③常数k 乘以⾏列式的某⼀⾏(列),等于k 乘以此⾏列式。
推论:若⾏列式中两⾏(列)成⽐例,则⾏列式值为零;推论:⾏列式中某⼀⾏(列)元素全为零,⾏列式为零。
④⾏列式具有分⾏(列)可加性⑤将⾏列式某⼀⾏(列)的k 倍加到另⼀⾏(列)上,值不变⾏列式依⾏(列)展开:余⼦式ij M 、代数余⼦式ij j i ij M A +-=)1(定理:⾏列式中某⼀⾏的元素与另⼀⾏元素对应余⼦式乘积之和为零。
克莱姆法则:⾮齐次线性⽅程组:当系数⾏列式0≠D 时,有唯⼀解:)21(n j DD x j j ??==、齐次线性⽅程组:当系数⾏列式01≠=D 时,则只有零解逆否:若⽅程组存在⾮零解,则D 等于零特殊⾏列式:①转置⾏列式:332313322212312111333231232221131211a a a a a a a a a a a a a a a a a a →②对称⾏列式:ji ij a a =③反对称⾏列式:ji ij a a -= 奇数阶的反对称⾏列式值为零④三线性⾏列式:333122211312110a a a a a a a ⽅法:⽤221a k 把21a 化为零,。
化为三⾓形⾏列式⑤上(下)三⾓形⾏列式:⾏列式运算常⽤⽅法(主要)⾏列式定义法(⼆三阶或零元素多的)化零法(⽐例)化三⾓形⾏列式法、降阶法、升阶法、归纳法、第⼆章矩阵n *(零矩阵、负矩阵、⾏矩阵、列矩阵、n 阶⽅阵、相等矩阵) ---------交换、结合律数乘n m ij ka kA *)(=---------分配、结合律乘法nm lkj ik n l kj l m ik b a b a B A *1**)()(*)(*∑==注意什么时候有意义⼀般AB=BA ,不满⾜消去律;由AB=0,不能得A=0或B=0 转置A A T T =)( TT T B A B A +=+)( T T kA kA =)( TT T A B AB =)((反序定理) ⽅幂:2121k k k kA AA +=2121)(k k k k A A +=对⾓矩阵:若AB 都是N 阶对⾓阵,k 是数,则kA 、A+B 、数量矩阵:相当于⼀个数(若……)单位矩阵、上(下)三⾓形矩阵(若……)对称矩阵反对称矩阵阶梯型矩阵:每⼀⾮零⾏左数第⼀个⾮零元素所在列的下⽅注:把分出来的⼩块矩阵看成是元素N 阶⽅阵,若存在N 阶矩阵B 的AB=BA=I 则称A 是可逆的,|A|=0、伴随矩阵)2.、⾮零k 乘某⼀⾏(列)3、将某⾏(列)的K 初等变换不改变矩阵的可逆性初等矩阵都可逆倍乘阵倍加阵)=O OO I D rr矩阵的秩r(A):满秩矩阵降秩矩阵若A 可逆,则满秩若A 是⾮奇异矩阵,则r (AB )=r (B )初等变换不改变矩阵的秩求法:1定义2转化为标准式或阶梯形矩阵与⾏列式的联系与区别:都是数表;⾏列式⾏数列数⼀样,矩阵不⼀样;⾏列式最终是⼀个数,只要值相等,就相等,矩阵是⼀个数表,对应元素相等才相等;矩阵n ij n ij a k ka )()(=,⾏列式nij n n ij a k ka =逆矩阵注:①AB=BA=I 则A 与B ⼀定是⽅阵②BA=AB=I 则A 与B ⼀定互逆;③不是所有的⽅阵都存在逆矩阵;④若A 可逆,则其逆矩阵是唯⼀的。
线性代数-章节知识点及习题

第一章 行列式一、教学要求1、了解行列式定义;2、掌握行列式的性质和展开法则;3、会利用化三角法和行列式展开法则计算低阶行列式以及简单n 阶行列式;4、了解克莱姆法则;重点、难点:熟练运用行列式性质,掌握行列式计算方法二、主要知识点及练习 1、 行列式性111213111112132122232121222331323331313233223=1223=223a a a a a a a a a a a a a a a a a a a a a ,则。
练习:若行列式---311234=1303=101313a b c a b c ,则。
练习:若行列式+++2、 代数余子式13122,112D x x D=则中的系数为。
练习:设行列式11111111x x 是关于的一次多项式,该式中的一次项系数是。
练习:--- 3、 行列式计算1) 对角线法------计算二阶、三阶行列式212103214111213212223313233--、a a a a a a a a a 练习:计算三阶行列式2) 利用行列式性质计算行列式------将行列式化为上三角、下三角、对角行列式222222222(1)(2)(1)(2)(2)(1)(2)11231123(3)(4)11131121(1)ab b b x x x ba b b y y y bb a b z z z b b b ax ab ac aex bd cdde x bf cfefx 练习:计算下列行列、式、、的值+++++++-+-+-+3) 利用行列式展开法计算行列式------将行列式降阶0110100111011110练习:四阶行列式。
=11121314313233441111123456224816123434D A A A A A A A A 练习:已知行列式,则,。
==+++=++--+=123,1,3D A A 练习:设三阶行列式的第二行元素分别为,,第一行元素的代数余子式的值分别为,,则。
考研《线性代数》考点与考研真题详解

考研《线性代数》考点与考研真题详解线性代数作为考研数学中的重要组成部分,对于许多考生来说是一个具有挑战性的科目。
为了帮助考生更好地掌握线性代数的考点,提高解题能力,本文将详细梳理线性代数的主要考点,并结合考研真题进行深入分析。
一、行列式行列式是线性代数中的基本概念之一,其计算方法和性质是考试的重点。
1、行列式的定义n 阶行列式是一个数,它是由 n 行 n 列的元素按照一定的规则计算得到的。
2、行列式的性质(1)行列式与它的转置行列式相等。
(2)互换行列式的两行(列),行列式变号。
(3)行列式中某行(列)的元素乘以同一数后,加到另一行(列)的对应元素上,行列式不变。
3、行列式的计算常见的计算方法有:上三角法、按行(列)展开法、利用行列式的性质化简等。
考研真题示例:计算行列式\\begin{vmatrix}2 & 1 & 0 & 0 \\1 &2 & 1 & 0 \\0 & 1 & 2 & 1 \\0 & 0 & 1 & 2\end{vmatrix}\解:将行列式按第一行展开,得到\\begin{align}&\begin{vmatrix}2 & 1 & 0 & 0 \\1 &2 & 1 & 0 \\0 & 1 & 2 & 1 \\0 & 0 & 1 & 2\end{vmatrix}\\=&2\times\begin{vmatrix}2 & 1 & 0 \\1 &2 & 1 \\0 & 1 & 2\end{vmatrix}-1\times\begin{vmatrix} 1 & 1 & 0 \\0 & 2 & 1 \\0 & 1 & 2\end{vmatrix}\\=&2\times(2\times\begin{vmatrix}2 & 1 \\1 & 2\end{vmatrix}-1\times\begin{vmatrix} 1 & 1 \\0 & 2\end{vmatrix})-1\times(1\times\begin{vmatrix}2 & 1 \\1 & 2\end{vmatrix}-1\times\begin{vmatrix}0 & 1 \\0 & 2\end{vmatrix})\\=&2\times(2\times(4 1) 1\times(2 0)) 1\times(4 1 0)\\=&2\times(6 2) 1\times 3\\=&8 3\\=&5\end{align}\二、矩阵矩阵是线性代数的核心内容之一,包括矩阵的运算、逆矩阵、矩阵的秩等。
线性代数知识重难点和常考题型汇总

②、
a11 a21
a12
a22
a1 n a2 n
x1
x2
b1
b2
Ax
b
(向量方程,
A为mn
矩阵, m
个方程, n 个未知数)
am1
am 2
amn xm
bm
⑦、 r( AB) min(r( A), r(B)) ;(※)⑧、如果 A 是 m n 矩阵, B 是 n s 矩阵,且 AB 0 ,则:(※) Ⅰ、 B 的列向量全部是齐次方程组 AX 0 解(转置运算后的结论); 3
Ⅱ、 r( A) r(B) n ⑨、若 A 、 B 均为 n 阶方阵,则 r( AB) r( A) r(B) n ;
③、 a1
a2
an
x1
x2
(全部按列分块,其中
b1 b2
);
xn
bn
④、 a1 x1 a2 x2 an xn (线性表出)
⑤、有解的充要条件: r( A) r( A, ) n ( n 为未知数的个数或维数)
③、某行(列)的元素乘以该行(列)元素的代数余子式为 A ;
3,代数余子式和余子式的关系:
M ij (1)i j Aij
Aij (1)i j M ij
4,设 n 行列式 D :
n ( n 1)
大学数学线性代数题库及答案解析

大学数学线性代数题库及答案解析1. 求解方程组a) 3x + 2y - z = 7-x + 3y + 2z = -112x - y + 4z = 5解析:首先,我们可以使用增广矩阵表示方程组:[ 3, 2, -1, 7;-1, 3, 2, -11;2, -1, 4, 5 ]接下来,通过行初等变换将矩阵化为阶梯形:[ 3, 2, -1, 7;0, 7/4, 3/4, -21/4;0, 0, 9/7, 4/7 ]从第三行可以得到 z = 4/7,代入第二行可得 y = -21/7,再代入第一行可以得到 x = 3。
因此,方程组的解为 x = 3, y = -3, z = 4/7。
b) 2x + 3y + 2z = 10x - y + z = 44x + 2y + z = 12解析:同样,我们使用增广矩阵表示方程组:[ 2, 3, 2, 10;1, -1, 1, 4;4, 2, 1, 12 ]通过行初等变换将矩阵化为阶梯形:[ 2, 3, 2, 10;0, -5, -1, -6;0, 0, 0, 0 ]从第二行可以得到 -5y - z = -6,即 z = -6 + 5y。
我们可以令 y = t,其中 t 为任意常数。
则得到 z = -6 + 5t。
将 z 的值代入第一行可以得到x = 4 - 3t。
因此,方程组的解可以表示为 x = 4 - 3t, y = t, z = -6 + 5t。
2. 求解线性方程组的向量空间a) 给定矩阵 A = [1, 2, -1; 2, 4, -2; 3, 6, -3],求解 A 的列空间。
解析:列空间由矩阵 A 的列向量张成。
我们可以计算矩阵 A 的列向量组的极简形式:[ 1, 2, -1;2, 4, -2;3, 6, -3 ]通过初等行变换得到:[ 1, 2, -1;0, 0, 0;0, 0, 0 ]可以看出,第一列是主列,而第二列和第三列都是自由列。
因此,矩阵 A 的列空间可以表示为 Span{[1, 2, -1]}。
线性代数部分重点及典型问题举例

线性代数部分重点及典型问题举例第二章,矩阵考试要求:⑴ 了解矩阵概念,理解矩阵可逆与逆矩阵概念,知道矩阵可逆的条件,了解矩阵秩的概念;⑵ 熟练掌握矩阵的加法、数乘、乘法和转置等运算,掌握这几种运算的有关性质;⑶ 了解单位矩阵、数量矩阵、对角矩阵、三角形矩阵和对称矩阵的定义和性质.⑷ 理解矩阵初等行变换的概念,熟练掌握用矩阵的初等行变换将矩阵化为阶梯形矩阵、行简化阶梯形矩阵,熟练掌握用矩阵的初等行变换求矩阵的秩、逆矩阵.重点:矩阵概念,矩阵可逆与逆矩阵概念,矩阵可逆的条件,矩阵秩的概念及求法;矩阵的运算和矩阵的求逆,矩阵的初等行变换。
典型例题一、单项选择题1.设A 为23⨯矩阵,B 为32⨯矩阵,则下列运算中( )可以进行. A .AB B .AB T C .A +B D .BA T 答案:A2.设B A ,为同阶可逆矩阵,则下列等式成立的是( ) A . T T T )(B A AB = B . T T T )(A B AB =C . 1T 11T )()(---=B A ABD . T 111T )()(---=B A AB 答案:B3.设B A ,为同阶可逆方阵,则下列说法正确的是( ). A . 若AB = I ,则必有A = I 或B = I B .T T T )(B A AB =C . 秩=+)(B A 秩+)(A 秩)(BD .111)(---=A B AB 答案:D4.设B A ,均为n 阶方阵,在下列情况下能推出A 是单位矩阵的是( ).A .B AB = B .BA AB =C .I AA =D .I A =-1 答案D5.设A 是可逆矩阵,且A AB I +=,则A -=1( ).A .B B . 1+BC . I B +D . ()I AB --1 答案C6.设)21(=A ,)31(-=B ,I 是单位矩阵,则I B A -T =( ).A .⎥⎦⎤⎢⎣⎡--6231B .⎥⎦⎤⎢⎣⎡--6321C .⎥⎦⎤⎢⎣⎡--5322D .⎥⎦⎤⎢⎣⎡--5232 答案 D7.设下面矩阵A , B , C 能进行乘法运算,那么( )成立.A .AB = AC ,A ≠ 0,则B = C B .AB = AC ,A 可逆,则B = C C .A 可逆,则AB = BAD .AB = 0,则有A = 0,或B = 0 答案:B二、填空题1.两个矩阵B A ,既可相加又可相乘的充分必要条件是 .答案:同阶矩阵2.若矩阵A = []21-,B = []12-,则A T B=.答案⎥⎦⎤⎢⎣⎡--2412 3.设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=13230201a A ,当a = 时,A 是对称矩阵. 答案:0=a4.当a 时,矩阵⎥⎦⎤⎢⎣⎡-=a A 131可逆. 答案:3-≠a5.设B A ,为两个已知矩阵,且B I -可逆,则方程X BX A =+的解=X . 答案A B I 1)(--6.设A 为n 阶可逆矩阵,则r (A )= . 答案:n7.若矩阵A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--330204212,则r (A ) = .答案:22.计算题(1)设矩阵 A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-022011,B =⎥⎦⎤⎢⎣⎡--210321,计算(BA )-1. 解 因为BA =⎥⎦⎤⎢⎣⎡--210321⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-022011=⎥⎦⎤⎢⎣⎡--2435 (BA I )=⎥⎦⎤⎢⎣⎡--→⎥⎦⎤⎢⎣⎡--1024111110240135 ⎥⎦⎤⎢⎣⎡---→54201111⎥⎥⎦⎤⎢⎢⎣⎡--→2521023101 (2)设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--------=843722310A ,I 是3阶单位矩阵,求1)(--A I . 解:由矩阵减法运算得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---------⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-943732311843722310100010001A I 利用初等行变换得113100237010349001113100011210010301⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥→--⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥ →----⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥→----⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥113100011210001111110233010301001111→---⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥100132010301001111即 ()I A -=---⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥-1132301111 (3)设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=112,322121011B A ,求B A 1-. 解:利用初等行变换得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--102340011110001011100322010121001011 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→146100135010001011146100011110001011 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→146100135010134001 即 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=-1461351341A 由矩阵乘法得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=-7641121461351341B A第三章 线性方程组考试要求:⑴ 了解线性方程组的有关概念,熟练掌握用消元法求线性方程组的一般解;⑵ 理解并熟练掌握线性方程组的有解判定定理.重点:线性方程组有解判定定理、线性方程组解的表示及求解非齐次线性方程组AX = b 的解的情况归纳如下:AX = b 有唯一解的充分必要条件是秩(A ) = 秩(A ) = n ; AX = b 有无穷多解的充分必要条件是秩(A ) = 秩(A ) < n ;AX = b 无解的充分必要条件是秩(A ) ≠ 秩(A ). 相应的齐次线性方程组AX = 0的解的情况为:AX = 0只有零解的充分必要条件是 秩(A ) = n ; AX = 0有非零解的充分必要条件是 秩(A ) < n .典型例题:一、单项选择题1.若线性方程组的增广矩阵为⎥⎦⎤⎢⎣⎡=41221λA ,则当λ=( )时线性方程组有无穷多解.A .1B .1-C .2D .21 (答案D)2. 若非齐次线性方程组A m ×n X = b 的( ),那么该方程组无解. A .秩(A ) = n B .秩(A )=m C .秩(A )≠ 秩 (A )D .秩(A )= 秩(A )(答案C)3.线性方程组⎩⎨⎧=+=+012121x x x x 解的情况是( ).A . 无解B . 只有0解C . 有唯一解D . 有无穷多解 答案 A4. 线性方程组AX =0只有零解,则AX b b =≠()0( ).A . 有唯一解B . 可能无解C . 有无穷多解D . 无解 答案B5.设线性方程组AX=b 中,若r (A , b ) = 4,r (A ) = 3,则该线性方程组( ). A .有唯一解 B .无解 C .有非零解 D .有无穷多解 答案B6.设线性方程组b AX =有唯一解,则相应的齐次方程组O AX =( ). A .无解 B .有非零解 C .只有零解 D .解不能确定 答案C二、填空题1.若r (A , b ) = 4,r (A ) = 3,则线性方程组AX = b . 答案:无解2.若线性方程组⎩⎨⎧=+=-02121x x x x λ有非零解,则=λ.答案:-1=λ3.设齐次线性方程组01=⨯⨯n n m X A ,且秩(A ) = r < n ,则其一般解中的自由未知量的个数等于 .答案:r n -4.齐次线性方程组0=AX 的系数矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=000020103211A 则此方程组的一般解为 .5.线性方程组AX b =的增广矩阵A 化成阶梯形矩阵后为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-→110000012401021d A 则当d 时,方程组AX b =有无穷多解.答案:1-=d三.计算题1.求解线性方程组的一般解⎪⎩⎪⎨⎧=-+-=+-+-=++-0232022023432143214321x x x x x x x x x x x x解:将方程组的系数矩阵化为阶梯形⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----010030101031020031101231311031101231232121211231 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→010********* 一般解为⎪⎩⎪⎨⎧===03834241x x x x x (4x 是自由未知量) 2.求当λ取何值时,线性方程组⎪⎩⎪⎨⎧+=+++=+++-=--+1479637222432143214321λx x x x x x x x x x x x 有解,在有解的情况下求方程组的一般解.解 将方程组的增广矩阵化为阶梯形⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+---1000010511102121119102220105111021211114796371221211λλλ 所以,当1=λ时,方程组有解,且有无穷多解,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→00000105111084901 答案:⎩⎨⎧++-=--=43243151110498x x x x x x 其中43,x x 是自由未知量.3.求当λ取何值时,线性方程组⎪⎩⎪⎨⎧=+-+=+-+=++-λ432143214321114724212x x x x x x x x x x x x 解:将方程组的增广矩阵化为阶梯形⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---273503735024121114712412111112λλ ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→500003735024121λ 当5=λ时,方程组有解,且方程组的一般解为⎪⎪⎩⎪⎪⎨⎧-+=--=432431575353565154x x x x x x其中43,x x 为自由未知量.。
线性代数重要知识点和典型例题答案

线性代数知识点总结第一章 行列式二三阶行列式N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和n nn nj j j j j j j j j nij a a a a ...)1(21212121)..(∑-=τ(奇偶)排列、逆序数、对换行列式的性质:①行列式行列互换,其值不变。
(转置行列式T D D =) ②行列式中某两行(列)互换,行列式变号。
推论:若行列式中某两行(列)对应元素相等,则行列式等于零。
③常数k 乘以行列式的某一行(列),等于k 乘以此行列式。
推论:若行列式中两行(列)成比例,则行列式值为零; 推论:行列式中某一行(列)元素全为零,行列式为零。
④行列式具有分行(列)可加性⑤将行列式某一行(列)的k 倍加到另一行(列)上,值不变 行列式依行(列)展开:余子式ij M 、代数余子式ij j i ij M A +-=)1(定理:行列式中某一行的元素与另一行元素对应余子式乘积之和为零。
克莱姆法则:非齐次线性方程组 :当系数行列式0≠D 时,有唯一解:)21(n j DD x j j ⋯⋯==、齐次线性方程组 :当系数行列式01≠=D 时,则只有零解 逆否:若方程组存在非零解,则D 等于零 特殊行列式:①转置行列式:332313322212312111333231232221131211a a a a a a a a a a a a a a a a a a →②对称行列式:ji ij a a =③反对称行列式:ji ij a a -= 奇数阶的反对称行列式值为零④三线性行列式:333122211312110a a a a a a a 方法:用221a k 把21a 化为零,。
化为三角形行列式 ⑤上(下)三角形行列式:行列式运算常用方法(主要)行列式定义法(二三阶或零元素多的) 化零法(比例)化三角形行列式法、降阶法、升阶法、归纳法、第二章 矩阵n (零矩阵、负矩阵、行矩阵、列矩阵、n 阶方阵、相等矩阵) ---------交换、结合律 数乘n m ij ka kA *)(=---------分配、结合律乘法nm lkj ik n l kj l m ik b a b a B A *1**)()(*)(*∑==注意什么时候有意义一般AB=BA ,不满足消去律;由AB=0,不能得A=0或B=0 转置A A TT =)( TTTB A B A +=+)( TTkA kA =)( TTTA B AB =)((反序定理) 方幂:2121k k k kA AA +=2121)(k k k k A A +=对角矩阵:若AB 都是N 阶对角阵,k 是数,则kA 、A+B 、 数量矩阵:相当于一个数(若……)单位矩阵、上(下)三角形矩阵(若……) 对称矩阵 反对称矩阵阶梯型矩阵:每一非零行左数第一个非零元素所在列的下方 注:把分出来的小块矩阵看成是元素N 阶方阵,若存在N 阶矩阵B 的AB=BA=I 则称A 是可逆的,|A|=0、伴随矩阵)2.、非零k 乘某一行(列)3、将某行(列)的K 初等变换不改变矩阵的可逆性 初等矩阵都可逆倍乘阵 倍加阵) ⎪⎪⎭⎫ ⎝⎛=O OO I D rr矩阵的秩r(A):满秩矩阵 降秩矩阵 若A 可逆,则满秩 若A 是非奇异矩阵,则r (AB )=r (B ) 初等变换不改变矩阵的秩求法:1定义2转化为标准式或阶梯形矩阵与行列式的联系与区别:都是数表;行列式行数列数一样,矩阵不一样;行列式最终是一个数,只要值相等,就相等,矩阵是一个数表,对应元素相等才相等;矩阵n ij n ij a k ka )()(=,行列式nij n n ij a k ka =逆矩阵注:①AB=BA=I 则A 与B 一定是方阵 ②BA=AB=I 则A 与B 一定互逆; ③不是所有的方阵都存在逆矩阵;④若A 可逆,则其逆矩阵是唯一的。
【精品】线性代数各章知识点及脉络图(含例题)-假期预习必备

一、行列式知识结构网络图概念性质展开式计算证明0A =应用经转置行列式的值不变;某行有公因数k ,可把k 提到行列式外;某行所有元素都是两个数的和,则可写成两个行列式之和; 两行互换行列式变号;某行的k 倍加至另一行.行列式的值不变;不同行、不同列的n 个元素之积的代数和1nn ik ik k D a A ==∑(按i 行展开)1nn kj kj k D a A ==∑(按j 行展开)余子式、代数余子式给定(i ,j )元的值未给定(i ,j )元的值化三角形-加边法、爪型行列式;公式法-特殊行列式、范德蒙德行列式; 递推、数学归纳法;等用行列式性质计算; 用矩阵性质计算; 用方阵的特征值;等克拉默法则;判断方阵的可逆,利用伴随几种求逆矩阵; 线性相关性的判定;求矩阵的秩,并判断线性方程组的解存在情况; 求方阵的特征值。
()n n R n ⨯<A ;0是方阵A 的特征值;=-A A行列式行列式是线性代数中的重要工具,在求解线性方程组、求逆矩阵、判断向量组的线性相关性、求矩阵的特征值、判断二次型的正定性等方面都要用到.本章的重点是应用行列式的性质和展开定理计算行列式.行列式的计算除了利用性质及展开定理外,还有三角化法、升阶法、递推法和数学归纳法等,计算方法多,技巧性强,这是难点所在.要掌握好这些方法,首先必须具体分析所求行列式元素分布的规律,针对其特点采取适当的方法;其次是要注意总结、积累经验,不断提高运算能力.行列式的性质【例】:已知531,252,234都是9的倍数,利用行列式的性质(而不是展开),证明522353124也是9的倍数。
解答:522353124231321010r r ,r r ++522353531252234139r 5229353582726【例】:如果除最后一行外,从每一行减去后面的一行,而从最后一行减去原先的第一行,问行列式值如何变化?解答:设原行列式为⎪⎪⎪⎭⎫ ⎝⎛=n A αα 1det ,则新的行列式为⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----=-113221det ααααααααn n n B , ()00,,3,2det 11321113221=⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---=+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----=--ααααααααααααααn n n i n n n n i r r B特殊行列式1、(主)对角行列式、上(下)三角行列式1111111111221122221111111niii nnnnnna a a a a a a a a a a a a a a a ====∏2、(次)对角行列式、上(下)三角行列式()()12111111212212121111111n n n n n nn,n,n ,n ,n iii n n,n nnn n a a a a a a a a a a aa a a a a ----=-===-∏3、分块三角行列式 形式简记为:*==⨯*A O A AB BO B,()1k n⨯*==-⨯*O A AA B BB O4、范德蒙德行列式()211112112122222221212121111111121121111111,,,11n n n n n n n n n n n n n n n n n n nn n x x x x x x x x x x f x x x x x x x x x x x x x x x x x --------------==()()121,,,n ijn i j f x x x x x ≥>≥=-∏ ()()()()()1213211212111,,,n nj n j j j n j n j j j f x x x xx xx xx x x --≥≥-≥≥≥≥≥≥=-⋅---∏∏∏∏()()()()1221n n n n n n x x x x x x x x --=----()()()()()()()12131211323121n n n n n n x x x x x x x x x x x x x x -------------认识范德蒙德行列式可以将n 阶范德蒙德行列式看成式关于n 个变量12,,,n x x x 的函数,即()12,,,n n D f x x x =。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线性代数知识点总结第一章 行列式二三阶行列式N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和n nn nj j j j j j j j j nij a a a a ...)1(21212121)..(∑-=τ(奇偶)排列、逆序数、对换行列式的性质:①行列式行列互换,其值不变。
(转置行列式TD D =) ②行列式中某两行(列)互换,行列式变号。
推论:若行列式中某两行(列)对应元素相等,则行列式等于零。
③常数k 乘以行列式的某一行(列),等于k 乘以此行列式。
推论:若行列式中两行(列)成比例,则行列式值为零; 推论:行列式中某一行(列)元素全为零,行列式为零。
④行列式具有分行(列)可加性⑤将行列式某一行(列)的k 倍加到另一行(列)上,值不变 行列式依行(列)展开:余子式ij M 、代数余子式ij j i ij M A +-=)1(定理:行列式中某一行的元素与另一行元素对应余子式乘积之和为零。
克莱姆法则:非齐次线性方程组 :当系数行列式0≠D 时,有唯一解:)21(n j DD x j j ⋯⋯==、齐次线性方程组 :当系数行列式01≠=D 时,则只有零解 逆否:若方程组存在非零解,则D 等于零 特殊行列式:①转置行列式:332313322212312111333231232221131211a a a a a a a a a a a a a a a a a a → ②对称行列式:ji ij a a =③反对称行列式:ji ij a a -= 奇数阶的反对称行列式值为零④三线性行列式:333122211312110a a a a a a a 方法:用221a k 把21a 化为零,。
化为三角形行列式 ⑤上(下)三角形行列式:行列式运算常用方法(主要)行列式定义法(二三阶或零元素多的) 化零法(比例)化三角形行列式法、降阶法、升阶法、归纳法、第二章 矩阵n (零矩阵、负矩阵、行矩阵、列矩阵、n 阶方阵、相等矩阵) ---------交换、结合律 数乘n m ij ka kA *)(=---------分配、结合律乘法nm lkj ik n l kj l m ik b a b a B A *1**)()(*)(*∑==注意什么时候有意义一般AB=BA ,不满足消去律;由AB=0,不能得A=0或B=0 转置A A T T =)( TT T B A B A +=+)( T T kA kA =)( TT T A B AB =)((反序定理) 方幂:2121k k k kA AA +=2121)(k k k k A A +=对角矩阵:若AB 都是N 阶对角阵,k 是数,则kA 、A+B 、 数量矩阵:相当于一个数(若……)单位矩阵、上(下)三角形矩阵(若……) 对称矩阵 反对称矩阵阶梯型矩阵:每一非零行左数第一个非零元素所在列的下方 注:把分出来的小块矩阵看成是元素N 阶方阵,若存在N 阶矩阵B 的AB=BA=I 则称A 是可逆的,|A|=0、伴随矩阵)2.、非零k 乘某一行(列)3、将某行(列)的K 初等变换不改变矩阵的可逆性 初等矩阵都可逆倍乘阵 倍加阵) ⎪⎪⎭⎫ ⎝⎛=O OO I D rr矩阵的秩r(A):满秩矩阵 降秩矩阵 若A 可逆,则满秩 若A 是非奇异矩阵,则r (AB )=r (B ) 初等变换不改变矩阵的秩求法:1定义2转化为标准式或阶梯形矩阵与行列式的联系与区别:都是数表;行列式行数列数一样,矩阵不一样;行列式最终是一个数,只要值相等,就相等,矩阵是一个数表,对应元素相等才相等;矩阵n ij n ij a k ka )()(=,行列式nij n n ij a k ka =逆矩阵注:①AB=BA=I 则A 与B 一定是方阵 ②BA=AB=I 则A 与B 一定互逆; ③不是所有的方阵都存在逆矩阵;④若A 可逆,则其逆矩阵是唯一的。
矩阵的逆矩阵满足的运算律:1、可逆矩阵A 的逆矩阵也是可逆的,且A A =--11)(2、可逆矩阵A 的数乘矩阵kA 也是可逆的,且111)(--=A kkA 3、可逆矩阵A 的转置TA 也是可逆的,且T T A A )()(11--=4、两个可逆矩阵A 与B 的乘积AB 也是可逆的,且111)(---=A B AB但是两个可逆矩阵A 与B 的和A+B 不一定可逆,即使可逆,但11)(--+≠+B A B A A 为N 阶方阵,若|A|=0,则称A 为奇异矩阵,否则为非奇异矩阵。
5、若A 可逆,则11--=A A伴随矩阵:A 为N 阶方阵,伴随矩阵:⎪⎪⎭⎫⎝⎛=22211211*A AA A A (代数余子式) 特殊矩阵的逆矩阵:(对1和2,前提是每个矩阵都可逆)1、分块矩阵⎪⎪⎭⎫ ⎝⎛=C O B A D 则⎪⎪⎭⎫ ⎝⎛-=-----11111C O BC A AD 2、准对角矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=4321A A A A A , 则⎪⎪⎪⎪⎪⎭⎫⎝⎛=-----141312111A A A A A 3、 I A A A AA ==**4、1*-=A A A (A 可逆)5、1*-=n AA 6、()()A AA A 1*11*==--(A 可逆) 7、()()**T TA A = 8、()***A B AB =判断矩阵是否可逆:充要条件是0≠A ,此时*11A AA =- 求逆矩阵的方法:定义法I AA =-1伴随矩阵法AA A *1=-初等变换法()()1||-=A II A nn只能是行变换初等矩阵与矩阵乘法的关系: 设()n m ij aA *=是m*n 阶矩阵,则对A 的行实行一次初等变换得到的矩阵,等于用同等的m 阶初等矩阵左乘以A :对A 的列实行一次初等变换得到的矩阵,等于用同种n 阶初等矩阵右乘以A (行变左乘,列变右乘)第三章 线性方程组消元法 非齐次线性方程组:增广矩阵→简化阶梯型矩阵r(AB)=r(B)=r 当r=n 时,有唯一解;当n r ≠时,有无穷多解 r(AB)≠r(B),无解齐次线性方程组:仅有零解充要r(A)=n 有非零解充要r(A)<n 当齐次线性方程组方程个数<未知量个数,一定有非零解当齐次线性方程组方程个数=未知量个数,有非零解充要|A|=0 齐次线性方程组若有零解,一定是无穷多个N 维向量:由n 个实数组成的n 元有序数组。
希腊字母表示(加法数乘)特殊的向量:行(列)向量,零向量θ,负向量,相等向量,转置向量 向量间的线性关系: 线性组合或线性表示向量组间的线性相关(无):定义179P 向量组的秩:极大无关组(定义P188)定理:如果r j j j ααα,.....,21是向量组s ααα,.....,21的线性无关的部分组,则它是 极大无关组的充要条件是:s ααα,.....,21中的每一个向量都可由r j j j ααα,.....,21线性表出。
秩:极大无关组中所含的向量个数。
定理:设A 为m*n 矩阵,则r A r =)(的充要条件是:A 的列(行)秩为r 。
现性方程组解的结构:齐次非齐次、基础解系线性组合或线性表示注:两个向量αβ,若βαk =则α是β线性组合 单位向量组任意向量都是单位向量组的线性组合 零向量是任意向量组的线性组合任意向量组中的一个都是他本身的线性组合 向量组间的线性相关(无)注: n 个n 维单位向量组一定是线性无关 一个非零向量是线性无关,零向量是线性相关 含有零向量的向量组一定是线性相关 若两个向量成比例,则他们一定线性相关向量β可由n ααα,..,21线性表示的充要条件是)...()...(2121T T n T T T n T Tr r βαααααα=判断是否为线性相关的方法:1、定义法:设n k k k ....21,求n k k k ....21(适合维数低的)2、向量间关系法183P :部分相关则整体相关,整体无关则部分无关3、分量法(n 个m 维向量组)180P :线性相关(充要)n r T n T T<⇒)....(21ααα线性无关(充要)n r T n T T=⇒)....(21ααα推论①当m=n 时,相关,则0321=TTTααα;无关,则0321≠TTTααα ②当m<n 时,线性相关推广:若向量s ααα,...,21组线性无关,则当s 为奇数时,向量组13221,...,αααααα+++s 也线性无关;当s 为偶数时,向量组也线性相关。
定理:如果向量组βααα,,...,21s 线性相关,则向量β可由向量组s ααα,...,21线性表出,且 表示法唯一的充分必要条件是s ααα,...,21线性无关。
极大无关组注:向量组的极大无关组不是唯一的,但他们所含向量的个数是确定的; 不全为零的向量组的极大无关组一定存在; 无关的向量组的极大无关组是其本身; 向量组与其极大无关组是等价的。
齐次线性方程组(I )解的结构:解为...,21αα(I )的两个解的和21αα+仍是它的解; (I )解的任意倍数αk 还是它的解;(I )解的线性组合s s c c c ααα+++....2211也是它的解,s c c c ,...,21是任意常数。
非齐次线性方程组(II )解的结构:解为...,21μμ (II )的两个解的差21μμ-仍是它的解;若μ是非齐次线性方程组AX=B 的一个解,v 是其导出组AX=O 的一个解,则u+v 是(II )的一个解。
定理:如果齐次线性方程组的系数矩阵A 的秩n r A r <=)(,则该方程组的基础解系存在,且在每个基础解系中,恰含有n-r 个解。
若μ是非齐次线性方程组AX=B 的一个解,v 是其导出组AX=O 的全部解,则u+v 是(II )的全部解。
第四章 向量空间向量的积 实向量定义:(α,β)=n n Tb a b a b a +++=....2211αβ性质:非负性、对称性、线性性 (α,k β)=k(α,β); (k α,k β)=2k (α,β);(α+β,δγ+)=(α,γ)+(α,δ)+(β,γ)+(β,δ); ),(),(1111j i sj j r i i j sj jr i ii l k lk βαβα∑∑∑∑===== n R ∈δγβα,,,,向量的长度),(ααα=0=α的充要条件是α=0;α是单位向量的充要条件是(α,α)=1单位化 向量的夹角正交向量:αβ是正交向量的充要条件是(α,β)=0 正交的向量组必定线性无关 正交矩阵:n阶矩阵A I A A AA TT==性质:1、若A 为正交矩阵,则A可逆,且T A A =-1,且1-A 也是正交矩阵; 2、若A 为正交矩阵,则1±=A ;3、若A 、B为同阶正交矩阵,则AB也是正交矩阵;4、n阶矩阵A=(ij a )是正交矩阵的充要条件是A的列(行)向量组是 标准正交向量;第五章 矩阵的特征值和特征向量特征值、特征向量A 是N 阶方阵,若数λ使AX=λX ,即(λI-A )=0有非零解,则称λ为A 的一 个特征值,此时,非零解称为A 的属于特征值λ的特征向量。